Go home now Header Background Image
Submission Procedure
share: |
Follow us
Volume 26 / Issue 5

available in:   PDF (228 kB) PS (278 kB)
Similar Docs BibTeX   Write a comment
Links into Future


Knowledge Geometry in Phenomenon Perception and Artificial Intelligence

João Gabriel Lopes de Oliveira (Federal University of Rio de Janeiro, Brazil)

Pedro Moreira Menezes da Costa (Federal University of Rio de Janeiro, Brazil)

Flávio Luis de Mello (Federal University of Rio de Janeiro, Brazil)

Abstract: Artificial Intelligence (AI) pervades industry, entertainment, transportation, finance, and health. It seems to be in a kind of golden age, but today AI is based on the strength of techniques that bear little relation to the thought mechanism. Contemporary techniques of machine learning, deep learning and case-based reasoning seem to be occupied with delivering functional and optimized solutions, leaving aside the core reasons of why such solutions work. This paper, in turn, proposes a theoretical study of perception, a key issue for knowledge acquisition and intelligence construction. Its main concern is the formal representation of a perceived phenomenon by a casual observer and its relationship with machine intelligence. This work is based on recently proposed geometric theory, and represents an approach that is able to describe the inuence of scope, development paradigms, matching process and ground truth on phenomenon perception. As a result, it enumerates the perception variables and describes the implications for AI.

Keywords: artificial intelligence, knowledge geometry, perceived phenomenon, projection system

Categories: F.1.1, M.0, M.4