| 
          
            Computability of the Spectrum of Self-Adjoint Operators
            
            
               Vasco Brattka (Laboratory of Foundational Aspects of Computer Science, Department of Mathematics and Applied Mathematics, University of Cape Town, South Africa)  
              
             
            
            
               Ruth Dillhage (Computability and Logic Group,
Department of Computer Science,
University of Hagen, Germany)  
              
             
                    
            
              Abstract: Self-adjoint operators and their spectra play a   crucial role in analysis and physics. For instance, in quantum   physics self-adjoint operators are used to describe measurements and   the spectrum represents the set of possible measurement results.   Therefore, it is a natural question whether the spectrum of a   self-adjoint operator can be computed from a description of the   operator. We prove that given a "program" of the operator one can   obtain positive information on the spectrum as a compact set in the   sense that a dense subset of the spectrum can be enumerated (or   equivalently: its distance function can be computed from above) and   a bound on the set can be computed. This generalizes some   non-uniform results obtained by Pour-El and Richards, which imply   that the spectrum of any computable self-adjoint operator is a   recursively enumerable compact set. Additionally, we show that the   spectrum of compact self-adjoint operators can even be computed in   the sense that also negative information is available (i.e. the   distance function can be fully computed). Finally, we also discuss   computability properties of the resolvent map. 
             
            
              Keywords: computable functional analysis 
             
            Categories: F.1.1, F.4.1, G.1  
           |