
Performance Solution of SOA Infrastructure for

Knowledge Computing

Miroslav Kubásek
(Faculty of Informatics, Masaryk University, Czech Republic

xkubasek@fi.muni.cz)
Jan Pavlovič

(Faculty of Informatics, Masaryk University, Czech Republic
pavlovic@fi.muni.cz)

Tomáš Gregar
(Faculty of Informatics, Masaryk University, Czech Republic

xgregar@fi.muni.cz)

Abstract: In this paper we will present a complete solution of SOA designed for
knowledge computation encapsulation. SOA brings a lot of advantages to the whole
ICT process when a difficult on-demand task is computed. On the other hand SOA
overhead is nowadays unacceptable for this kind of computation tasks. We have used
a semantic approach to describe SOA. Some contributing ideas have appeared – for
example a possible approach to cache web services ontologically. This can help in
knowledge computing.

Key Words: SOA, Web Services, JMS, Ontology, Cache

Category: D.2.2, D.2.11, H.3.5

1 Introduction

Almost every scientific on-demand computation has a similar structure and obeys
similar rules. We have some input data with a hidden knowledge we are to obtain
as a result of computation process, which requires large hardware and software
resources.

This means two main problems. We need to build a new hardware and struc-
ture for each computation task. The second problem is visualization of the result
or other form of result representation. The whole solution consists of a great
number of particular computations which are somehow represented to the user.
SOA represents a functional encapsulation of computations and simplifies the
communication interface between application and presentation logic. Such ar-
chitectures can be easily integrated to other software solution and information
systems [Král 05]. However, we need to solve the large overhead of SOA.

1.1 Data Security Management

Although security denotes different things with respect to software systems, in
general, it is associated with: Confidentiality – Access to information/service

 Journal of Universal Knowledge Management, vol. 1, no. 3 (2006), 271-294
 submitted: 5/10/06, accepted: 15/11/06, appeared: 28/12/06 © J.UKM

is granted only to authorized subjects; Authenticity – We can trust that the
indicated author/sender is the one responsible for the information; Integrity –
Information is not corrupted; Availability – The information/service is available
in a timely manner.

Security is a major concern for SOA and Web services. Messages often con-
tain data in text format (e.g., XML), and, even worse, metadata is embedded.
Encryption must be in place to preserve privacy.

A system built using a SOA approach may encompass services provided by
third-party organizations. Trust must be built into the security of such external
services (e.g. authentication, protecting stored data, authorization to allow con-
figuring and enforcing permissions of specific user, groups or roles etc.). An SOA
solution may rely on looking up services in a public directory. It is important to
ensure that information in the directory is up to date and was added by valid
publishers.

Web services solutions have been addressing some of the security concerns at
the network infrastructure level. For example, Web servers that host Web services
can be configured to use Secure Sockets Layers (SSLs) and digital certificates
to encrypt data transmission and authenticate the communicating parties. In
intranet solutions, Kerberos is an option. However, these solutions merely help
to protect point-to-point interaction: A comprehensive mechanism that covers
end-to-end security is required.

The architect should be aware of the security features offered by the target
Web services platform, because security mechanisms often have a negative im-
pact on performance and modifiability. Also, adherence to security standards
is important for preserving of interoperability. In addition to the SOA security
mechanisms available (e.g., encryption, authentication, and authorization), the
architect should consider the configuration required for the infrastructure of the
chosen technology with respect to security. In a Web services solution, the fire-
wall rules don’t have to change because the SOA interaction is over a protocol
that is normally open (e.g., HTTP or SMTP).

2 ESB

The last year brought some significant technology trends like Service-Oriented
Architecture (SOA), Enterprise Application Integration (EAI), Business to Busi-
ness (B2B), and web services. These technologies have tried target the challenges
of improving the results and increasing the value of integrated business pro-
cesses, and have gathered attention of industry analysts and IT specialists. The
Enterprise Service Bus (ESB) combines the finest traits from these and other
technology trends [Chappell 04].

The ESB principle represents a new way of looking at integration of loosely
coupled and highly distributed integration network that can rise above the lim-

272 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

its of a hub-and-spoke EAI broker. An ESB is standardized integration platform
for messaging, web services, data transformation. Moreover it connects ad co-
ordinates the interaction of large numbers of different application throughout
enterprises applications with transactional integrity.

The ESB brings a new way of incorporating web services and SOA into a
robust architecture that integrates services and applications into a backbone
that bridges the enterprise applications. An EBS enables immediate usage of
web services and other integration technologies with the modern technologies of
nowadays.

The ESB is a platform independent concept. Ideally an EBS could be imple-
mented without any particular technology. Although a perfect ESB has to take
advantage of Java components since the Java technology is largely used in many
IT areas.

An ESB can profit from many of the technologies belonging to the Java
EE and Java SE range, such as JMS, JCA, EJB, JSP, JAAS, SAAJ, JSSE,
JSP, JAXB, JAX-RPC, and JMX. They do not need to be used all together at
every installation. There exist a small number of Java specifications that deserve
particular attention due to their impact on the functionality of an ESB.

2.1 Java Business Integration (JBI)

The Java Business Integration (JBI) initiative (JSR-2081) is a pursuit in the JCP
to create a specification that describes the way how to integrate components.
These components can be integrated together in a vendor-neutral style.

JBI is regarded as having an ”enterprise” ability. In the main goal of the
JBI is not to require the whole Java EE application server. JBI is especially
aimed toward allowing vendors no matter if application server based or not to
be able to plug components together in a interoperable way. Although JBI can
use the Java EE server, the main goal of JBI lies in broader adoption beyond the
handful of Java EE application server vendors. The main idea is to acquire an
environment where any vendor dealing in the field of integration components and
infrastructure may provide a JBI-compliant infrastructure, or plug their wares
into one.

JBI offers a way of integrating services hosted in a managed environment
allowing pluggable Service Engines from third-party vendors to interoperate to-
gether. These engines and their corresponding services could be anything that
provides integration and process management. Service Engine could be as XSLT
transformation engine, a CBR service or an WS-BPEL orchestration engine.
These services can be provided by several different vendors, and still be able to
work together in the same managed environment.
1 http://jcp.org/en/jsr/detail?id=208

273Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

http://jcp.org/en/jsr/detail?id=208

The acceptance of JBI will help to acquire and accelerate an environment
around pluggable, interoperable integration components. This enables to build
around a model of third-party services that can easily plug into an ESB envi-
ronment.

2.2 Other Solution

The SOA solution is nowadays definitely a modern way of designing an infor-
mation system. Even for scientific computations there are vast projects dealing
with the idea of a virtual grid based on web services. There are two main repre-
sentatives in this area - the Globus2 and the gLite3 projects. These solutions are
suitable for complicated tasks where you can spend a lot of time with configuring
the underlying layer.

In Supercomputing Centre of Brno4 Masaryk University is running the Globus
and it has taken months to configure it.

3 Design

The design of system consists from several layers Figure 1. The first layer is the
Knowledge Layer this is represented mainly by Data Warehouse. Upon Knowl-
edge Layer is hardware including clusters or standalone computer. Individual
SWS (Semantic Web Services) are mapped to this layer in M:N relationship.
Next layer contains from description units as UDDI and ontologies.

With the SOA Bus Layer the system is encapsulated and client applications
can consume the services. The Bus Layer can be easily done with any implemen-
tation of Enterprise Service Bus. We have tested the Sun Open ESB project5.
There is possibility to add JMS server to increase performance. The visualiza-
tions of received knowledge are upon the clients.

4 Performance

In general, performance is related to response time (how long it takes to process
a request), throughput (how many requests overall can be processed per unit
of time), or timeliness (ability to meet deadlines, i.e., to process a request in
a deterministic and acceptable amount of time). Performance is an important
quality attribute that is usually affected negatively in SOA. Careful design and
2 http://www.globus.org/wsrf/
3 http://glite.web.cern.ch/glite/
4 http://scb.ics.muni.cz/static/index_en.html
5 https://open-esb.dev.java.net/

274 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

http://www.globus.org/wsrf/
http://glite.web.cern.ch/glite/
http://scb.ics.muni.cz/static/index_en.html
https://open-esb.dev.java.net/

Figure 1: System Architecture

evaluation of the architecture for the specific solution is necessary to avoid per-
formance pitfalls. The key factors in SOA that contribute to performance issues
are mentioned below [OBrien et al. 05].

SOA involves distributed computing. Service and service user components are
normally located in different containers, different machines. The need to commu-
nicate over the network increases the response time. Typical networks used for
SOA, such as the Internet, do not guarantee deterministic latency. Therefore,
SOA is not considered a feasible solution for real-time systems, but presents
challenges for near real-time systems, where latency is not a safety-critical re-
quirement but rather a business one (i.e., meet business goals). For a heavily
used service, many queued requests may already be outstanding, and they are
usually serviced in a FIFO manner. Such a situation can have a significant im-
pact on latency, though it can still be predicted stochastically. However, if more
queue space has to be created dynamically, latency will be impacted further.

The interaction protocol sometimes requires a call to a directory of services
to locate the desired service. This extra call increases the total time needed
to perform the transaction. One way to reduce the response time and improve
throughput is to prevent the call to the directory by having the location of the
provider end point hard-coded (or cached after the first lookup) in the service
user. However, hard-coding reduces availability, and caching must be reestab-
lished after failure when another replica is found.

The ability to make services on different platforms interoperates seamlessly
request data marshalling and handling all communication between a service con-
sumer and a provider. Depending on the SOA technology or framework being
used, stubs, skeletons, SOAP engines, proxies. . . are in place. All such interme-

275Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

diaries negatively impact performance.
The use of a standard messaging format increases the time needed to process

a request. With messages described by ontology it is increased further.
On the positive side, SOA provides location transparency. Service users do

not necessarily know the location of the service until they look it up in the
registry. Thus, a deployed service can be moved from location to location with-
out affecting the consumers. This feature permits the deployment of services to
multiple locations (replicas), which can be allied to a load-balancing strategy to
improve the total throughput and availability of the system.

Many SOA technologies permit the service user to call the provider asyn-
chronously. In that case, the user does not get blocked waiting for the response.
For operations that fit that model of interaction, asynchronous calls should be
used to reduce the response time.

5 Caching solution

Current Web caching systems leverage unique identifiers pointing to content
fragments. They leverage the underlying protocols to keep track of the timeliness
of data bits, such as HTML documents or images. While Web services over the
HTTP transport have endpoints (URLs), the parts of the Simple Object Access
Protocol (SOAP) envelope that make it unique are the values for parameters in
the SOAP envelope.

Because SOAP is XML, several tags can have many different labels but still
mark up the same data. Taken as a whole, it is possible for you to create a
SOAP envelope that is different from the next while representing exactly the
same data. Moreover, if you decided to cache based on the individual unique
parts of a SOAP envelope, there is no way to indicate if the query is suitable for
such caching.

Possible solution for quick matching with stored SOAP messages is to use
hash of canonicalized XML messages as a key value [Boyer 01]. For simplifying
the generation of canonicalized messages we can use some kind of templates
which can be generated from ontology description of used Web Services (ex-
tended WSDL).

The Figure 2 describes the structure of proxy cache which uses the knowl-
edge about WS from its WSDL description (i.e. description of its input and
output) provided by UDDI. The SWS (Semantic Web Service) in this figure is
the extension of classic Web Service with semantics knowledge about request
and response messages.

276 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

Figure 2: Cache with Semantic Knowledge

5.1 What and where we can cache?

Most processes involve calculation. The calculation can be an equation or a
network transaction that results in a new value. Either way, you should identify
the parts of the process that waste time.

How long do you keep these cached items around, and how often are other
clients going to call the Web service?

The first question goes to the fact that every system has limited resources.
Keeping 100 MB of audio data in memory might be too storage intensive. You
can design a cache to have a maximum size. It can keep the most used entries
around while purging the oldest and least used. You might decide not to have a
time limit for this cache.

The second issue highlights that the service might be so infrequently lever-
aged by other clients that caching anything might be useless. For example, as-
sume the total transaction time of an imaginary Web service is two seconds.
If the calls to this Web service are infrequent (less than one in a minute), it
might be determined that there is no need for caching. However, if the load is
100 calls in a second, it might be justified. An alternative approach is to have a
self-pruning cache that stores entries, as needed, but prunes them at an expira-

277Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

tion time. Pruning the cache object reduces its memory footprint. Depending on
the implementation, the cache could afford the ability to keep popular cached
objects around longer than the infrequently used items.

Service in SOA is behavior-based and its functionality is encapsulated. De-
mands and its responses are transferred by messages with defined syntax. But
web services are meaningful only if potential users may find information sufficient
to permit their execution. Traditional implementations of SOA use strictly syn-
tactic standards – WSDL, SOAP, REST (meintioned earlier). Services, agents
and applications have no knowledge about content of the messages. The whole
collaboration is possible only because of use the same standards.

With some semantical information, ie. information about messages’ content
and/or system architecture, we can improve caching algorithm. We can store
more than knowledge of exact match of demand-message with its response.
Connection of concepts (keywords) found in query messages with data returned
builds logical predicates, which can be further used (with other information of
system architecture and rules).

6 Caching

Data caching and query caching are two widely used strategies for Web caching.
As regards to the data caching strategy, a major concern is whether the data
granularity in the cache is page or tuple. In this strategy, special proxy servers
maintain the pages or tuples recently accessed and when users request same pages
or tuples by URL, the cache will return its corresponding content directly to
users so that it can save the communication cost between proxy servers and user
clients. In data integration system user queries do not contain URL information,
but they contain bag of keywords. By these reasons the query caching strategy
works well, and is also known as semantic caching. The semantic caching strategy
manages semantic region grouping a collection of data objects corresponding to
a specific query. For example, in the cache of search engine system, a semantic
region normally contains a set of Web documents returned by Web search engines
on the query of some specified keywords.

6.1 Semantic Based Caching

Generally, there are three main issues concerned for a semantic caching strat-
egy: cache region organization, matching mechanism, and cache replacement
policy[Kubasek et al. 06].

With respect to the first issue, data objects are organized into corresponding
to queries e.g., relational predicates in relational database or set of variables in
Web Services area. Further the regions may or may not be disjoint, depending
on design of different systems. There are also special techniques used for cache

278 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

organization in different systems, for example, signature method or reference
counter technique.

Figure 3: Matching types in semantic caching

As for the issue of matching mechanism, generally there are these matching
types: exact matching, query containment and region containment. Briefly put,
exact matching happens when a new query is exactly the same as the region
formula, i.e., the description of the region; query containment indicates the case
in which a new query is subordinate to at least one region formula so that it can
be entirely satisfied by the cache, here “a formula A is subordinate to a formula
B” means that the complete query result corresponding to A is a proper set of
that corresponding to B; inversely, region containment means at least a region
formula in the cache is subordinate to the query formula so that the query can
be satisfied partially by the cache; at last, the intersection matching type is the
case when the result of the query and the data residing in a semantic region
are not disjoint, but neither of them is subordinate to the other. Since both
of the query containment and the region containment can be associated with
multiple semantic regions, there are altogether four matching cases, which are
demonstrated in the following Figure 3. Once the matching case is determined,
a probe part for the query can be generated from the matched semantic regions,
and the rest results i.e., the remainder part of the query, can be fetched by
information retrieval. At last the probe part and the remainder part together
make up the query result.

There is a lot of research work on semantic caching, e.g., Chidlovskii’s seman-
tic caching strategy on Meta Web search engine [Chidlovskii and Borghoff 00];
Lee’s semantic caching strategy in CoWeb [Lee and Chu 01]; and Chen’s work
on XCache, a semantic caching architecture for XML [Chen et at. 02].

6.2 Semantic Based Caching Model

We will introduce a caching model to represent the cached SOAP messages to
decide that the cached information is enough to answer a query. In definitions
we will use the notation described in [Miklau and Suciu 02].

279Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

Figure 4: Model of cache for storing and quering Web Services messages

Generally, an cache memory consists of a set of SOAP messages. We model
the whole memory as an unordered rooted node-labelled XML tree over an infi-
nite alphabet Σ. A virtual root node might be introduced to connect all XML
documents if necessary. In this XML tree, each internal node’s label corresponds
to an XML element or attribute name, and each leaf node’s label corresponds to
a data value. In addition, we assume that each node has a unique node identifier.
We let TΣ be the set including all possible XML trees over Σ. Formally, we have:

Definition (WS tree): An Web Service Cache database is a tree T = 〈V, E, r〉
over Σ called WS tree, where

1. V is the node set and E is the edge set.

2. The r ∈ V is the root of T .

3. Each node n ∈ V has a label, denoted as n � label, whose value is n � label ∈
{′∗′,′ //′} ∪ Σ.

4. Each node n ∈ V has a unique node identifier denoted as n � id. �

Definition (Size): Given an WS tree T = 〈V, E, r〉, the size of T is defined as
the cardinality of V , and we also say that T ′ = 〈V ′, E′, r′〉 is a subtree of T if
V ′ ⊆ V and E′ = (V × V) ∩ E.

Definition (Rooted subtree): Given an WS tree T = 〈V, E, r〉, a rooted
subtree T ′ = 〈V ′, E′, r′〉 is a subtree of T if it satisfied the folowing conditions:
r′ = r and V ′ ⊆ V and E′ ⊆ E.

280 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

Next I will use fragment of XPath queries denoted as XPQ. This fragment
consists of label tests, child axes(/), descendant axes(//), branches([]) and wild-
cards(*). It can be recursively represented by the following grammar:

q
−→ v | ∗ | q/q | q//q | q[q] | v ∈ Σ

Any q ∈ XPQ can be represented as a labelled tree (called query pattern
tree) with the same semantics Figure5 b).

Definition (query pattern tree): A query pattern tree P is a tree P =
〈V, E, r, o〉 over Σ ∪ {′∗′}, where V is the node set and E is the edge set, and:

1. Each node n ∈ V has a label from Σ ∪ {′∗′}, denoted as n � label;

2. Each edge e ∈ E has a label from {′/′,′ //′}, denoted as e � label. The edge
with label ′/′ is called child edge, otherwise called descendent edge;

3. r ∈ V is the root node of P and o ∈ V is the output node of P .

Figure 5: Example of tree and pattern tree

In order to decide if a WS tree T is included in some query pattern tree P , we
need to define the semantics of tree inclusion. Several definitions of tree inclu-
sion exist including subtree inclusion [Ramesh and Ramakrishnan 92], tree em-
bedding [Zaki 02] and tree subsumption [Giunchiglia and Walsh 92]. The most

281Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

relevant definition is the subtree inclusion, which states that a WS subtree T ′

is included in some WS tree T if and only if there exists a subtree of T that is
identical with T ′.

However, this definition is too restrictive for XML query pattern trees where
handling of wildcards and relative paths are necessary.

Consider the an WS trees T = 〈Vt, Et, rt〉 and query pattern tree P =
〈Vp, Ep, rp, op〉 in Figure5. Let match(p, q) denote that a node p ∈ Vt is mapped
to a node q ∈ Vp.

Since we are dealing with rooted subtrees, we can carry out a top-down
matching. Here, (’a’,’a’) is mapped first. Next, we check that each subtree of
’a’ in T matches with some subtree of ’a’ in P . This requires that the subtree
rooted at section of T (denoted as subtree(section)) has to be matched against
the subtrees rooted at ‘b’ and ’*’ of P . We need to consider whether ‘//’ indicates
zero or many nodes in the path:
Case 1: ‘//’ means zero length. Then subtree(2) must be included in either
subtree(5) of P , which is not the case here.
Case 2: ‘//’ means many nodes. This implies that section has been mapped to
some ‘unknown’ node in P . From all the possible subtrees of section, only one
subtree, i.e., subtree(3), must be included by subtree(‘//’).

I now define an pattern match (also called embedding) from a query pattern
tree to an WS tree as follows:

Definition (pattern match): Given an WS tree T = 〈Vt, Et, rt〉 and a query
pattern tree P = 〈Vp, Ep, rp, op〉, an pattern match from P to T is a function
match() : Vp
−→ Vt, with following properties:

1. Root preserving: match(rp) = rt;

2. Label preserving: ∀n ∈ Vp:
if n � label
= ′∗′ ⇒ n � label = match(n) � label;

3. Structure preserving: ∀e = (n1, n2) | n1, n2 ∈ Ep:
if e � label = ′/′ then e(n2) is a child of e(n1) in T ; otherwise, e(n2) is a
descendent of e(n1) in T .

Function match() maps the output node op of P to a node n ∈ Vt. We say
that the node n is the result of this embedding. As an example, dashed lines
between Figure5 (a) and (b) shows an embedding, and its result is the node
with id = 8. Actually, there could be more than one embedding from P to T .
We define the result of P over T , denoted as P (T), as the union of results of all
embeddings, i.e.,

P (T) =
⋃

m∈M

{m(op)}

282 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

where M is the set including all pattern matches from P to T .
For a given XML tree T , we also consider evaluating a set of patterns ST =

P1, P2, ..., Pn over T . The result, denoted as ST , is the union of the result of
evaluating each Pi ∈ S over T , formally defined as:

ST =
⋃

Pi∈S

{Pi(T)}

Lemma: For any two patterns P1 and P2, we said that P1 is contained in P2

(denoted as P1 � P2) if ∀T ∈ TΣ | P1(T) ⊆ P2(T).

Lemma: For any pattern P and pattern set SP , we said that a pattern P is
contained in a pattern set SP (denoted as p � SP) if ∀T ∈ TΣ | P (T) ⊆ ST .

Lemma: For any two pattern sets SP
1 and SP

2 , we said that pattern set SP
1 is

contained in a pattern set SP
2 (denoted as SP

1 � SP
2) if ∀T ∈ TΣ | ST

1 ⊆ ST
2 .

We can also show that SP
1 � SP

2 if ∀Pi ∈ S1 | Pi � SP
2 . However, it’s not

always true that P � SP ⇒ ∃P ′ ∈ SP | P � P ′.

Proof: Below is describet algorithm for contains which check the containment
of tree patterns. It maintains a two-dimensional array status , which is initialized
with stutus[v, w] = null to indicate that v ∈ nodes(p) and w ∈ nodes(q) have not
been compared. Otherwise, status[v, w] ∈ {true, false} sutch that status[v, w] =
true if and only if subtree(w, q) � subrtee(v, p). Clearly q � p if and only if
status(vroot, wroot) = true where vroot is the root node of p and wroot is the root
node of q. �

Given an WS T created from SOAP message of Web Service and a set of
tree pattern SP , we have the ST in the cache. We want to use this ST to
answer patterns created from SOAP requests. But, we need to assure that ST

can totally answer them, before evaluating them against ST . From Corollary 1,
we know that ST can totally answer those patterns included in SP . However, ST

can totally answer more patterns not only in SP . This advantage of Semantic
Caching Model will be further discuss. The problem is how to decide whether
ST can totally The problem is how to decide whether ST can totally answer a
pattern P or not. The basic idea is to check whether T P (represented by P) is
a rooted subtree of ST or not. We have the following result:

Lemma: Given an WS tree T , a pattern P and a pattern set SP , ST can totally
answer P if T P is a rooted subtree of ST . �

From the above lemma, the problem is reduced to decide whether or not T P

283Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

contains(p, q)
Input: p, q // tree patterns
Output: Returns true if q � p; false otherwise

status[v, w] = null | ∀v ∈ nodes(p), ∀w ∈ nodes(q)
vroot = root node of p

wroot = root node of q

if child(vroot, p) = ∅ then
return true

else
return containssub(vroot, wroot, status)

end if

containssub(v, w, status)
Input: v, w // nodes in tree patterns p, q

status[v, w] // 2-dimensional array such that each status[v, w] ∈
{nul, false, true}
Output: status[v, w]

if status[v, w]
= null then
return status[v, w]

end if
if v is a leaf node in p then

status[v, w] = (label(w) � label(v))
else

if label(w) � label(v) then
status[v, w] = false

else
status[v, w] =

∧
v′∈child(v,p)(

∨
w′∈child(w,q) containssub(v′, w′, status))

end if
end if
if (status[v, w] = false)and(label(v) = //) then

status[v, w] =
∧

v′∈child(v,p) containssub(v′, w, status)
end if
if (status[v, w] = false)and(label(w) = //) then

status[v, w] =
∨

w′∈child(w,q) containssub(v, w′, status)
end if
return status[v, w]

Algorithm 1: Pattern contain checking Algorithm

284 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

is a rooted subtree of ST . We can further reduce our problem to decide whether
SPT ⊆ SST

or not in our next result.

Lemma: Given an WS tree T = 〈V, E, r〉 and two node sets N | N ⊆ V and
N ′ | N ′ ⊆ V , the minimal covered tree for N over T is a rooted subtree of the
minimal covered tree for N ′ over T if N ⊆ N ′.

Proof: Hence, T P is a rooted subtree of ST if SPT ⊆ SST

. However, there could
be some patterns that ST can totally answer but their embedding node sets are
not included in SST

.
For a given pattern P , the nodes in SPT mapped from the internal nodes of

P are redundant to represent an WS tree. The following definitions and lemmas
are given to deal with this case.

Definition (matches leaf node set): Given an WS tree T and a tree pattern
P 〈V, E, r, o〉, an matches leaf node set SPT

leaf is defined as

SPT
leaf =

⋃

m∈M

(
⋃

vi∈Vleaf

{m(vi) � id})

where M is a set including all possible pattern matches from P to T and
Vleaf ⊆ V includes all leaf nodes of P . �

For an WS tree T , we similarly define that the matches leaf node set for a
pattern set SP , denoted as SSP T

leaf , is the union of the embedding leaf node set
for each pi ∈ SP | ⋃

pi∈SP SPT
leaf (Pi, T). We have the following results:

Lemma: Let t be an WS tree. For a given pattern P and a pattern set SP , the
following hold:

– The minimal covered tree for CPT
min over T P is identical to the minimal cov-

ered tree for SCPT
min over T .

– The minimal covered tree for CPT P

min over ST P

is identical to the minimal

covered tree for SCPT P

min over T . �

From previous three lemmas we easily have that T P is a rooted subtree of
ST if SCPT

min ⊆ SCPTP

min .
So far, we reduce the problem of deciding whether ST can totally answer P

or not to the problem that whether SCPT ⊆ SCSP , T or not. We next consider
how to decide SCPT ⊆ SCSP , T .

We denote a pattern P 〈V, E, r, o〉 as P�o , where o ∈ V is the output node.
We also can choose any node v ∈ V as the output node of P . For example, the
pattern P with a node v1 instead of o as the output node can be denoted as P�v1

285Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

. For a pattern P , we introduce a tree pattern set SP�T including all patterns
by choosing each node in P as the output node, and this pattern set can be
formally defined

SP�T =
⋃

vi∈V

{P�vi}

If we only choose leaf nodes in P as the output node to build the set, we
denote it as SP�T

leaf .

Next result shows that the node set SCPT

is equal to the result of evaluating
the pattern set SP�T

leaf over T .

Lemma: Given an WS tree T and a pattern P , SPT
leaf = SP�T

leaf .
For a pattern set S, we similarly define a pattern set

S
SP

� T
leaf =

⋃

pi∈SP

SPi�T
leaf

From the above lemma, we can have SSP T
leaf = S

SP
� T

leaf .
By combining all above lemmas, we finally have the following conclusion:

Corollary 2: Given an WS tree set ST T , a pattern P and a pattern set SP . ST

can totally answer P if SP�T
leaf � S

SP
� T

leaf .
We reduce the problem deciding whether ST can totally answer P or not to

the containment problem between two pattern sets SP�T
leaf and S

SP
� T

leaf .

6.3 Semantic Based Caching in the Web Service Cache

Basically, semantic caching in our proxy cache is done by annotating WSDL doc-
uments with information about the caching-relevant semantics of services. This
information is used for mapping SOAP requests to predicates, for fragmenting
responses, and for reassembling responses. Thus, adapted semantic caching al-
gorithms can be applied.

Using a annotations we are now able to understand the caching-relevant
semantics of requests and responses. The schema of Transparent Semantic Cache
is shown in Figure6.

7 Semantic architecture

As written before, our caching metodology annotate web services description
(WSDL) with semantical knowledge. This is one of possible sources of semantical
description of services, and more generally - whole architecture.

286 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

Figure 6: Schema of Proxy Cache with semantic knowledge

Formal description of architecture, like UML, is used in enterprise develop-
ment. With technology such as MDA (model driven analysis), the coding can be
automated with supporting tools from formal description. But any formal de-
scription can be viewed as constrained domain ontology, so it is possible to build
a description of architecture with help of ontology of studied domain. Ontol-
ogy definition metamodel (ODM) and Ontology UML profile was developed for
such process (or build ontology with help of MDA) [Gašević et al. 06]. Binding
ontology and system model in UML describes [Pondrelli 05].

Quality of service (QoS) ontology can be built and merged with such system
architecture ontology [Lock and Sommerville 05]. Ontology description of an ar-

287Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

chitecture allows to prepare variety of service-structure views [Nitzsche et al. 05].

7.1 Semantic services

Within SOA methodology, service is defined by a set of messages that it can
handle [Korotkiy and Top 05]. Its structure must be defined (typically implicitly
in some scheme). The structure can be also defined explicitly, when the concepts
are based on ontology – this is how “common language of the system” can be
found (and also changed through the processing).

For the semantic description of web services (these are called SWS, Semantic
Web Services then) standards like OWL-S [OWL-S 04] or WSMF/WSMO were
proposed [Korotkiy and Top 05]. These standards goes further than described
semantic annotation.

A goal of OWL-S or WSMO projects is to build ontology (set of ontologies,
respectively) for full description of web services (i.e. its properties and capabili-
ties).

OWL-S standard built set of ontologies, which can system engineer use for
describing web services. Main OWL-S ontologies transcribes rules and concepts
for services, its profiles, its processing and its grounding with WSDL. As can
be viewed from the name, it is based on W3C-standard OWL language. As an
alternative to more common way (WSDL, SOAP) its helping ontology QWL-S
Grounding supports exchanging messages.

WSMO, on the other hand, is framework to build such ontology structure
oneself. It also differs in philosophical level. It does not use standard service-
message relation (where service is described by WSDL and message structure
by SOAP/REST). Every web service should be built as isolated entity. WSMO
provides mediation (via mediators) of input and output messages between web
services.

But – despite of different approach, both provide the possibility of acquiring
and resolving information about web services.

7.2 Semantic architecture

With further level of abstraction, we can think about the entire application as
a semantic network. We can model business logic of application with an ontol-
ogy technologies like BPEL4WS [Andrews et al. 03] (Business Process Execution
Language for Web Services), WSMF (framework, which WSMO is part of) or
SWSF [Battle et al. 05].

Semantic web service framework (SWSF), and also BPEL4WS – uses main
idea of message-driven architecture, i.e. service is described by messages it can
handle, it is process-oriented. WSMF use different approach – it describes Web
service choreography through guarded transition rules.

288 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

SWSF contains:

– Semantic Web Services Language (SWSL) – language for formal description
of web service (and its concepts). One part is based on first order logic
(named SWSL-FOL) and is used mainly for SWSO ontology building, other
part is based on logic programming (SWSL-Rules) and supports reasoning
and executions above service ontology.

– Semantic Web Services Ontology (SWSO) – conceptual model for web ser-
vices description (and model axiomatization). Subontologies are FLOWS
(First-Order Logic Ontology for Web Services) (draws many of its intuitions
and lessons-learned from OWL-S) and ROWS (Rules Ontology for Web Ser-
vices). FLOWS ontology provides constructs for modeling of the internal
processing of the Web services, and also service side-effects (on the world).
It is also intended to enable reasoning about essential aspects of web service
behavior for a variety of different purposes and contexts.

7.3 Semantic SOA

With this technologies in mind, we can view the ontology-bound web services in
two equivalent ways:

1. Web services processing some function, transforming input into output. Ser-
vices are describable by ontology (see preceding sections).

2. Part of ontology. In this case we can identify the web service as a special pred-
icate. Its output, value of predicate, is not predefined. Web service works as
a black box reasoner with narrow, specified domain. Operating semantics of
a system is defined by these service concepts in ontology. We can use general-
purpose ontological reasoners on this-way defined ontology. Reasoning could
find hidden information about system and help to make its behaviour more
effective.

3. The Semantic description allows dynamic service integration. It means that
the binding of the services of the system can be performed at run time. Such
binding follow rules provided by (or reasoned from) an ontology. Integration
scenarios of static integration solutions have to predefine every detail. This
allows automatic propagation of the system without some manual scenario
alteration. If some equivalent and faster service was added, this information
as described in ontology will be taken in account while reasoning which will
conclude with use of the better one.

This alternatives are more described in [Korotkiy and Top 05], where onto-
logical expansion of SOA, name Onto-SOA was declared. With such semantic

289Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

description of messages, services and whole architecture, broad possibility of rea-
soning is open, such as web service replacement (with equivalent one, or some
collection providing same functionality).

Standard semantic caching can be complemented with further semantic-
architectural caching, when we change web service in the system (described by
ontology, in system as predicate) with its declarative form.

8 Cache Study: Caching in Waste Site Energy Management
Calculator

We started the collaboration with U.S. EPA (Environmental protection Agency
to develop energy management decision support tool [Pavlovič and Mahutová 04].
One of the results of this mutual collaboration is on-line ICT tool: Waste Site
Energy Management Calculator. Using this tool, domain experts can compare
several remedial technologies according to input constraints. Each remedial tech-
nology is represented by an energy equation developed by U.S. EPA. This deci-
sion support tool can find the optimal combination of remedial technologies that
should be used in cleaning process. Since there exist vast number of technology
combinations performance is important. With designed semantic caching we can
significantly improve the computation performace. System is using Genetic Al-
goritm and Genetic Programmig to calculate the best sequence of techologies
used in remedial process [Pavlovič and Hřeb́ıček 06].

8.1 Service-Oriented Architecture Implementation

We used Open ESB engine 6 that implements an ESB runtime. Open ESB allows
us to easily integrate applications and web services as loosely coupled composite
applications. This allows us to seamlessly compose and recompose our composite
applications, realizing the benefits of a true SOA.

An ESB can be used to intelligently and reliably route data from the backend
sources to the cache service. Because the ESB is coordinating the data flow
between the applications and the cache service instead of just being used as
a message bus, a variety of backend technologies can participate in publishing
their data using the connection interface that best suits their needs.

On the Figure 7 is described the implementation schema of Waste Site Energy
Management Calculator. Main part of the system are connected to the ESB as
JBI containers. ESB has the role of data controler (middleware) and sends the
computation requests to the semantic cache, which is connected as JBI container
as well. Data are sent to the another JBI component: computation cluster. And
the result is process to the visualization component.
6 https://open-esb.dev.java.net/

290 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

https://open-esb.dev.java.net/

Figure 7: Implementation Schema

8.2 Algorithm Implementation

Since the system is using GP to compute the best sequence of remedial
technologies and the GA to find the optimal technology parameter setting the
caching algoritm has two parts. The cache is searched for the full match in
the first part. Then if the full match is not found algoritm tries to find partial
match according to the ontology for definitions of remedial technologies. Each
technology in the sequence is searched in the cache using defined semanatic
caching methodology. If the search in the cache fails the technology has to be
computed.

Architecture of replacement algorithm is based on two queues which are in
the same cache memory. The first queue (Q1) is simply organized using a FIFO
strategy. Every XML message which is requested for the first time is inserted

291Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

Initialize
L ⇐ 0

for each request to a message q do
if q can be answered from cache then

if q is answered from one XML message m then
if m
∈ Qm then

bring m into Qm

end if
H(q) ⇐ L + n ∗ latency(q) ∗ size(q)

size(m)

else
for each message mi answered q do

if mi
∈ Qm then
bring mi into Qm

end if
H(mi) ⇐ L + n ∗ size(q)

size(mi)

end for
end if

else
while there is not enough free space in the cache do

if size(Q1)
size(Qm) > P then
remove m from bottom of Q1

else
L ⇐ min(H(m) | m is in the Qm)
remove m such that H(m) value

end if
end while
bring q on top of Q1

end if
end for

Q1, Qm - cache memory queues
P - proportion of queues
latency(m) = downloading latency, size(m) = message size, n = reference
count

Algorithm 2: Replacement Caching Algorithm

into queue Q1. If an XML message is requested for a second time while it is still
contained in Q1, the object is considered as a hot spot and is moved to the other
queue Qm which is organized using the GDSWS strategy. Every time an XML

292 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

message contained in Qm is requested, the corresponding entry is moved to the
top of the queue. Objects reaching the tail of Q1 or Qm are removed if memory
is required for new objects. Which queue is selected for deletion depends on the
proportion P size of Q1 to Qm. In implemented cache is used proportion:

P =
maxsize(Q1)
maxsize(Qm)

= 1

9 Conclusions

We described our research in this area. Caching in SOA brings a lot of ben-
efits (and also some disadvantages) in the e-science computing. We used the
described approach in VEZMU search engine [Pavlovič et al. 05], where docu-
ment rank is computed this way. SOA brings lot of possibilities how to access
the functionalities of the system for other application.

Another project particularly using ideas of this architecture is Waste Site En-
ergy Management Calculator [Pavlovič and Mahutová 04]. There is massive use
of Parallel Genetic Algorithms in the new version of this system. And the SOA
encapsulation enables integration of this system to the existing environmental
IS.

This approach was also used in project SVOD7 [Dušek et al. 05]. It is a portal
built up on very representative database of National Cancer Register. Nowadays
the database consists of more than 1 200 000 cases stratified according to main
risk factors. The automated system of on-line analyses is very computation de-
mand. By this reason the system is realized as a set of web services with shared
proxy cache. The portal is available at http://www.svod.cz.

Acknowledgements

This paper has been supported by the Czech National Program Information
Society “E-learning in the Semantic Web Context”, grant No. 1ET208050401.

References

[Andrews et al. 03] Andrews, T. et al.: “Business Pro-
cess Execution Language for Web Services Version 1.1”;
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf,
2003.

7 Research and developmental teams of portal SVOD are granted by research project
MZO 00209805 solved in Masaryk Memorial Cancer Institute, Brno. Risk assessment
analyses are supported by research project INCHEMBIOL, Ministry of Education
Czech Republic project no. 0021622412.

293Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

[Battle et al. 05] Battle, S. et al.: “Semantic Web Services Framework (SWSF)”;
Overview Version 1.0, http://www.daml.org/services/swsf/1.0/overview/ ,
2005.

[Boyer 01] Boyer, J.: “Canonical XML, W3C Recommendation”;
http://www.w3.org/TR/xml-c14n, http://www.ietf.org/rfc/rfc3076.txt ,
2001.

[Chappell 04] Chappell, D.: “Enterprise Service Bus: Theory in Practice”; O’Reilly
Media, 2004.

[Chen et at. 02] Chen, L., Rundensteiner, E., A., Wang, S.: “XCache - A Semantic
Caching System for XML Queries”; Proc. SIGMOD Conference, 2002.

[Chidlovskii and Borghoff 00] Chidlovskii, B., Borghoff, U., M.: “Semantic Caching of
Web Queries”; VLDB Journal 9(1): 2-17, 2000.

[Dušek et al. 05] Dušek, L. et al.: “The National Web Portal for Cancer Epidemiology
in the Czech Republic”; Proc. ENVIROINFO BRNO 2005, 2005.

[Gašević et al. 06] Gašević D., and Djurić D., and Devedžić V.: “Model Driven Archi-
tecture and Ontology Development”; Springer; ISBN: 3-540-32180-2, 2006.

[Giunchiglia and Walsh 92] Giunchiglia, F. and Walsh, T.: “Tree Subsumption: Rea-
soning with Outlines”; Proc. 10th European Conference on Artificial Intelligence,
1992.

[Korotkiy and Top 05] Korotkiy, M., Top, J.: “Onto, SOA:
From Ontology-enabled SOA to Service-enabled Ontologies”;
http://www.cs.vu.nl/~maksym/pap/Onto-SOA-WEBSA.pdf, 2005

[Král 05] Král, J., Žemlička, M.: “Service Orientation in Environmental Information
Systems”; Proc. ENVIROINFO BRNO 2005 - Informatics for Environmental Pro-
tection, 2005.

[Kubasek et al. 06] Kubásek, M., Pavlovič, J., Gregar, T.: “Performance Solution of
SOA Infrastructure for Knowledge Computing”; Proc. 6th International Conference
on Knowledge Management. Austria, 2006.

[Lee and Chu 01] Lee, D., Chu, W.: “Towards Intelligent Semantic Caching for Web
Sources”; Journal of Intelligent Information Systems 17(1): 23-45, 2001.

[Lock and Sommerville 05] Lock, R., Sommerville, I.: “A QoS Ontology for Service-
Centric Systems”; Proc. EuroMicro2005, 31st EUROMICRO CONFERENCE on
Software Engineering and Advanced Applications, 2005.

[Miklau and Suciu 02] Miklau, D., Suciu, F.: “Containment and equivalence for an
xpath fragment”; Proc. PODS, pages 65-76, 2002.

[Nitzsche et al. 05] Nitzsche, T., Mukerji, J., Reynolds, D., Kendall, E.: “Using Se-
mantic Web Technologies for Management Application Integration”; Proc. Seman-
tic Web Enabled Software Engineering, 4th International Semantic Web Conference,
2005.

[OBrien et al. 05] O’Brien, L. et al.: “Quality Attributes and Service-Oriented Archi-
tectures”; Technical Note, Software Architecture Technology Initiative, 2005.

[OWL-S 04] OWL-S: “Semantic Markup for Web Services”;
http://www.w3.org/Submission/OWL-S/, 2004.

[Pavlovič et al. 05] Pavlovič, J., Pitner, T., Kubásek, M., Svoboda, L.: “Searching and
E-learning System above Digital Sources”; Proc. Sharable Content Objects, 2005.

[Pavlovič and Mahutová 04] Pavlovič, J., Mahutová, K.: “Energy Management at
Waste Clean up Sites, Avoiding Secondary Air Impacts to Human Health”; Proc.
First Biennial Central & Eastern European Environmental Health Conference, 2004.

[Pavlovič and Hřeb́ıček 06] Pavlovič, J., Hřeb́ıček, J.: “Finding Optimal Solutions of
Energetic Remedial Equations with Genetic Algorithms”; Proce. Enviroinfo2006
Conference, 2006.

[Pondrelli 05] Pondrelli, L.: “An MDD annotation methodology for Semantic En-
hanced Service Oriented Architectures”; Proc. CEUR Workshop, 2005.

[Ramesh and Ramakrishnan 92] Ramesh, R. and V. Ramakrishnan, L.: “Nonlinear
pattern matching in trees”; Journal of the ACM, 1992.

294 Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

http://www.daml.org/services/swsf/1.0/overview/
http://www.w3.org/TR/xml-c14n
http://www.ietf.org/rfc/rfc3076.txt
http://www.cs.vu.nl/~maksym/pap/Onto-SOA-WEBSA.pdf
http://www.w3.org/Submission/OWL-S/

[Zaki 02] Zaki, M.: “Efficiently Mining Frequent Trees in a Forest”; Proc. ACM
SIGKDD, 2002.

295Kubasek M., Pavlovic J., Gregar T.: Performance Solution ...

