Go home now Header Background Image
Submission Procedure
share: |
Follow us
Volume 11 / Issue 12

available in:   PDF (190 kB) PS (161 kB)
Similar Docs BibTeX   Write a comment
Links into Future
DOI:   10.3217/jucs-011-12-1945


Axiomatic Classes of Intuitionistic Models

Robert Goldblatt (Victoria University of Wellington, New Zealand)

Abstract: A class of Kripke models for intuitionistic propositional logic is `axiomatic' if it is the class of all models of some set of formulas (axioms). This paper discusses various structural characterisations of axiomatic classes in terms of closure under certain constructions, including images of bisimulations, disjoint unions, ultrapowers and `prime extensions'. The prime extension of a model is a new model whose points are the prime filters of the lattice of upwardly­closed subsets of the original model. We also construct and analyse a `definable' extension whose points are prime filters of definable sets.
A structural explanation is given of why a class that is closed under images of bisimulations and invariant under prime/definable extensions must be invariant under arbitrary ultrapowers. This uses iterated ultrapowers and saturation.

Keywords: Kripke model, bisimulation, disjoint union, intuitionistic logic, iterated ultrapower, prime filter, saturated model, ultraproduct

Categories: F.4.1