Go home now Header Background Image
Submission Procedure
share: |
Follow us
Volume 15 / Issue 6

available in:   PDF (240 kB) PS (195 kB)
Similar Docs BibTeX   Write a comment
Links into Future
DOI:   10.3217/jucs-015-06-1162


Effective Computability of Solutions of Differential Inclusions The Ten Thousand Monkeys Approach

Pieter Collins (Centrum voor Wiskunde en Informatica, The Netherlands)

Daniel S. Graça (Universidade of Algarve, Portugal)

Abstract: In this paper we consider the computability of the solution of the initialvalue problem for differential equations and for differential inclusions with semicontinuous right-hand side. We present algorithms for the computation of the solution using the "ten thousand monkeys" approach, in which we generate all possible solution tubes, and then check which are valid. In this way, we show that the solution of a locally Lipschitz differential equation is computable even if the function is not effectively locally Lipschitz, and recover a result of Ruohonen, in which it is shown that if the solution is unique, then it is computable. We give an example of a computable locally Lipschitz function which is not effectively locally Lipschitz. We also show that the solutions of a convex-valued upper-semicontinuous differential inclusion are upper-semicomputable, and the solutions of a lower-semicontinuous one-sided Lipschitz differential inclusion are lower-semicomputable.

Keywords: Lipschitz condition, computable analysis, differential inclusions, ordinary differential equations, semicomputability

Categories: F.1.1, F.2.1, G.1.m