
Learning Software Organisations and Requirements
Engineering: First International Workshop

(LSO+RE 2006)

J.UKM Special Issue

Andreas Birk1, Torgeir Dingsøyr2,3, Stefanie N. Lindstaedt4, Kurt Schneider5

1sd&m AG, software design & management
Löffelstraße 46, D-70597 Stuttgart, Germany

andreas.birk@sdm.de
2Department of Computer and Information Science
Norwegian University of Science and Technology

NO-7491 Trondheim, Norway
3SINTEF Information and Communication Technology

NO-7465 Trondheim, Norway
torgeir.dingsoyr@sintef.no

4Know-Center
Inffeldgasse 21a, 8010 Graz, Austria

slind@know-center.at
5Software Engineering Group, Leibniz Universität Hannover

Welfengarten 1, D-30167 Hannover, Germany
Kurt.Schneider@inf.uni-hannover.de

Abstract: Requirements engineering has grown into a focus topic for most software-dependent
companies. Both outsourcing and in-house development call for effective elicitation of
requirements, and for rich communication between customers and software developers.
Organizational learning is, therefore, a natural complement when we discuss requirements
engineering practice and its improvement. Through organizational learning, processes and tools
are systematically improved, reflection and explicit learning becomes part of the company
culture. Many companies are still struggling to reach this goal.
The LSO+RE workshop has provided a forum for discussing the intersection of requirements
engineering and learning software organizations in depth. This article introduces the topic and
the articles from the LSO+RE workshop that have been selected for this special issue of
J.UKM.

Keywords: requirements engineering, software process improvement, knowledge management,
lessons learned, best practices, learning software organization
Categories: D.2.1, D.2.9, K.6.1, I.2.6

1 Introduction

Software development is an area with a history of cost and time overruns. Many
solutions have been proposed to solving problems during the years. Knowledge
management has been one area that has been discussed recently [2, 13]. This is
important for software companies, since software development is knowledge work,

 Journal of Universal Knowledge Management, vol. 1, no. 2 (2006), 59-68
 submitted: 18/10/06, accepted: 24/10/06, appeared: 28/10/06  J.UKM

where employee’s knowledge is the critical factor, not other means of production like
hardware and development tools. In a competitive environment with constant
technological changes, it is a challenge to make room for reflection in the daily work
to stimulate learning. Some claim that software organizations suffer from “learning
failure” in that they fail to learn from their experience in software development, and
have also “learned to fail” [14].

This article introduces a special issue compiled of revised articles from the First
International Workshop on Learning Software Organizations and Requirements
Engineering (LSO+RE)1. LSO+RE was held at Universität Hannover, Germany, on
March 27-28, 2006. The workshop fosters interdisciplinary experience sharing on
topics such as software process improvement, personal competence development,
technology transfer and innovation management, socio-psychological aspects of
learning, as well as enabling technology – all related to requirements engineering. We
organized that workshop, because requirements engineering conferences rarely focus
on learning aspects, and requirements engineering is one of the most vital and
learning-oriented processes of software engineering.

In particular in requirements engineering, there is a large potential for improved
efficiency, product quality, customer satisfaction and profitability by learning from
and using earlier experiences, and by continuously maintaining and refining the
accumulated competence of the company. Nevertheless, research documents a low
level of systematic use of experiences and knowledge management. An investigation
among large European research- and development companies show that only 20 %
have reviews of completed projects, and even fewer have good techniques for the
reviews [23].

Requirements engineering is particularly important to software engineering, since
it is important to understand the needs of the customer who is purchasing a software
product. This has been called requirements engineering. Both outsourcing and in-
house development call for effective elicitation of requirements, and for rich
communication between customer and software developers. Adequate requirements
come from appropriate requirements engineering techniques and processes. They are
at the basis of successful software projects.

However, requirements engineering is a so-called "wicked problem": by trying to
solve it, we create new problems. Documenting requirements well takes time. During
that time, requirements changes or re-interpretation of existing requirements may
escape our attention. On the other side, poorly documented requirements cause
problems in testing and acceptance phases.

Wicked problems are ill-framed and ill-defined; there is no one correct and
optimal solution, but an on-going process of negotiations and learning. The problem
evolves together with attempted solutions. Organizational learning is, therefore, a
natural complement when we discuss requirements engineering. A learning software
organization relies heavily on competent and learning individuals – but it will also go
beyond the individual learning level: Truly learning organizations are characterized

1 The LSO+RE workshop is a spin-off of the Learning Software Organizations (LSO)
workshop series, which is a forum for software professionals and researchers
interested in organizational learning within software development environments.
(http://www.iese.fhg.de/Publications/lso/)

60 Birk A., Dingsoeyr T., Lindstaedt S.N., Schneider K.: Learning Software ...

by their attempts to foster and support learning on both individual and structure levels
(“organizational“). Processes and tools are systematically improved, reflection and
explicit learning is part of the company culture. Many companies are still struggling
to reach this goal.

A study shows that companies who are better at integrating domain and technical
knowledge have increased development effectiveness, and lower cost overruns [21].
Further, in a study of success factors of software process improvement [10], the
alignment of software process improvement actions and business strategy and goals
was found to be one of the factors with the strongest influence on success. This means
that software and business executives should aim more at shared domain knowledge.

The topics under discussion at the LSO+RE workshop were:
• Improving RE practices based on previous experiences,
• Tailoring and adapting RE practices in software organizations,
• Learning environments and material for RE,
• Learning from failure and from success in RE,
• Feedback mechanisms and techniques within RE,
• Collaborative learning of customers and developers and
• Short-term and long-term learning in RE.
As workshop organizers, we hope LSO+RE has helped providing better practices

for requirements engineering, increased the usage of well-functioning requirements
engineering methods and inspired people to experiment and learn from innovative
techniques.

The rest of this article is organized as follows: In section 2, we describe what we
mean by a learning software organization, give a brief status of the field, and develop
a way to categorize work in this area. Section 3 gives a brief overview of the main
topics and challenges in requirements engineering. Section 4 presents the articles
selected for this special issue, and places them in the context of organizational
learning and requirements engineering. Finally, in Section 5, we summarize the
findings from the articles and discussions from the workshop. We give our thoughts
on future development in the intersection between learning software organizations
and requirements engineering.

2 LSO: The Vision of a Software Organization that Learns

A learning software organization is an organization that develops or maintains
software and intentionally acts as a “learning organization”. There are many
definitions on what is required for a “learning organization” or “organizational
learning”. In a review article, Dodgson [9] describes learning organizations as
organizations that “build, supplement and organize knowledge and routines around
their activities and within their cultures, and adapt and develop organizational
efficiency by improving the use of the broad skills of their workforces”. He further
writes that this definition incorporates the following assumptions:
• Learning generally has positive consequences even though learning can be caused

by failure.
• Corporate and group culture is influenced by individual learning and can assist the

direction of the learning.

61Birk A., Dingsoeyr T., Lindstaedt S.N., Schneider K.: Learning Software ...

• Learning occurs throughout all activities of an organization. Encouraging and
coordinating the variety of interactions in learning is a key organizational task.

“Learning organizations” are then organizations that “purposefully construct
structures and strategies as to enhance and maximize organizational learning”.

Studies on organizational learning in general build on theories from different
disciplines, from Argyris and Schön’s theory of learning [1], Nonaka and Takeuchi’s
theories of knowledge creation [15] to Wenger’s theories on Communities of Practice
[22] and Senge’s work on organizational learning [18]. We see knowledge
management [5] as a field that covers all the previously mentioned theories.

When we discuss organizational learning in software organizations, this intersects
to a high degree with the subfield of software engineering called software process
improvement. It includes the Total Quality Management (TQM) “philosophy” [7] and
it’s version related to software: The Quality Improvement Paradigm (QIP). Both
fields focus on organizational learning [3]. The concept of the Experience Factory [4]
is the first well known systematic approach to organizational learning in the software
engineering field. However, the main focus of the literature in software engineering
has been on technological issues [8].

So, what makes learning software organizations different from other learning
organizations? First, software development is a very knowledge-intensive form of
work, second software organizations have a higher maturity on information
technology usage, so we might expect this type of organizations to make better use of
available tools.

Earl [11] has developed a framework to place studies on knowledge management
according to different schools, as shown in Table 1. The “technocratic” approach to
knowledge management is comprised of works focusing on systems, cartography, and
engineering, the “economic” school looks at the commercial value of knowledge,
while the “behavioural” school focuses on organizational, spatial and strategic areas.

����������
�	��

���
��
�
���

���������
�������	�����
����
���

��������

����	�
���

��������
���������
����	

�����	������	�������
�	�����������
���

��
	�����	������
���

�����	��	
��������
�	�

�����	��	
	�����	

�����	��	
�������

�����	��	
���	
�

�����	��	
�����

�����	��	
���	�
���	�

�����	��	
���	�

��

 ����	
!���	"	
���#�$����	����	��	� ���%	�������
�����

��	�����

����������
�	��

���
��
�
���

���������
�������	�����
����
���

��������

����	�
���

��������
���������
����	

�����	������	�������
�	�����������
���

��
	�����	������
���

�����	��	
��������
�	�

�����	��	
	�����	

�����	��	
�������

�����	��	
���	
�

�����	��	
�����

�����	��	
���	�
���	�

�����	��	
���	�

��

 ����	
!���	"	
���#�$����	����	��	� ���%	�������
�����

��	�����

���������	
� ������
�
����
�����

�

����
	

!�����

Table 1: Schools in knowledge management research, developed by Earl.

When a company builds up experience exploitation and organizational learning, a
number of expectations are common: Experience seems to be everywhere, so there
should be no problem collecting and distributing it to others. However, some of those
expectations turn out to be unrealistic. For example, it is unrealistic to assume
altruism by those who have knowledge and experience. Why should they share it?

62 Birk A., Dingsoeyr T., Lindstaedt S.N., Schneider K.: Learning Software ...

Why should they even invest time and effort to structure or document it? When
unrealistic assumptions are made, the success of the initiative is at stake. Schneider
[17] reports on an experience exploitation initiative at DaimlerChrysler. Observations
include: (1) not only were many software experts reluctant to share experience, they
were not enthusiastic about reusing (adopting) it either. (2) The impact of tools was
largely overestimated, especially during the early phases of experience exchange. It
turned out to be much more crucial to stimulate and activate valuable experiences
than to organize or search them in a sophisticated tool. Working on a tool may distract
attention from more essential tasks. (3) Soliciting experiences and turning them into
best practices was underestimated both in terms of effort and impact. In general,
learning software organizations need to take into account many technical details,
psychological factors, and organization issues. Reuse of valuable knowledge is
possible, but it is not as straight-forward as it may seem.

Figure 1: Topics breakdown of the SWEBOK software requirements knowledge area.

3 RE: Learning about Requirements Engineering

Requirements engineering is a field which covers a large variety of works, from
technical tools to help analyze and organize requirements, to works on organizational
development in order to establish new routines and practices to discuss requirements
with a customer.

The IEEE Computer Society's Software Engineering Body of Knowledge
(SWEBOK) [19] defines requirements engineering as the area of software

63Birk A., Dingsoeyr T., Lindstaedt S.N., Schneider K.: Learning Software ...

engineering concerned with the acquisition, analysis, specification, validation, and
management of software requirements. Figure 1 gives an overview of the topic areas
that constitute the field of RE.

Kauppinen et al. [12] have identified the following factors in the requirements
engineering literature that influence improvement. Many of these factors are related to
learning:
• User involvement – involving the stakeholders who will be affected by a changed

requirements process.
• Benefits of the requirements engineering process – everyone involved should see

some benefits.
• Cultural change – the development personnel needs to understand importance of

customer and user requirements.
• Continuous requirements engineering improvement – feedback on the requirements

process must be collected and used to take action.
• Evolutionary requirements engineering process improvement – use small-scale

improvements before new expensive techniques.
• Pilot projects – ensure that new processes are feasible through real pilot projects.
• Training and education – this is essential for ensuring sustained change.
• Simplicity of the requirements engineering process – multiple stakeholders from

several functional organizations requires a simple interface.

4 LSO+RE: Contributions to the Intersection

The LSO+RE workshop stimulated the investigation of the manyfold intersections
between learning software organization and requirements engineering. In order to
structure the discourse, the workshop organizers have proposed the following
structure of this intersection area:
• Organizing and managing requirements knowledge
• Organizing and managing knowledge and experience about RE
• Understanding information flows in RE
• Improving RE practices with the aid of knowledge management and

communication concepts
• Learning about RE
• Applying the learned knowledge

Organizing and managing requirements knowledge is part of the day-to-day
project work in RE. How shall we structure system requirements? How shall we
document the results of requirements elicitation? How shall we present the knowledge
encoded into requirements to the various system and project stakeholders?

Organizing and managing knowledge and experience about RE is a task relevant
to RE education, job profiles, task assignment and process definition, as well as RE
process improvement. It covers the application of LSO to the process and how-to
aspects of RE. It focuses on the explicitly documented knowledge about RE, but also
considers the tacit parts of the knowledge.

Understanding information flows in RE is concerned with making explicit the
many tacit and implicit knowledge aspects of the RE practice. It provides the basis for

64 Birk A., Dingsoeyr T., Lindstaedt S.N., Schneider K.: Learning Software ...

making this knowledge explicit and manageable by a larger set of knowledge
management instruments.

Improving RE practices with the aid of knowledge management and
communication concepts is concerned with the question how we can gain and utilize
knowledge about RE. It consists of the two complimentary activitis of learing about
RE, i.e., gaining knowledge, and applying the learned knowledge, mostly in the
realms of education and process improvement.

This structuring of the intersection between LSO and RE provides a framework
for categorizing the articles selected for this special issue. Table 2 relates each article
to the respective categories. The category organizing and managing requirements
knowledge is not addressed by any of these articles. However, there were three
additional workshop contributions that placed special emphasis on this category:
Decker et al. [6], Nicolás et al. [16], and Tavakoli and Porta [20].

Organizing and managing

knowledge and
experience about RE

Understanding
information flows in

RE

Improving RE practices
with the aid of KM and

communication concepts
Hagge and Lappe

Herrmann
Houdek

Allmann et al.
Knauss et al.

Fricker et al.
Smolander

Šmite
Werner

Table 2: Relations of the articles in this special issue to LSO+RE categories.

According to the other LSO frameworks outlined above, the articles can be
characterized as follows. If we place the articles according to the knowledge
management schools, we see that all articles fits into an “engineering” school, which
is not surprising given the overall topic of software engineering. The articles tend to
focus on the requirements engineering process, and either describe it in different
contexts, such as a global context (Šmite) and viewing it like a process of
interpretations by different parties (Ovaska et al.). Other articles present improvement
projects aimed at formalizing requirements engineering: Werner, Allmann et al. and
Fricker et al. The article by Knauss et al. describes an effort to balance tacit and
explicit knowledge in the requirements process, while Hagge and Lappe discuss
codified patterns as a means to learn from previous efforts. Finally, Houdek discusses
organizational learning techniques in relation to suitability for requirements
engineering. One of the approaches Houdek discusses is a knowledge base, which is
also a theme in the article by Allmann et al. This is a theme that would fit in the
“systems” school in Earl’s knowledge management framework.

If we place the articles according to success factors in requirements engineering,
we see that several of the articles address training, which is one of the success factors
in our framework: Šmite discusses the role of training on requirements engineering in
global projects, while Houdek discusses both coaching and internal training as
possible candidates of learning strategies on requirements engineering. Werner
emphasize the importance of training the users, which correspond to user involvement
as well as training and education. Ovaska et al. found four categories of expectations
and attitudes to requirements: business value, system development strategy, system

65Birk A., Dingsoeyr T., Lindstaedt S.N., Schneider K.: Learning Software ...

development capability and system development resource allocation. Knauss et al.
discusses the balance of documentation, which is related to the simplicity of the
requirements engineering process.

5 LSO+RE 2006: Status and Outlook

The articles presented at LSO+RE and the discussions among participants have shown
that the field of RE calls for a broad spectrum of support from organizational learning.
Much of this need persists. The concept of learning organization should be
disseminated further and adapted more closely to requirements engineering.

Workshop contributions from industrial practice have shown that organizational
learning techniques can be beneficial to day-to-day software development practice.
First of all, the basic principles of organizational learning and an appropriate
organizational culture should be introduced and implemented within a software
organization. Then, appropriate techniques and processes that facilitate learning need
to be adapted to the specific characteristics of the software organization.

Some controversial discussion span off around the question whether knowledge
management should focus on explicit knowledge representation such as process
definition and best practice repositories, or whether organizational learning should
predominantly proceed through informal stakeholder interaction. The discussion
participants presented evidence that the importance of explicit knowledge
representation tends to be overestimated. However, appropriate and sound
documentation are important ingredients of organizational learning, in particular in
order to bridge access to information over larger time spans or large geographical
distance. For ensuring actual application of knowledge and experience, personal
contact and assistance appeared to be an important prerequisite.

The articles presented in this special issue focus primarily on the “engineering”
school of knowledge management, and partially on the “systems” school. They focus
on a broad set of topics within requirements engineering, including user involvement,
training and education. They argue for a simple but carefully designed requirements
engineering process that includes the right principles and techniques from learning
software organizations.

In the future, studies from other schools of knowledge management may enrich
discussion. A map of knowledge management within requirements engineering could
be an important topic, as raised by Houdek. Also, organizational and spatial
approaches are interesting paths to follow, particularly in environments primarily
relying on the transfer of tacit knowledge as in companies focusing on agile
development.

Acknowledgements

As workshop organizers and editors of this special issue of J.UKM, we want to thank
all workshop participants and authors of workshop articles for their highly interesting
and valuable contributions. We enjoyed the open atmosphere during LSO+RE in
Hannover, which made it a rewarding event.

66 Birk A., Dingsoeyr T., Lindstaedt S.N., Schneider K.: Learning Software ...

The Know-Center is funded by the Austrian Competence Center program Kplus under
the auspices of the Austrian Ministry of Transportation, Innovation and Technology
(www.ffg.at/index.php?cid=95) and by the State of Styria.

References

[1] Chris Argyris and Donald A. Schön, Organizational Learning II: Theory, Method and
Practise: Addison Wesley, 1996,

[2] A. Aurum, R. Jeffery, C. Wohlin, and M. Handzic, Managing Software Engineering
Knowledge. Berlin: Springer Verlag, 2003,

[3] Victor R. Basili, “Quantitative Evaluation of Software Engineering Methodology”,
Proceedings of the First Pan Pacific Computer Conference, Melbourne, Australia, 1985.

[4] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach, “The Experience Factory”, in
Encyclopedia of Software Engineering, vol. 1, J. J. Marciniak, Ed.: John Wiley, 1994, pp. 469-
476.

[5] Thomas H Davenport and Laurence Prusak, Working Knowledge: How Organizations
Manage What They Know: Harvard Business School Press, 1998, ISBN 0-87584-655-6.

[6] Björn Decker, Eric Ras, Jörg Rech, Bertin Klein, Christian Hoecht, "Using Wikis to
Manage Use Cases: Experience and Outlook": Proceedings of the International Workshop on
Learning Software Organizations and Requirements Engineering, University of Hannover,
March 27 and 28, 2006.

[7] Edwards W. Deming, Out of the Crisis. Cambridge, Massachusetts: The MIT Press (first
published in 1982 by MIT Center for Advanced Educational Services), 2000, ISBN 0-262-
54115-7.

[8] Torgeir Dingsøyr and Reidar Conradi, “A Survey of Case Studies of the Use of Knowledge
Management in Software Engineering”, International Journal of Software Engineering and
Knowledge Engineering, no. 4, vol. 12, pp. 391 - 414, 2002.

[9] Mark Dodgson, “Organizational Learning: A Review of Some Literatures”, Organizational
Studies, no. 3, vol. 14, pp. 375 - 394, 1993.

[10] Tore Dybå, “An Empirical Investigation of the Key Factors for Success in Software
Process Improvement”, IEEE Transactions on Software Engineering, no. 5, vol. 31, pp. 410 -
424, 2005.

[11] Michael Earl, “Knowledge Mangement Strategies: Towards a Taxonomy”, Journal of
Management Information Systems, no. 1, vol. 18, 2001.

[12] Marjo Kauppinen, Matti Vartiainen, Jyrki Kontio, Sari Kujala, and Reijo Sulonen,
“Implementing requirements engineering processes through organizations: success factors and
challenges”, Information and Software Technology, vol. 46, pp. 937 - 953, 2004.

[13] Mikael Lindvall and Ioana Rus, “Knowledge Management in Software Engineering”,
IEEE Software, no. 3, vol. 19, pp. 26 - 38, 2002.

[14] K. Lyytinen and D. Robey, “Learning Failure in information systems development”,
Information Systems Journal, vol. 9, pp. 85 -101, 1999.

67Birk A., Dingsoeyr T., Lindstaedt S.N., Schneider K.: Learning Software ...

[15] Ikujiro Nonaka and Hirotaka Takeuchi, The Knowledge-Creating Company: Oxford
University Press, 1995, ISBN 0-18.509269-4.

[16] Joaquín Nicolás, Joaquín Lasheras, Ambrosio Toval, Francisco J. Ortiz, Bárbara Álvarez, "
An Experience on Modelling Teleoperated Systems for Ship Coating Removal through
Features and Generic Use Cases ": Proceedings of the International Workshop on Learning
Software Organizations and Requirements Engineering, University of Hannover, March 27 and
28, 2006.

[17] Kurt Schneider, “What to Expect from Software Experience Exploitation,” Proc. of the
IKnow Conference, Graz, Austria: Journal of Universal Computer Science J.UCS 8(6),
www.jucs.org, , 44-54.

[18] Peter M. Senge, The Fifth Discipline: The Art & Practise of The Learning Organisation:
Century Business, 1990, ISBN 0-7126-56871.

[19] Pierre Bouque and Robert Dupuis (Eds.), Guide to the Software Engineering Body of
Knowledge, 2004 Version (SWEBOK): IEEE Computer Society, 2000, http://www.swebok.org.

[20] Ramin Tavakoli Kolagari and Nicolas Fernando Porta, "Project-oriented Reuse
Approaches: Copy-and-Paste or Software Product Line Engineering?": Proceedings of the
International Workshop on Learning Software Organizations and Requirements Engineering,
University of Hannover, March 27 and 28, 2006.

[21] Amrit Tiwana, “An empirical study of the effect of knowledge integration on software
development projects,” Information and Software Technology, vol. 46, pp. 899 - 906, 2004.

[22] Etienne Wenger, Communities of practise : learning, meaning and identity. Cambridge,
UK: Cambridge University Press, 1998, ISBN 0-521-43017-8.

[23] Maximilian Zedtwitz, “Organizational learning through post-project reviews in R&D,”
R&D Management, no. 3, vol. 32, pp. 255 - 268, 2002.

68 Birk A., Dingsoeyr T., Lindstaedt S.N., Schneider K.: Learning Software ...

