
The Requirements Engineering Gap in the OEM-
Supplier Relationship

Christian Allmann
(Audi Electronics Venture GmbH, Germany

christian.allmann@audi.de)

Lydia Winkler
(Audi Electronics Venture GmbH, Germany

lydia.winkler@audi.de)

Thorsten Kölzow
(Audi Electronics Venture GmbH, Germany

thorsten.koelzow@audi.de)

Abstract: The OEM’s requirements engineering and management process is affected by many
residual encumbrances and future constraints. The encumbrances’ origin comes from the
OEM’s strong dependency on suppliers’ software development knowledge and support. In
contrast, future constraints are dealing with the assembling of software engineering knowledge,
especially requirements engineering, as OEM’s core ability. On this account reducing the
OEM’s knowledge gap demands tailored engineering processes. The tailoring should take
account for different kind of process knowledge, distributed development environment,
changing project responsibilities, available but unstructured knowledge bases and different
educational members’ background. This report examines main challenges in OEM’s
development process to overcome the past OEM-Supplier relationship achieving common
development in partnership. For clarification, three process flows are presented showing in
some kind the historical evolution of the OEM-Supplier relationship. Based on the presented
vital process constraints requirement methods, tools and project management guidelines are
derived.

Keywords: Requirements Engineering, Automotive Software Engineering, Project
Management, Knowledge Management
Categories: D.2.1, J.2, K.6.1

1 Requirements engineering in the automotive industry today

The development and production of modern cars are affected by a strong relationship
between OEM (original equipment manufacturer) and its suppliers. Due to the
increasing importance of software in the automotive, both OEMs and suppliers have
established a requirement engineering process to stay abreast of changes. The OEM’s
requirements engineering process is actually tailored to the management and the
integration of certain supplier products [Huhn, 03]. Therefore the OEM’s goal is to
provide information about the system environment into which the supplier product
must be integrated. The integration of supplier products itself demands a precise

 Journal of Universal Knowledge Management, vol. 1, no. 2 (2006), 112-122
 submitted: 15/5/06, accepted: 15/6/06, appeared: 28/6/06 © J.UKM

communication interface between OEM and supplier as well as between the suppliers
themselves.

2 The ideal development process using the FLOW notation

To emphasize the challenges of the development, especially the requirements process,
we present three different project flows using the FLOW notation [Schneider, 05].
The focus is to show the different communication channels and interfaces between the
stakeholders and the developed documents, as well as the difference between the
stakeholders and OEM’s experience bases.
In our opinion the FLOW concept developed by the University of Hanover is well
suited to model the complex project process flows with respect to the OEM-Supplier
relationship. FLOW is a graphical notation to visualize the information flow in a
project by modelling direct communication channels between project artefacts and
project members. For the presented examples, only a subset of the basic notation is
used:

• document symbol, representing persistent data (e.g. requirement documents
written in Word or DOORS)

• face symbol, representing project stakeholders (e.g. requirement engineer,
project leader)

• black arrow, representing the information flow (e.g. review meeting)
• solid line, information from a persistent information source (e.g. written

document)
• dashed line, information flow from a non-persistent information source (e.g.

project member)

Figure 1: The ideal process flow

113Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

The first example, shown in figure 1, represents an idealized development process
flow. On the left hand side the two face symbols represent an arbitrarily number of
stakeholders employed by company A. These stakeholders are the main experts in a
company’s business for who a tool has to be built. Company A places an order with
Company B for the tool development.

In our idealized view, neither the company nor the stakeholders have any
imagination how software is developed. Thus, the first essential development step is
the elicitation of requirements the stakeholders have, carried out by the requirements
engineering team of Company B. As figure 1 shows the requirement engineer
manages the elicitation process by asking the stakeholders and writing the
requirements down. The resulting document is the first persistent artefact in the ideal
process flow. Based on the document, ongoing developing activities are building up,
see figure 1.

On the supposition that the created requirements document is well structured and
the requirements quality attributes (e.g. atomicity, consistency, unambiguousness,
etc.) are fulfilled, the design engineers, and later the programmers, have the chance
performing their work with the help of the company’s knowledge base. The
knowledge base symbolizes the collected experience of the company’s completed
projects that can be used to perform their daily work.

Figure 2: The OEM-Supplier process flow

114 Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

3 The relationship between OEM and supplier

The OEM-supplier project example, figure 2, shows the past and in parts the present
relationship between customers and contractors. Compared to an ideal process flow,
figure 2 shows some important differences to the described flow in figure 1. Just like
in our first example, the OEM (resp. company A) assigned a supplier (resp. company
B) developing software system.

The most conspicuous distinction takes place on the left hand side. The
generalized category stakeholder, like it is used in the ideal process flow, is broken
down to form a distinct command structure. The exemplary command structure,
shown in figure 2, represents a decision-making process starting by the OEM
managers up to the department engineers. The depicted form of information exchange
points out a rather generalized version of the real process flow. Nevertheless, it is
important for the understanding and all further derived challenges that a written
description of the information flow is only kept at one single point, the responsible
department engineer. Although all relevant managers or engineers have their own
vision of what the system has to perform or not, only the responsible department
engineer interprets the system’s requirements and writes them down. Therefore, the
engineer represents a bottleneck for all requirement activities, although he is in many
cases not skilled to perform requirement processes or techniques. All decisions made
are based on experience he has gathered during his work life. In the past nobody
would check the requirement document with respect to quality attributes like
consistency, clarity, ambiguity, etc. because nobody has the experience to give
evidence about the quality, especially the consistency. Generally getting feedback, the
engineer presents and interprets his written text to the managers and engineers
allowing a judgement about the system’s functionality.

The responsible engineers cannot be fully blamed as the exclusive cause for the
bottleneck. On the one hand, the engineer does not have the required experience and
education to fulfill all expectations, on the other hand the project time pressure allows
no further education, and adequate OEM knowledge bases on requirements
engineering do not exist. In summary, all mentioned aspects lead to different quality
in requirement documents. Therefore, we called the requirements document a
functional draft. The functional draft is the basic document inviting offers.
Concerning the statements above, draft and engineer represent a weak source for
potential suppliers building up a system’s understanding, they preferred. Managing
functional drafts ranging in quality and detail has a deep impact on the supplier’s side.
First, the supplier cannot estimate the development cost and time resulting in
imprecise offering. Especially in the field of driver assistance systems some suppliers
profit from the generalized requirement description and sell their own existing system
- perhaps still developed for a competitor- without any further adaptation.

Thus, the suppliers have a main interest in requirements engineering because they
must manage OEM’s requests and changes and perhaps have the chance to sell the
developed system to another company. Accordingly, comparing figure 1 and 2, the
smallest changes to the ideal process flow occur on the supplier’s side. Unlike the
central knowledge base of company B, the supplier’s bases are more sophisticated
with respect to product line development. The knowledge base assists the supplier’s
requirements engineers performing the preparation of the requirements document by

115Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

the usage of suitable templates, document structures and tools. In figure 2, three
knowledge bases are revealed. Depending on the internal bases’ structure, the
diversity of companies’ processes, the amount of collected experience and so on, the
three shown symbols for knowledge bases represent one monolithic base (e.g. a
simple ring binder) or complex distributed DBs. In summary, the requirement process
is oriented to perform requirements analysis and validation regarding the specific
product line information.

4 Future directions of the requirements engineering process

The OEM’s disadvantages arising from the mentioned flow of figure 2 can be read
out very easily. The knowledge about the integrated product (e.g. a new driver
assistance system) is kept by the supplier which results in a strong dependency on the
supplier concerning the integration of additional product features. Thus, the supplier
can easier dominate the price for new functionalities. For the OEM, this entails the
loss of two main abilities: the knowledge about the integrated product (component
protection) and the possibility to negotiate with different suppliers about new product
feature prices. To avoid these main disadvantages, the OEM must participate in the
requirements engineering process and perhaps take a leading role developing product
parts on his own.

On this account the OEM must achieve three goals:

1. the reduction of knowledge loss about his integrated systems
2. the installation of own knowledge bases by means of collecting, verifying

and integrating all existing company’s know-how
3. a progressive project involvement with regard to proprietary-development

All three goals have one main challenge: a seamless transition into daily work.

The distinctions and resulting changes in the process flow are shown in figure 3.
The observable difference between figure 3 and all figures before is the omission

of a clear separation between OEM and supplier part. Although the left hand part of
figure 3 shows no real difference to the previous ones, a subtle distinction still exists –
greater project responsibility of the department engineer in charge. One of the
mentioned confusions of the OEM-Supplier process flow was the unbalanced
relationship becoming manifest in the functional draft. Irrespective of the document
quality and content, the supplier takes full responsibility for the success of the project.
Establishing proprietary-development demands distributed responsibility like it is
exposed in figure 3 by means of single workpackage leader. The scenario shows one
big chance for OEM and supplier that is likewise the obstacle. Both can concentrate
their efforts to their core abilities. In the case of driver assistance systems this could
be the design of the sensor components and image processing as supplier’s part and
advanced algorithm and functionality, e.g. lane detection as part of the OEM. The
obstacle would be to manage the distributed responsibility with respect to the
common goal, in our case the OEM driver assistance system.

116 Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

Figure 3: The potential future OEM-Supplier process flow

For future development in highly innovative fields, like hybrid technologies, x-
by-wire or sensor fusion, working in partnership is inevitable. The resulting
distributed process flow is very sophisticated to organize and to lead. The described
process flow shows only the first part of a potential future development cycle but
illustrates the main constraints. Common development means sharing knowledge, the
knowledge about the actual developed system as well as the project experience
companies have collected over the years.

As a consequence of the different development “philosophies”, a clash of interest
occurs. Now the job of the project leader is it to establish some kind of cooperate
document (generally called project manual) to organise the different development
activities, determine the development chain and OEM’s and suppliers’ fields of
responsibilities. Although figure 3 shows the existence of knowledge bases on both
companies’ sides the usefulness of the contained information for partnership
development must be questioned. Neither OEM nor supplier really has any experience
in this kind of development because partnership means publication of at least essential

117Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

and confidential information. For the requirements engineering process, this
implicates common:

• requirement process including elicitation, analysis and validation activities
• tool framework for distributed development
• exchange of partial development artefacts
• development and process guidelines
• definition of partnership responsibility

Time-shared and artefact-shared development is mandatory concerning the effort for
system’s development under the regular time pressure. All met implications can be
subsumed to one essential point: a common development platform. To avoid
misunderstandings, the development platform comprehends solutions for arising
communication overhead, distributed access to the different knowledge basis, project
management and tools. The realisation and establishment of this kind of partnership
development demand some requisites on the OEM’s side such as partially described
in the following section.

5 OEM management and engineering constraints

5.1 User constraints

It must be kept in mind that although a lot of mechanical and hydraulic systems are
replaced by mechatronical systems, the engineering team in charge for these
components cannot be replaced in the same way. The OEM’s departments are mainly
staffed with mechanical and electrical engineers with associated educational
background. In replacing the mentioned systems by electronic and software these
engineers not only have to consider the development of the usual hardware
components, but also have to take care of the electronic devices and the integrated
software. The impact of this evolution is that the engineers often do not have the
necessary engineering background to evolve/maintain such systems effectively and
efficiently.

With respect to figure 3, the partnership provides an opportunity to coach the
engineers on the job. Coaching OEM’s engineers on the job by their project partners
helps in finding a common discussion platform. Nevertheless, this know-how transfer
can only be performed within project’s limits. Hence, the goal must be to establish a
requirement engineering process and workflow that is on the one hand tailored to the
development process and on the other hand tailored to the engineers’ abilities.
Tailoring a process with respect to a special user group is necessary because nobody –
as the experience in our company shows – will adhere to a process if the users can not
identify with it. User constraints to process definition are:

• intuitive application handling (benchmark Microsoft Word)
• simple and seamless tool chain
• advised request and change board
• support team for process, methods and tools

118 Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

5.2 The establishment of an information knowledge base

The OEM’s requirement engineering process currently often lacks the knowledge of
how to perform requirements engineering effectively and efficiently. The experience,
gained during the development process, must be retained by building up a knowledge
base for future developments. Gained experience could be workflow information,
description patterns, review documents or something else affecting the requirements
process. Although in most organisation standardised document templates still exist,
the practice shows that project concerns, topics, time pressure or quality gates demand
reengineering of the common templates. That given statement comprised an
interesting point namely the information on company’s exhibit engineering
knowledge. The drawback: the information is scattered over the different company’s
departments. On this account, the company’s departments reach a first evolution step
by adapting the common requirement standards to their personal needs.
Unfortunately, the conclusions that are drawn have no impact to company’s overall
engineering evolution because no feedback loop is implemented. For us, the
information knowledge base is a platform to evaluate the concerns and constraints of
the different evolution steps towards more applicable process flows, methods and
tools. As it is mentioned at the end of chapter three, the representation of knowledge
bases can range between ring binders and complex DBs. Thereby, the complexity of
the knowledge base gives no evidence of the stored information. The stored “process”
information could be ranged between product information, oral information flows or
experience flows.

Besides this process information the knowledge base is also a platform to
assemble product information such as performance or dependability analysis results,
which can be used to obtain judgements about development risks at an earlier stage.
Risk and cost estimation for system development is as important as new technologies
are evaluated and integrated in all business areas.

5.3 Automation of user constraints using the example of traceability

The following example describes the traceability problem and shows how important
automation is with regard to requirements engineering. It is assumed that usual
requirements documents consist of 200 to 600 pages [Heumesser, 04] with 12
requirements per page. Let us assume that 400 pages would result in 4800 listed
requirements. The management of these requirements demands to trace each of them,
linking each requirement to associated requirements or test cases to validate the
implementation against them. Concerning the example above, the linking of each
requirement to respective test cases costs 30 seconds working time each time the link
must be changed. The resulting working time by 4800 links amounts up to 40 hours
respectively 1 week of work. This fictive calculation shows that although there is a
need for linking requirements to refined requirements or test cases the resulting work
time increases tremendously.

The actual chapter has a strong correlation to the section of user constraints. Most
engineers in our company, affected by requirement engineering do not have the time
for testing or evaluating new approaches or tool add-ons the company’s engineering
team prescribes. These engineers at the grass-root level use what is practicable for the
actual project needs. Regardless of traceability advantages for them, it is more time

119Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

consuming. Bridging the gap between user prejudices and required engineering steps,
the engineering rollout can only be done incrementally. Regarding test case
derivation, generation and maintaining of requirement traceability in documents is
essential to achieve a consistent system view. A consistent system view is as
important as a distributed development environment. Both constraints must be kept in
mind, especially concerning the single workpackage leader’s responsibility (see figure
3). From their point of view, they can only observe the quality of the produced
requirement document part (1..n). The question must be answered who guarantees the
quality, mainly consistency, of the whole requirement document even if requirement
changes have an impact of more than one document part. Therefore, the definition of
the development platform and process must guarantee in each case a consistent
system view.

5.4 Integration of formal notations

According to the close collaboration between the OEM and the supplier it is also
desirable that the common development platform, see chapter 4, enables the
production of consistent, unambiguous and understandable requirements documents.
As shown in figure 3 requirements documents are produced independently by the
OEM as well as by the suppliers, which are then merged to a master requirements
document. Particularly the merging process requires a common requirements
language to enable the production of a consistent requirements document. At this, the
basic idea is to guide and support engineers to write high quality (clear, complete,
correct, understandable and testable) functional requirements by means of a
requirements specification template and/or pre-defined requirements’ patterns.

Using a specification template can be a first step in obtaining more precise
requirements, as it is shown in the following example. In the requirement

If the ignition is on and the engine is not running or the ABS module signals a defect,
the display module shall switch on the ABS control lamp.

it is neither clear which conjunction is dominating nor if inclusive or exclusive ‘or’ is
meant. Therefore, the requirement can be interpreted in several ways:

• If (the ignition is on and the engine is not running) or the ABS module
signals a defect, …

• If the ignition is on and (the engine is not running or the ABS module signals
a defect), …

• If either the ignition is on and the engine is not running or the ABS module
signals a defect, …

Applying mathematically logical operators according to the specification template
defined by Chris Rupp [Rupp, 04] can easily avoid these kinds of misinterpretations:

If (the ignition is on AND the engine is not running) OR the ABS module signals a
defect, the display module shall switch on the ABS control lamp.

Using a specification template can help to obtain well-structured, understandable
and clear requirements, but it cannot guarantee that for instance requirement 127

120 Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

conflicts with requirement 305 in a specific or even worse in two different but
interdependent documents.

On this account one idea is to refine the specification template suggested by Chris
Rupp by means of pre-defined requirements’ patterns. At this, the definition of a
requirement is carried out in several phases. First of all application specific inputs and
outputs must be defined in a glossary. If not all inputs and outputs are known initially,
there is also the possibility to expand the glossary during the creation of the
requirements specification.

Secondly the main structure of the requirement is selected:

• If … then …
• Only if … then …
• After … then …
• As soon as … then …
• …

In the third phase the conditions, like “the ignition is on” and the actions or

processes, like “switch on the ABS control lamp”, are specified. At this, the nouns of
the conditions and actions are derived from the glossary mentioned above and the
verbs are selected from a pre-defined catalogue of automotive specific process words.

If requirements only consist of nouns, verbs and part-sentences which are defined
in a global database it’s easy to implement specific search routines. Therefore it is for
instance possible to display all requirements corresponding to a particular input
signal. This again supports the requirements engineer in locating problems between
requirements in adequate time and with adequate effort.

Once a controlled natural language exists, a further step could be to map the pre-
defined requirement patterns to formal/mathematical representations to obtain a
formal requirements specification document in the end. Engineers can specify
requirements in their familiar but restricted natural language, whereas the advantages
of formal specifications and the basis for their automated support are available at the
same time [van Lamsweerde, 00].

6 Future Work

Currently our scope is to implement the mentioned knowledge base and to establish a
change control board to evaluate user constraints and project requirements. The
change control board has the mission to evolve a so called “requirement engineering
kit” tailoring the requirement process to our specific project needs with respect to
product quality, user experience, time and money.

References

[Heumesser, 04] N. Heumesser, F, Houdek, Experiences in Managing an Automotive
Requirements Engineering Process, 12th International Conference on Requirements
Engineering. 2004, Kyoto, Japan

121Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

[Huhn, 03] M. Huhn, P.-M. Hoffmann, M. Mutz, Digitale Lastenhefte für die
Softwareentwicklung vernetzter Steuergeräte, 23. Tagung Elektronik im Automobil, June 2003,
Stuttgart, Germany

[Rupp, 04] Ch. Rupp, Requirements-Engineering und –Management, 2004, München, Germany

[Schneider, 05] K. Schneider, D. Lübke, Systematic Tailoring of Quality Techniques, 3rd
World Congress of Software Quality, 2005, Munich, Germany

[van Lamsweerde, 00] A. van Lamsweerde A, Formal specification: a roadmap. ICSE - Future
of SE Track, 2000, Limerick, Ireland

122 Allmann C., Winkler L., Koelzow T.: The Requirements Engineering Gap ...

