Go home now Header Background Image
Submission Procedure
share: |
Follow us
Volume 14 / Issue 5

available in:   PDF (327 kB) PS (252 kB)
Similar Docs BibTeX   Write a comment
Links into Future
DOI:   10.3217/jucs-014-05-0745


Optimal Transit Price Negotiation: The Distributed Learning Perspective

Dominique Barth (PRiSM Laboratory, France)

Loubna Echabbi (INPT, Marocco)

Chahinez Hamlaoui (PRiSM Laboratory, France)

Abstract: We present a distributed learning algorithm for optimizing transit prices in the inter-domain routing framework. We present a combined game theoretical and distributed algorithmic analysis, where the notion of Nash equilibrium with the first approach meets the notion of stability in the second. We show that providers can learn how to strategically set their prices according to a Nash equilibrium; even when assuming incomplete information. We validate our theoretical model by simulations confirming the expected outcome. Moreover, we observe that some unilateral deviations from the proposed rule do not seem to affect the dynamic of the system.

Keywords: games with incomplete information, interdomain prices, learning, stability

Categories: C.2.4, G.1.7, I.2.6