Go home now Header Background Image
Submission Procedure
share: |
Follow us
Volume 17 / Issue 4

available in:   PDF (291 kB) PS (976 kB)
Similar Docs BibTeX   Write a comment
Links into Future
DOI:   10.3217/jucs-017-04-0583


A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis

Manh Cuong Pham (RWTH Aachen University, Germany)

Yiwei Cao (RWTH Aachen University, Germany)

Ralf Klamma (RWTH Aachen University, Germany)

Matthias Jarke (RWTH Aachen University, Germany)

Abstract: Collaborative Filtering(CF) is a well-known technique in recommender systems. CF exploits relationships between users and recommends items to the active user according to the ratings of his/her neighbors. CF suffers from the data sparsity problem, where users only rate a small set of items. That makes the computation of similarity between users imprecise and consequently reduces the accuracy of CF algorithms. In this article, we propose a clustering approach based on the social information of users to derive the recommendations. We study the application of this approach in two application scenarios: academic venue recommendation based on collaboration information and trust-based recommendation. Using the data from DBLP digital library and Epinion, the evaluation shows that our clustering technique based CF performs better than traditional CF algorithms.

Keywords: clustering, collaborative filtering, social network analysis, trust

Categories: H.3.3, H.3.7