Go home now Header Background Image
Submission Procedure
share: |
Follow us
Volume 16 / Issue 5

available in:   PDF (190 kB) PS (267 kB)
Similar Docs BibTeX   Write a comment
Links into Future
DOI:   10.3217/jucs-016-05-0800


SOM Clustering to Promote Interoperability of Directory Metadata: A Grid-Enabled Genetic Algorithm Approach

Lei Li (Columbus State University, USA)

Vijay K. Vaishnavi (Georgia State University, USA)

Art Vandenberg (Georgia State University, USA)

Abstract: Directories provide a general mechanism for describing resources and enabling information sharing within and across organizations. Directories must resolve differing structures and vocabularies in order to communicate effectively, and interoperability of the directories is becoming increasingly important. This study proposes an approach that integrates a genetic algorithm with a neural network based clustering algorithm - Self-Organizing Maps (SOM) - to systematically cluster directory metadata, highlight similar structures, recognize developing patterns of practice, and potentially promote homogeneity among the directories. The proposed approach utilizes the computing power of Grid infrastructure to improve system performance. The study also explores the feasibility of automating the SOM clustering process in a converging domain by incrementally building a stable SOM map with respect to an initial reference set. Empirical investigations were conducted on sets of Lightweight Directory Access Protocol (LDAP) directory metadata. The experimental results show that the proposed approach can effectively and efficiently cluster LDAP directory metadata at the level of domain experts and a stable SOM map can be created for a set of converging LDAP directory metadata.

Keywords: LDAP directory, clustering analysis, genetic algorithm, grid, reference set, self-organizing maps

Categories: H.3.1, H.3.3, H.4.0, H.5.0