Go home now Header Background Image
Submission Procedure
share: |
Follow us
Volume 26 / Issue 2

available in:   PDF (2 MB) PS (1007 kB)
Similar Docs BibTeX   Write a comment
Links into Future


Convolutional Neural Networks and Transfer Learning Based Classification of Natural Landscape Images

Damir Krstinić (Mechanical Engineering and Naval Architecture, Croatia)

Maja Braović (Mechanical Engineering and Naval Architecture, Croatia)

Dunja Božić-Štulic (Mechanical Engineering and Naval Architecture, Croatia)

Abstract: Natural landscape image classification is a difficult problem in computer vision. Many classes that can be found in such images are often ambiguous and can easily be confused with each other (e.g. smoke and fog), and not just by a computer algorithm, but by a human as well. Since natural landscape video surveillance became relatively pervasive in recent years, in this paper we focus on the classification of natural landscape images taken mostly from forest fire monitoring towers. Since these images usually suffer from the lack of the usual low and middle level features (e.g. sharp edges and corners), and since their quality is degraded by atmospheric conditions, this makes the already difficult problem of natural landscape classification even more challenging. In this paper we tackle the problem of automatic natural landscape classiffication by proposing and evaluating a classifier based on a pretrained deep convolutional neural network and transfer learning.

Keywords: convolutional neural networks, deep learning, image classification, natural landscape images, transfer learning, wildfire smoke

Categories: I.2.1, I.2.10, I.2.6, I.4.0, I.4.6, I.4.8, I.4.9, I.5.3