Go home now Header Background Image
Search
Submission Procedure
share: |
 
Follow us
 
 
 
 
Volume 16 / Issue 18

available in:   PDF (2 MB) PS (221 kB)
 
get:  
Similar Docs BibTeX   Write a comment
  
get:  
Links into Future
 
DOI:   10.3217/jucs-016-18-2597

 

Semantics of Query-Driven Communication of Exact Values

Michal Konečný (Aston University, United Kingdom)

Amin Farjudian (Aston University, United Kingdom)

Abstract: We address the question of how to communicate among distributed processes valuessuch as real numbers, continuous functions and geometrical solids with arbitrary precision, yet efficiently. We extend the established concept of lazy communication using streams of approximants by introducing explicit queries. We formalise this approach using protocols of a query-answer nature. Such protocols enable processes to provide valid approximations with certain accuracy and focusing on certain locality as demanded by the receiving processes through queries.

A lattice-theoretic denotational semantics of channel and process behaviour is developed. Thequery space is modelled as a continuous lattice in which the top element denotes the query demanding all the information, whereas other elements denote queries demanding partial and/or local information. Answers are interpreted as elements of lattices constructed over suitable domains of approximations to the exact objects. An unanswered query is treated as an error anddenoted using the top element.

The major novel characteristic of our semantic model is that it reflects the dependency of answerson queries. This enables the definition and analysis of an appropriate concept of convergence rate, by assigning an effort indicator to each query and a measure of information content to eachanswer. Thus we capture not only what function a process computes, but also how a process transforms the convergence rates from its inputs to its outputs. In future work these indicatorscan be used to capture further computational complexity measures.

A robust prototype implementation of our model is available.

Keywords: dataflow networks, denotational semantics, distributed computation, domain theory, exact real computation

Categories: C.2.4, F.1.1, F.3.2, G.0, G.1.0