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Abstract: This paper proposes a general discussion of the handling of imprecise and uncertain 
information in temporal reasoning in the framework of fuzzy sets and possibility theory. The 
introduction of fuzzy features in temporal reasoning can be related to different issues. First, it 
can be motivated by the need of a gradual, linguistic-like description of temporal relations even 
in the face of complete information. An extension of Allen relational calculus is proposed, 
based on fuzzy comparators expressing linguistic tolerance. Fuzzy Allen relations are defined 
from a fuzzy partition made by three possible fuzzy relations between dates (approximately 
equal, clearly smaller, and clearly greater). Second, the handling of fuzzy or incomplete 
information leads to pervade classical Allen relations, and more generally fuzzy Allen relations, 
with uncertainty. The paper provides a detailed presentation of the calculus of fuzzy Allen 
relations (including the composition table of these relations). Moreover, the paper discusses the 
patterns for propagating uncertainty about (fuzzy) Allen relations in a possibilistic way.     
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1  Introduction 

Temporal information may be often perceived or expressed in a fuzzy way. However, 
temporal reasoning [Vila (1994)] and fuzzy set-based approximate reasoning [Bezdek 
et al. (1999)] have often been developed separately for about three decades. Indeed, 
there do not exist many studies about the handling of imprecise or uncertain 
information in temporal reasoning. Let us briefly mention a few exceptions. Dubois 
and Prade (1989) discuss approximate reasoning with fuzzy dates and fuzzy intervals 
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in the framework of possibility theory. Guesgen et al. (1994) introduce fuzzy Allen 
relations as fuzzy sets of ordinary Allen relations agreeing with a neighborhood 
structure. Fuzzy sets which play a key role in modeling flexible constraints, have been 
used in several constraint-based approaches to temporal reasoning. Qian and Lu 
(1989) propose several propagation strategies for handling networks of fuzzy temporal 
rules; Barro et al. (1994) propose a straightforward generalization of the notion of 
metric temporal constraint based on fuzzy sets and use possibility measures to check 
the consistency degree of a fuzzy temporal constraint network (see also [Vila and 
Godo (1994)] and [Wainer and Sandri (1998)]); Godo and Vila (1995) propose an 
approximate temporal logic based on the embedding into the logical language of fuzzy 
temporal constraints between pairs of time points. The inference system is based on 
specific rules dealing with the temporal constraints and a fuzzy modus ponens rule 
handling certainty qualified statements (see also the recent work of [Cárdenas et al. 
(2001)]). Dubois et al. (1991) have proposed a possibilistic temporal logic where each 
classical logic formula is associated with the fuzzy set of time points where the 
formula is certainly true to some extent. More recently, the fuzzy representation and 
processing of imprecise temporal knowledge has been applied to Petri net-based 
models of discrete event systems for the purpose of simulation and fault diagnosis 
[Cardoso and Camargo (1999)] (see also [Cardoso et al. (1999)] for Petri nets in the 
framework of possibility theory). Let us also mention the work done by Freksa (1992) 
who proposes a generalization of Allen's interval-based approach to temporal 
reasoning, based on semi-intervals, for processing coarse and incomplete information. 

The introduction of fuzzy features in temporal reasoning can be done in different 
manners, depending on the representation level which is chosen, and according to the 
problem at hand. This may be motivated by the handling of fuzzy or incomplete 
information, or by the need for an approximate or gradual description of temporal 
relations even in the face of complete information. In the following we provide a 
general discussion of these representational issues in the framework of fuzzy set and 
possibility theory (already used in most of the above-mentioned references). 

Time is usually represented in terms of dates, or in terms of intervals. Thinking in 
terms of dates, and assuming a linear time scale, we can compare dates in terms of the 
three relations >, = and <. Considering intervals, the thirteen qualitative relations first 
extensively discussed by [Allen (1983)], describe the possible relative positions of two 
intervals w.r.t. each other. These relations can be defined in terms of the three 
previous relations applied to the bounds of the intervals. Temporal reasoning then 
amounts to computing the transitive closure of this set of relations between intervals.  

When dealing with fuzziness and uncertainty in approximate reasoning, two 
situations have to be carefully distinguished. On the one hand, one may have to 
evaluate fuzzy statements (by graded truth values) in the presence of complete 
information. On the other hand, one may have to compute the uncertainty associated 
with non-fuzzy statements (which are thus true or false) when the available 
information is imprecise, uncertain or fuzzy. Obviously, these two extreme cases can 
be combined if we are interested in the evaluation of fuzzy statements in presence of 
incomplete information.  

These two extreme cases can be encountered as well with temporal information: 
 
i) The information about dates and relative positions of intervals is complete, but for 
some reason we are not interested in describing it in precise terms. For instance, we 
want to speak in terms of approximate equality, or proximity, rather than in terms of 
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precise equality in order to avoid brutal discontinuities between the cases of values 
that are perfectly equal and of values that are very close to each other. This is more 
generally related to the issue of interfacing a numerical continuum with a finite 
number of categories, where the use of fuzzy categories allows for smooth transitions 
between them. The concern of assessing the closeness of two dates may be also related 
to the general issue of expressing fuzzy information about duration in temporal 
reasoning. 
 
ii) The available information is pervaded with imprecision, vagueness or uncertainty. 
This may cover slightly different situations: 
 
• relations between dates or intervals are known with precision and certainty, but some 
dates may be imprecisely located (the date belongs to some interval), fuzzily located 
(the more or less possible values of the date are restricted by a fuzzy set acting as an 
elastic constraint), or dates are pervaded with uncertainty (which means that we are 
not even sure that the date is in some (fuzzy) range, and there is a possibility that its 
value is unknown). 
• our knowledge about the three possible relations between some dates, or the thirteen 
relations between some intervals are pervaded with imprecision, uncertainty or 
vagueness. 
 

This paper discusses these representational issues in a rather systematic way. It 
substantially develops the contents of a recent working note [Dubois and Prade, 2002]. 
Especially, the paper uses a set of three fuzzy relations between dates, modeling the 
ideas of being approximately equal, clearly before, or clearly after, which make a 
fuzzy partition of the temporal axis. This fuzzy partition is characterized by a unique 
parameter. In particular, using these three relations, the computation of the 
composition table of the thirteen fuzzified extensions of Allen relations is established. 
In Section 3, fuzzy counterparts to Allen relations are provided where each temporal 
relation is associated with a fuzzy parameter. Reasoning about such temporal 
information is discussed. Section 4 deals with Allen relations, or their fuzzified 
versions, when the available knowledge is pervaded with uncertainty. Deductive 
patterns of reasoning involving fuzzy or uncertain temporal knowledge are then 
established. First a background section recalls Allen’s relations as well as results about 
the composition of fuzzy relations modeling approximate equalities or comparing the 
magnitude of values. 

2  Background  

The purpose of this background is twofold. First the possible relations describing the 
relative locations of two intervals are restated. Then, fuzzy inference rules involving 
fuzzy approximate equalities and graded inequalities are established. 

In the following, we denote dates by italic lower case letters a, b, c,..., intervals by 
italic capital letters A, B, C,...and fuzzy sets by ordinary capital letters. 
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2.1  Allen Temporal Relations  

Allen (1983) has proposed a set of basic mutually exclusive primitive relations that 
may hold between temporal intervals. These relations between events are usually 
denoted by before ( ), after ( ), meets (m), met by (mi), overlaps (o), overlapped by 
(oi), during (d), contains (di), starts (s), started by (si), finishes (f), finished by (fi), 
and equals (≡). Their meanings are pictured in Table 1. 
 
 

Relation               Converse            Pictorial Example Endpoints Relations 

 
A �B                     B  A                                                              
 
 
A m B                     B mi A                                                              
 
 
A o B                      B oi A                                       
 
 
A s B                      B si A                                       
   
                                                                                          
A d B                      B di A                                                               
 
 
A f B                       B fi A                                                        
 
 
A ≡ B                     B ≡ A                                                                
                                                                                         

 
b > a’ 

 
 

a’ = b 
 
 

b > a ∧ a’ > b ∧ b’ > a’ 
 
 

a = b ∧  b’ > a’ 
 
 

a > b ∧ b’ > a’ 
 
 

a > b ∧ b’ = a’ 
 

a = b ∧ a’ = b’ 

 
Table 1: The thirteen qualitative relations between two intervals 

 
It is clear that the above relations can be defined from the three binary relations <, 

=, and > applied to the bounds of two intervals to be located w.r.t each other. For 
instance, assuming that for any interval A, the smallest endpoint is denoted by a and 
the greatest one by a’ then, the assertion A overlaps B corresponds to (b > a) ∧ (a’ > b) 
∧ (b’ > a’) as shown in Table 1. Only a subset of relations between the endpoints of 
intervals we consider is sufficient for fully characterizing their qualitative relations 
due to two domain-inherent conditions: (i) the least points of intervals take place 
before the greatest endpoints and (ii) the relations <, =, > are transitive.  

Allen (1983) has provided a set of axioms describing the composition of the 
thirteen relations, together with an inference procedure. For instance, 
 
A before B and B before C ⇒ A before C, 
A meets B and B during C ⇒ (A overlaps C ∨ A during C ∨ A starts C).  
 

 B 

 B 

 B 

 B 

 A 

 A 

 B 
 A 

A 

 
B 

 A 

 A 

 A 

 B 

1171Dubois D., HadjAli A., Prade H.: Fuzziness and Uncertainty ...



 

The last example shows that Allen was forced to introduce disjunctions of 
primitive relations for dealing with uncertainty about the relationship, even for the 
composition of two primitive relations.   

Let us note that a generalization of Allen’s interval-based approach, based on 
semi-intervals, has been proposed by Freksa (1992) for reasoning with incomplete 
knowledge, specifically with coarse knowledge about temporal relationships. The 
notion of "conceptual neighborhood" is central in this approach. The following 
definitions have been introduced by him: 

 
Definition 1. Two relations between pairs of events are (conceptual) neighbors, if they 
can be directly transformed into one another by continuously deforming in one way 
(i.e. either shortening, or lengthening, or moving) one of the events (in a topological 
sense). 
 
Examples. The relations before ( ) and meets (m) are conceptual neighbors. By 
contrast, the relation before ( ��and overlaps (o) are not conceptual neighbors. 
 
Definition 2. A set of relations between pairs of events forms a (conceptual) 
neighborhood if its elements are path-connected through ’conceptual neighbor’ 
relations.  
 
Examples. The relations before ( ), meets (m) and overlaps (o) form a (conceptual) 
neighborhood. By contrast, the relations before ( ) and overlaps (o) do not form a 
conceptual neighborhood. 
 

According to the above definition of the conceptual neighborhood, Freksa makes 
an arrangement of the thirteen mutually exclusive relations between events in such a 
way that conceptually neighboring relations become neighbors (see Figure 1.a). 
Depending on the types of deformation of events and their relations, we obtain 
different neighborhood structures. For instance, if we fix three of the four semi-
intervals of two events and allow the fourth to vary, we obtain the A-neighbor relation 
(see Figure 1.b). For more details about the two other neighborhood structures, see 
[Freksa (1992)]. 
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                               (a)                                                                     (b) 
 
Figure 1: Allen’s thirteen primitive relations arranged according to their conceptual 

neighborhood.  

2.2  Fuzzy Absolute Comparators  

The representation of fuzzy comparators expressed in terms of difference of values is 
discussed. Then the composition of fuzzy relations modeling approximate equalities, 
or graded inequalities, is recalled, and inference rules involving such fuzzy 
parameterized relations are then established. Let us first recall the concept of fuzzy 
set.  

2.2.1  Fuzzy Set 

The concept of a fuzzy set has been introduced by Zadeh (1965) to deal with the 
representation of classes whose boundaries are ill-defined, or flexible, by means of 
characteristic functions taking values in the interval [0, 1]. A fuzzy set F in referential 
U is thus characterized by a membership function µF: U → [0, 1], where the value 
µF(u) represents the "grade of membership" of u in F. In particular, µF(u) = 1 reflects 
full membership of u in F, while µF(u) = 0 expresses absolute non-membership in F. 
Usual sets can be viewed as special cases of fuzzy sets where only full membership 
and absolute non-membership are allowed (they are called crisp sets, or Boolean sets). 
When 0 < µF(u) < 1, one speaks of partial membership. 

Two crisp sets are of particular interest when defining a fuzzy set F, the core (i.e. 
{u, µF(u) = 1}) and the support (i.e. {u, µF(u) > 0}). A trapezoidal membership 
function can be encoded by a 4-tuple(a, b, α, β), where the intervals [a, b] and [a−α, 
b+β] represent the core and the support of the fuzzy set respectively. See Figure 2.  
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si 
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Figure 2: Trapezoidal membership function 
 
Fuzzy quantity. A fuzzy quantity Q is any fuzzy set of the real line 3, assumed to be 
normalized (i.e. ∃ u, µQ(u) = 1). 
 
Fuzzy interval. A fuzzy interval M is a fuzzy quantity with a quasi-concave 
membership function, i.e., a convex fuzzy set of the real line 3 which obeys the 
following constraint: ∀ u, u', ∀ u" ∈ [u, u'], µM(u") ≥ min(µM(u), µM(u')). The fuzzy set 
pictured in Figure 2 represents a trapezoidal fuzzy interval.  
 
Fuzzy arithmetic operations. Let M = (a, b, α, β) and N = (a', b', α', β') be two fuzzy 
intervals. Extended sum ⊕ and extended subtraction − between fuzzy intervals can be 
defined in the framework of possibility theory [Dubois and Prade (1988)]. With the 
above trapezoidal representation, it amounts to the following computation: 
 
  M ⊕ N = (a + a', b + b', α + α', β + β'),    
  M − N = (a − b', b − a', α + β', β +α').  
 
For more details about all these notions, the reader can consult Chapters 1 and 10 of 
[Dubois and Prade 2000]. 

2.2.2  Approximate Equalities and Graded Inequalities 

An approximate equality between two values, here representing dates, modeled by a 
fuzzy relation E with membership function µE (E stands for "equal"), can be based on 
a distance such as the absolute value of the difference. Namely, 
  
  µE(x,y) = µL(|x − y|),  
 
where L is a fuzzy set modeling the fuzzy amount of discrepancy between values 
regarded as approximately equal. For simplicity, fuzzy sets and fuzzy relations are 
assumed to be defined on the real line. But we could restrict ourselves to integer or to 
rational values if necessary. Approximate equality is represented by    
 

µF(u) 

U b a 

1 

b+β a−α 
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∀x, y ∈3, 

( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

ε
−−ε+δ

ε+δ>
δ≤

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ε

−−ε+δ
=−=µ

                       otherwise       
yx

                y-x if                         0  

                      y-x if                         1   

 
yx

,1 min,0 max)yx(µy,x  LE

(1) 
 

where δ and ε are respectively positive and strictly positive parameters which affect 
the approximate equality. Here L is a fuzzy set centered in 0, i.e. µL(d) = µL(−d) in 
order to have E symmetrical: µE(x, y) = µE(y, x). See Figure 3. Classical equality is 

recovered for δ = 0 and ε → 0. 
Then the approximate equality of quantities a and b (in the sense of E) can be 

written under the form 
a − b ∈ L ⇔ b − a ∈ L ⇔ a E(L) b 

 
with the following intended meaning: the possible values of the difference a − b are 
restricted by the fuzzy set L. In particular a E(0) b means a = b. Note that we may also 
think of modeling an approximate equality in terms of the closeness of the ratio x/y to 
1. This is the basis of the calculus of fuzzy relative orders of magnitude, expressed in 
terms of closeness and negligibility relations, which has been developed in [HadjAli et 
al. (2003)]. However, a difference-based view of approximate equality appears to 
more suitable for temporal modeling where the difference between dates make sense, 
but not their ratio usually. 
  

1

   −δ−ε   −δ           0            δ      δ+ε   λ              λ+ρ

L

K

 λ−δ−ε          λ+ρ−δ

  x-y

L K⊕

 
Figure 3: Modeling "approximate equality" and "graded strict inequality".  

 
Similarly, a more or less strong inequality can be modeled by a fuzzy relation G 

(G stands for "greater"), of the form  
 
  µG(x,y) = µK(x − y).  
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In the following, we take 
 
∀x, y ∈3,  

( )           

                              otherwise.    
yx

                        yx if          0

                    yx if           1

 
yx

,1 min,0 max)yx(y,x       KG

⎪
⎪

⎩

⎪
⎪

⎨

⎧

ρ
λ−−

λ+≤
ρ+λ+>

=⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
ρ

λ−−=−µ=µ

(2) 
We assume ρ > 0, i.e. G is more demanding than the idea of "strictly greater" or 
"clearly greater". We should also have λ ≥ 0 in order to ensure that G is a relation 
which agrees with the idea of "greater" in the usual sense. Indeed if λ < 0, it would 
hold that ∃ (x,y), µG(x,y) > 0 and x < y, provided that x and y remain somewhat close. 

The relation "strictly greater than" (>) is obtained for λ = 0 and ρ → 0. A more or less 
strong constraint of the type "a is larger than b" (in the sense of G) can then be written 
 

a − b ∈ K  ⇔  a G(K) b, 
 

where K is a fuzzy interval which gathers all the values equal to or greater than a 
value fuzzily located between λ and λ + ρ. K is thus a fuzzy set of positive values with 
an increasing membership function. See Figure 3. According to the values of 
parameters λ and ρ, the modality, which indicates how much larger than b is a, may 
be linguistically labeled by "slightly", "moderately", "much", etc…, in a given 
context. G(0) stands for '>'.  
 
The relation "smaller than" may be graded as well. Note that a G(K) c ⇔ a − c ∈ K 

⇔ c − a ∈ Kant ⇔ c S(Kant) a where S stands for smaller, and Kant is the antonym of 
K defined by µ

Kant(d) = µ
K

(−d). Thus, if a is much greater than c, c is much smaller 

than a. Besides, we can define the complement of K as usual by )d(Kµ  = 1 − µ
K

(d) 

[Dubois and Prade (1988)]. Then, a relation like "a slightly larger, but not much larger 
than b" can be obtained by means of intersection and complementation operations on 
the two fuzzy relations G and S with different parameters K and K' such as 
Support(K') ⊆ Core(K) (which guarantees that K ∩ K' is a normalized fuzzy set).  

Namely, a − b ∈ K ∩ ’K  ⇔ a [G(K) ∩ S( ’K )] b. It still leads to a trapezoidal 

representation for K ∩ ’K , if K and K' are semi-trapezoids. See Figure 4. 
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                                                            ’K

  0  

K

  x-y

’K ant

K’

 
 

Figure 4 
 

However note that 
ant
’K  is no longer in such a case the parameter of a fuzzy relation 

G agreeing with the idea of "strictly greater than", since 
ant
’K  includes negative 

values (although somewhat close to 0).    

2.2.3  Composition of Fuzzy Relations and Fuzzy Intervals  

The composition G(K)°E(L) of two fuzzy relations G(K) and E(L) is defined by  

 
∀ x ∈ X, ∀ z ∈ Z,  
   µG(K)°E(L) (x,z) = supy ∈Y  min(µG(x, y), µE(y, z))  

                                                  = supy ∈Y  min(µK(x − y), µL(y − z)) 
                             = sups,t: x−z = s+t  min(µK(s), µL(t))  

                                                  = µK⊕L(x − z),           

where we recognize the expression of the extended sum ⊕ of fuzzy sets K and L. In 

Figure 3, L = (–δ, δ, ε, ε), Κ = (λ + ρ, +∞, ρ, +∞) and K ⊕ L = (λ + ρ – δ, +∞, 

ρ + ε, +∞). 
 

If we know for instance that "a is approximately equal to b" (i.e. a E(L) b ) and 
that "b is much greater than c" (i.e. b G(K) c ), we can deduce that 
 

a − c ∈ K ⊕ L ⇔  a G(K ⊕ L) c, 
 

using the above composition formula. This result is represented in Figure 3 where the 
relations E(L) and G(K) are used. We see that it is certain that a > c + λ − (δ + ε) and 
that the value of the difference a − c belongs to L ⊕ K to degree 1 as soon as a ≥ c + λ 
+ ρ − δ. Then, depending on the respective values of the parameters, a is still greater 
than c (but may be not as much as b with respect to c) (if λ − δ − ε > 0), or there is a 
non-zero possibility that a is slightly smaller than c (if λ + ρ − δ > 0), although it is 
more possible that a be larger than c.  
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2.2.4  Fuzzy Parameterized Inference Rules 

Taking advantage of the fact that the composition of the fuzzy relations E(L) and 
G(K) reduces to simple arithmetic operations on the fuzzy parameters K and L 
underlying the semantics of E and G, fuzzily parameterized inference rules can be 
obtained.  

Then, the following set of inference rules describing the behaviors of the fuzzy 
comparators E and G have been established in [Dubois et al. (2001)]: 
 

• Basic properties of the fuzzy comparators E and G 

R1 : a ≤ c ≤ b and a E(L) b ⇒ a E(L) c    Convexity   
R2 : a E(L) b  ⇔ b E(L) a       Symmetry 
R3 : a E(L) b ⇔ a+c E(L) b+c      E-Summation invariance 
R4 : a G(K) b ⇔ a+c G(K) b+c      G-Summation invariance 

• Closure rules  

R5 : a E(L) b and b E(L’) c ⇒ a E(L⊕L’) c   E-Transitivity    
R6 : a G(K) b and b G(K’) c  ⇒ a G(K⊕K’) c  G-Transitivity  
R7 : a E(L) b and b G(K) c ⇒ a G(K⊕L) c   E-G-Composition 

 
Note that rule R7 corresponds to the above example. Rule R5 expresses a 

weakening of the transitivity property for approximate equalities: a may be not close 
to c in as much a is to b and b to c. On the contrary, R6 expresses a strengthening: a is 
much greater than c to a larger extent than a w.r.t. b, or b w.r.t. c. Thus, rules R1 to R7 
enable us to formally compute the fuzzy parameters underlying the relations by means 
of an inference process, and then to interpret them. 

From the above basic rules, other noticeable ones can be established: 

• Summation stability  

R8 : a E(L) b and c E(L’) d ⇒ a+c E(L⊕L’) b+d                           
R9 : a E(L) b and c G(K) d ⇒ a+c G(L⊕K) b+d                               
R10 : a G(K) b and c G(K’) d ⇒ a+c G(K⊕K’) b+d        

 
Indeed, let us take the example of R8. Applying R3 yields a E(L) b ⇒ a+c E(L) 

b+c and c E(L’) d ⇒ b+c E(L’) b+d, then by R5 we prove R8. It can be shown that in 
fact R8 is equivalent to R5 since R8 entails R5 (letting b = c in R8 and applying R3). 
Now, since a > b is equivalent to a G(0) b where K = 0 in the case where λ = 0 and ρ 
→ 0 in (2). Then, the following intuitive properties of the fuzzy relation G can as well 
be derived using rule R6 (since K ⊕  0 = K): 
 

R11 : a > b and b G(K) c ⇒ a G(K) c,                                                          
R12 : a G(K) b and b > c ⇒ a G(K) c, 

 
Other rules can be established such as: 
  

R13: a+b G(K) c+d and c E(L) a ⇒ b G(K⊕L) d, (using R3 two times and R7)  
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R14 : a+b E(L) c and c G(K) a ⇒ b G(L⊕K) 0.      (using R9 and R4)  
Other rules involving duration could be derived as well. For instance, if a G(K) b 

and b − c ∈ D then a G(K ⊕ D) c, where D represents the fuzzy information about the 
time spent between b and c. 

3  Fuzzy Allen Relations  

This section discusses an extension of Allen relations based on approximate equality 
and graded strict inequality relations defined from associated fuzzy parameters. Using 
inference rules established in Section 2.2.4, it is shown that the composition of 
classical Allen relations can be easily extended in practice by augmenting the classical 
calculus with the arithmetic manipulation of fuzzy parameters. The section ends with 
a brief outline of another possible approach based on possibilistic mathematical 
morphology notions.      

3.1  Modeling  

Using the fuzzy parameterized comparators E(L) and G(K), we can define fuzzy 
counterparts of  Allen relations. The idea is that the relations which can hold between 
the endpoints of the intervals we consider may not be described in precise terms. For 
instance, we want to speak in terms of approximate equality (in the sense of E) rather 
in terms of precise equality in order to not introduce a brutal discontinuity between the 
case of a "perfect" meet relation and the case of a before relation when the upper 
bound of the first interval is close to the lower bound of the second interval. 

Then, in approximate terms, only two distinct relations may hold between two 
dates a and b. Indeed, a date a can be "approximately equal"  to a date b in the sense 
of E(L), or a can be "clearly different from" b in the sense of not E(L). This last 
relation corresponds to "much larger" in the sense of G(K) or "much smaller" in the 
sense of S(Kant). Then, the fuzzy parameters L, K and Kant are elements of a fuzzy 
partition (as shown in Figure 5) in the sense that 
 
  ∀ d ∈ 3, µ

K
(d) + µ

Kant(d) + µ
L
(d) = 1. 

 
K and Kant are obtained from L by fuzzy complementation. This makes a fuzzy 
partition since K ∪ Kant ∪ L = 3, and Kant ∩ L = ∅, K ∩ L = ∅ and K ∩ Kant = ∅, 
using the following union and intersection operators µ

F∪G
(d) = min (1, µ

F
(d) + µ

G
(d)) 

and µ
F∩G

(d) = max (0, µ
F
(d) + µ

G
(d) − 1).   
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  −δ−ρ   −δ             0              δ       δ+ρ

L K

  x-y

Kant

 
 

Figure 5: Modeling "at least approximately equal" and "clearly different and greater 
(or smaller)".  

 
Each parameter can be obtained from one another as follows: 

 

  ) ,0[LK ∞+∩=   which is denoted cL+ , 

  ]0 ,(LK ant −∞∩=  which is denoted cL− . 

 
Conversely L can be recovered from K as 
 

  antKKL ∪=   which is denoted Kc.  
   
For trapezoidal representations, it means  
 

If K = (γ, +∞, ρ, +∞) then Kc = (−γ+ρ, γ−ρ, ρ, ρ), 

If L = (−δ, δ, ρ, ρ) then cL+  = (δ+ρ, +∞, ρ, +∞) and cL−  = (−∞,−δ−ρ, +∞, ρ).  
 

Thus having interrelated L, K and Kant enables us to have a unique parameter 
underlying these relations. This is what is assumed in the definition of the forthcoming 
fuzzy Allen relations. Thus it appears that E(L), G(K) and S(Kant) with L and K inter-
defined as explained above, are fuzzy counterparts to the classical relations =, >, and < 
in the crisp case. Indeed, they define a fuzzy partition.  
 
Remark: It is possible to define counterparts of the relations ’≥’ and ’≤’ as respectively 

the union of E(L) and G( cL+ ), namely GE(L) = E(L) ∪ G( cL+ ), and SE(L) as the 

union of E(L) and S( cL− ), namely SE(L) = E(L) ∪ S( cL− ). Then it can be checked 

that E(L) = SE(L) ∩ GE(L), using the above intersection. GE(L) and SE(L) behave as 
genuine extensions of  ≥ and ≤. Indeed, it can be shown that a GE(L1) b and b GE(L2) 
a ⇒ a E(L1 ∪ L2) b where union on fuzzy parameters is defined using max operation. 
New inference rules involving these non strict graded inequality relations can be 
proved, e.g., the following ones that can be proved using a counterpart of R13 for GE 
and the above rule:  a E(L) b and b+c GE(L1) a+d and d GE(L2) c ⇒ c E((L⊕ L1) ∪ 
L2) d.  
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Let A = [a, a’] and B = [b, b’] be two time intervals (it is assumed that all the 
considered intervals [a, a’] are such that a < a’). The fuzzy Allen relations can be now 
defined as shown in Table 2.  
 
 

 
Fuzzy Allen Relation 

 
Definition 

 
Label 

Label of 
Converse 

A fuzz-before(L) B 
 

B fuzz-after(L) A 

 

b G( cL+ ) a’ 

 
fb(L) 

 
fa(L) 

A fuzz-meets(L) B 
 

B fuzz-met by(L) A 

 
a’ E(L) b 

 
fm(L) 

 
fmi(L) 

A fuzz-overlaps(L) B 
 

 
 

B fuzz-overlapped by(L) A 

 

b G( cL+ ) a  ∧ a’ G( cL+ ) b ∧  

b’ G( cL+ ) a’  

 
fo(L) 

 
foi(L) 

A fuzz-during(L) B 
 

B fuzz-contains(L) A 

 

a G( cL+ ) b ∧ b’ G( cL+ ) a’  

 
fd(L) 

 
fdi(L) 

A fuzz-starts(L) B 
 

B fuzz-started by(L) A 

 

a E(L) b ∧ b’ G( cL+ ) a’  

 
fs(L) 

 
fsi(L) 

A fuzz-finishes(L) B 
 

B fuzz-finished by(L) A 

 

a’ E(L) b’ ∧ a G( cL+ ) b 

 
ff(L) 

 
ffi(L) 

A fuzz-equals(L) B 
 

B fuzz-equals(L) A 

 
a E(L) b ∧ b’ E(L) a’  

 
fe(L) 

 
fe(L) 

 
Table 2: Fuzzy Allen Relations 

 
Example: Assume that A = [a, a’] = [0, 5.6], B = [b, b’] = [6, 9], and C = [c, c’] = [9.6, 

12] are time intervals. Let L = (−0.4, 0.4, 0.1, 0.1) (resp. K = cL+ = (0.5, +∝, 0.1, +∝)) 

be the fuzzy parameter underlying the semantics of an approximate equality E (resp. 
the associated fuzzy relation "clearly greater" G). See Figure 3. Since a’ E(L) b and c 
G(K) b’ then, the following fuzzy Allen relations hold : 

 
  A fuzz-meets(L) B, 
  B fuzz-before(K) C. 
  
 Here we start from absolute temporal knowledge and relative knowledge is derived. It 

is possible to compute to what extent the above relations (respectively µE(L)(a’, b) and 
µG(K)(c, b') which are 1 here) are valid.    
 

As we can see the introduced fuzzy Allen relations are of three types: i) relations 
which are defined only on the basis of the fuzzy inequality G, i.e. relations fb, fo, fd 
and their converses ; ii) relations which are defined both on the basis of the 
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approximate equality E and the fuzzy inequality G, i.e. relations fs, ff and their 
converses ; iii) relations which are defined only on the basis of the approximate 
equality E, i.e. relations fm, fe and their converses. 

Guesgen et al. (1994) have proposed another modeling of fuzzy Allen relations. 
They define a fuzzy Allen relation as a fuzzy set of ordinary Allen relations, the 
membership grades being assessed in agreement with a neighborhood system between 
the relations (this notion of neighboring relations is the one introduced in [Section 
2.1]). In the modeling proposed above, a fuzzy Allen relation also covers several 
situations corresponding to different ordinary Allen relations; for instance, fuzz-
meets(L) covers the ordinary "meet" situation as well as situations as "slightly before" 
or "slight overlap". However here, the fuzzy parameter L controls to what extent we 
can shift from the ordinary "meet" situation, and provides a basis for the semantics of 
what "slightly" means in the above expressions. In the same way, we can see that fuzz-
equals(L) can cover the ordinary situation expressed by "slightly contains" or "slightly 
during". 

3.2  Reasoning Based on Fuzzy Allen Relations   

As usual, we can reason on the basis of the established fuzzy Allen relations by 
computing the transitive closure of the fuzzy temporal relations using the inference 
rules given in [Section 2.2.4]. Let us first introduce some notations to be used in the 
forthcoming composition table. Let rp and rq be two relations among the thirteen fuzzy 
relations presented in Table 2. We denote by <rp..rq> the conceptual A-neighborhood 
(in the sense introduced in [Section 2.1]) that starts with the relation rp and finishes 
with the relation rq. The disjunctive set <rp..rq> contains the conceptual neighbor 
relations which form the shortest path between rp and rq. For instance, <fb..fd> 
contains {fb, fm, fo, fs, fd} and <fs..fsi> contains {fs, fe, fsi}.    

Let us show on some examples how the axioms describing the transitivity 
behavior of the fuzzy Allen relations can be established (where A = [a, a’] denotes a 
time interval):  
 
i) Assume that we know that A fb(L1) B and B fb(L2) C, the temporal relation between 
A and C can be obtained as follows: 
 

A fb(L1) B ⇔ b G( c
1 )L( + ) a’, 

 B fb(L2) C ⇔ c G( c
2 )L( + ) b’. 

 

Now by applying rule R11 on b G( c
1 )L( + ) a’, we obtain b’ G( c

1 )L( + ) a’ since b’ > b. 

The transitivity rule R6 applied on c G( c
2 )L( + ) b’ and b’ G( c

1 )L( + ) a’, implies that c 

G( c
2 )L( +  ⊕ c

1 )L( + ) a’. This means that A fb(L2

 ⊕ L1) C since c
2 )L( +  ⊕ c

1 )L( +  = 
c

21 )LL( +⊕ .  

 
ii) Assume now that A fb(L1) B and B fmi(L2) C. Using the definitions of fb(L1) and 
fmi(L2), we have: 
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A fb(L1) B ⇔ b G( c
1 )L( + ) a’, 

 B fmi(L2) C ⇔ b E(L2) c’ ⇔ c’ E(L2) b    (due to rule R2). 
 

By applying rule R7 on c’ E(L2) b and b G( c
1 )L( + ) a’, we deduce  

c’ G(L2 ⊕ c
1 )L( + ) a’ (which will be denoted by H3). Now according to the location of 

the date c with respect to dates a and a’, several mutually exclusive primitive relations 
may hold between the time intervals A and C. Let H1 (resp. H2), H’1 (resp. H’2), H1’’ and 
(resp. H’’2) denote the relations c > a (resp. c > a’), c = a (resp. c = a’) and c < a (resp. 
c < a’) respectively. Then, the different primitive relations that could hold between A 
and C are as follows: 

fb = H2                (which means that fb only requires hypothesis H2) 
fm = H’2   

  fo = H1 ∧ H"2 ∧ H3 (which means that fo requires simultaneously hypotheses H1, H"2 and H3) 

fs = H’1 ∧ H3 
fd = H"1 ∧ H3     

In a condensed form, the relation between A and C writes <fb..fd> corresponding to 
the disjunction of the atomic relations fb, fm, fo, fs and fd. Now, the fuzzy interval that 
should be associated to relation <fb..fd> can be computed as follows. The relations fb 
and fm can also be expressed as H1 ∧ H2 ∧ H3 and H1 ∧ H’2 ∧ H3 respectively (since H1 
and H3 implicitly hold in these cases). The disjunction fb ∨ fm ∨ fo reduces to H1 ∧ H3 
since H2∨ H’2∨ H"2 = T (where T is a tautology). Then, (fb ∨ fm ∨ fo) ∨ fs ∨ fd reduces 
as well to H3 since H1∨ H’1∨ H"1 = T. This means that the fuzzy temporal relation 
between A and C holds in the sense of the fuzzy set underlying the relation G that 
holds between the dates c’ and a’. Then we conclude that A <fb..fd>(L1) C with  L1 = 

[L1 ⊕ c
2 )L( + ]c 

 
iii) Assume now that A fs(L1) B and B fsi(L2) C. According to the definitions of fs(L1) 
and fsi(L2), the following two equivalences hold: 
 

A fs(L1) B ⇔ a E(L1) b ∧ b’ G( c
1 )L( + ) a’, 

 B fsi(L2) C ⇔ b E(L2) c ∧ b’ G( c
2 )L( + ) c’.  

 
The transitivity rule R5 applied to a E(L1) b and b E(L2) c enables to deduce a E(L1 ⊕ 
L2) c (which will be denoted by H1). Then, the atomic relations which could hold 
between A and C are: 
   fs = H1 ∧ H3   (H3 stands for c’ > a’) 

  fe = H1 ∧ H’3  (H’3 stands for c’ = a’) 

  fsi = H1 ∧ H"3 (H"3 stands for c’ < a’) 

In the similar way as above, we can also show that the disjunction fs ∨ fe ∨ fsi reduces 
to H1. This means that A <fs..fsi>(L1 ⊕ L2) C. 
 
 iv) Assume now that  A fs(L1) B and B ff(L2) C. Now the definitions of fs(L1) and 
ff(L2) enable us to write: 
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A fs(L1) B ⇔ a E(L1) b ∧ b’ G( c
1 )L( + ) a’, 

B ff(L2) C ⇔ b G( c
2 )L( + ) c ∧ b’ E(L2) c’.  

 

The rules R7 and R2 enable to deduce a G( c
2 )L( +  ⊕ L1) c and c’ G( c

1 )L( +  ⊕ L2) a’. 

This means that A fd(L) C with L = [( c
2 )L( +  ⊕ L1) ∪ ( c

1 )L( +  ⊕ L2)]
c (since a G(K) b 

⇒ a G(K’) b if K ⊆ K’)) where union on fuzzy parameters is defined using max 
operation.       
 
v) Let us now consider the pieces of information expressed by A fo(L1) B and B foi(L2) 
C and let us check what fuzzy temporal information could be inferred. It is easy to see 
that the following relations hold between the endpoints of intervals: 
 

b G( c
1 )L( + ) a ∧ a’ G( c

1 )L( + ) b ∧ b’ G( c
1 )L( + ) a’, 

b G( c
2 )L( + ) c ∧ c’ G( c

2 )L( + ) b ∧ b’ G( c
2 )L( + ) c’. 

 

The rule R6 applied on a’ G( c
1 )L( + ) b and b G( c

2 )L( + ) c (resp. c’ G( c
2 )L( + ) b and b 

G( c
1 )L( + ) a) enables to infer a’ G( c

1 )L( +  ⊕ c
2 )L( + ) c (resp. c’ G( c

1 )L( +  ⊕ c
2 )L( + ) a). 

The former relation means that the temporal relation fb never holds between the time 
intervals A and C; while the latter relation signifies that the temporal relation fa never 
holds as well between A and C. Then, we conclude that the relation that could hold 
between A and C corresponds to the disjunction of the relations of Table 2, except 
relations fb and fa. This situation of "Partial Indetermination" is denoted by "P-IND" 
in the composition table.                                          ♦ 
  
The full set of transitivity axioms is given in Table 3 in the Appendix. The symbol "T-
IND" used in Table 3 stands for "Total Indetermination" which means that no 
information can be inferred. Namely, this entry of the table corresponds to the 
disjunction of all the thirteen fuzzy relations given in Table 2. It can be checked that 
Table 3 can be obtained by the repeated application of rules R1 to R12.  

 
Example (continued): Let A = [a, a’] = [0, 5.6], B = [b, b’] = [6, 9], and C = [c, c’] = 
[9.6, 12] are time intervals. We have established that the following relations hold:  
 
  A fuzz-meets(L) B, 
  B fuzz-before(K) C. 
 
Using the composition table (i.e. Table 3), it is easy to see that A fuzz-before(K) C with 
K = K⊕L = (0.1, +∝, 0.2, +∝).   
 

Note that the inferences that can be drawn from the composition table (i.e., Table 
3) lead to relations whose fuzzy parameters are of the following forms: 
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i) (L1 ⊕  L2) when the initial relations are parameterized by L1 and L2. Since c
1 )L( +  ⊇ 

c
21 )LL( +⊕  and c

2 )L( +  ⊇ c
21 )LL( +⊕  (resp. L1 ⊆ L1 ⊕ L2 and L2 ⊆ L1 ⊕ L2) then, the 

obtained fuzzy temporal relation, which is defined only on the basis of the fuzzy 
inequality G (resp. the approximate equality E), is reinforced (resp. weakened).   
 

ii) ( c
1 )L( +  ⊕ L2 )

c when the initial relations are parameterized by L1 and L2. Since 
c

1 )L( +  ⊆ c
1 )L( +  ⊕ L2 (resp. L1 ⊇ ( c

1 )L( +  ⊕ L2)
c ) then, the obtained fuzzy temporal 

relation, which is defined only on the basis of the fuzzy inequality G (resp. the 
approximate equality E), is weakened (resp. reinforced). 
 

It is worth noticing that the iteration of the transitivity axioms may lead to some 
degradation effects in the inferred fuzzy temporal relations. Indeed, the obtained 
symbolic relations might not be in full agreement with the intuitive semantics 
underlying the notion of the temporal relations that refer to. This is essentially due to 
the fact that when the fuzzy parameter L (resp. K) becomes too permissive (resp. close 
to 0), we move away from the intuitive semantics of approximate equality (resp. 
strong inequalities) expressed by E (resp. G).     

3.3  Toward Tolerance-Based Allen Relations 

Let us now consider a fuzzy set A representing a time interval, and an approximate 
equality relation E(L). A can be associated with a nested pair of fuzzy sets when using 
E(L) as a tolerance relation. Indeed, we can on the one hand build the fuzzy set of 
time instants close to A, defined by AL = A°E(L). Clearly, the following properties 

hold: 
  

A ⊆  AL  = A ⊕ L.  
 

Thus, A is dilated by L through the addition operation ⊕. On the other hand, using 
an extended Minkowski subtraction[1] [Dubois and Prade (1988)], we can define the 
fuzzy time interval AL = A )+( L as the solution to AL ⊕ L = A (since L = −L). AL 

represents A eroded by L. When AL exists, we have:  

AL ⊆ A,  AL )+( L = A.  

 
The first property means that AL is more precise than A.  

Then, using dilatation and erosion operations by a set L would provide another 
basis for defining tolerance-based Allen relations. For instance, A toler-meets(L) B 
would correspond to AL before BL and AL

 overlaps BL, and A toler-starts(L) B to AL 

during BL and AL overlaps BL. We could as well define A toler-before(L) B as AL 

                                                                 
[1] This operation denoted by )+( is such that A )+( L = [a, a’] )+( [−l, l] = [a + l, a’ − l] in 
ordinary case (while A ⊕ L = [a − l, a’ + l]). When A and L are fuzzy with A = (a, a’, α, α’) and 
L = (−δ, δ, ε, ε), we have A )+( L = (a + δ, a’ − δ, α − ε, α’ − ε) provided that α ≥ ε and α’ ≥ ε, 
while A ⊕ L = (a − δ, a’ + δ, α + ε, α’ + ε). 
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toler-meets BL. But as we can see this requires that classical Allen relations be 
extended to fuzzy intervals such as AL and AL . This could be done applying the 

possibilistic approach to the comparison of fuzzy intervals [Dubois and Prade (1983)].  

4  Uncertain Allen Relations 

An uncertain Allen relation can be defined from uncertain relations >, <, or =. For 
instance, a >α b  expressing that a > b  with certainty α, can be modeled by  
 

⎩
⎨
⎧

α−
>

=>α    otherwise,      1

        yx if            1
)y,x(  

 
since the degree of certainty (also called necessity) of an event is equal to 1 minus the 
degree of possibility of the contrary event in possibility theory. It is worth pointing out 
that a probabilistic model has also been proposed for dealing with uncertain relations 
between temporal points [Ryabov and Puuronen (2001)]. Starting with the three basic 
(non fuzzy) relations that can hold between two dates a and b: ’<’ (before), ’=’ (at the 
same time), and ’>’ (after), Ryabov and Puuronen define an uncertain relation between 
a and b as any possible disjunction of these relations (i.e., ’<’ or ’=’, ’=’ or ’>’, ’<’ or ’>’, 
and ’<’ or ’=’ or ’>’). The uncertainty is then represented by a vector (e<, e=, e>)a,b, where 

<
b,ae  (resp. =

b,ae , >
b,ae ) is the probability of a < b (resp. a = b, a > b). Then formulas, 

which preserve the probabilistic semantics, are given for propagating uncertainty 
when composing relations, or when fusing pieces of temporal information about the 
same dates. In our approach, a >α b means that the necessity N(a > b) is greater or 

equal to α, which corresponds to the normalized possibility distribution: ’>’ with 
possibility 1 and ’<’ and ’=’ both with possibility 1 − α. However, if we have both N(a 
> b) ≥ α and N(a ≥ b) ≥ β ≥ α then the possibility of a < b is now 1 − β ≤ 1 − α, which 
is more general.     

Recall that in possibility theory, uncertainty about a (fuzzy) event A is evaluated 
by means of two dual measures of possibility and necessity, as follows:   
 

Π(A, π) = supx min(µA(x), π(x)),                              (3)  
 

N(A, π) = 1 − Π( A , π) 
                         = infx max(µA(x), 1-π(x)),                    (4) 
 
where π is the possibility distribution representing the available information [Dubois 
and Prade (1988)]. Given some fuzzy information about dates, about lengths of time 
intervals, or about relations between dates, or between time intervals, other relations 
or uncertainty statements about relations can be deduced.  

Given fuzzy pieces of information about the possible location of dates a and b, 
represented by πa and πb respectively, we can evaluate the certainty that a date is 
before/after another one, e. g., the certainty that a > b is expressed by [see Dubois and 
Prade (1988)]: 
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N(a > b)  = N(>, min(πa , πb)) = 1 − sups ≤ t min(πa(s), πb(t)).            (5)  
 

More generally, the index defined by (5) can be generalized by introducing a 
fuzzified version of the ordering relation > in the sense of the fuzzy relation G 
(defined by (2)) to estimate the necessity that a is much larger than b ; namely, 
 

N(a G(K) b) = N(G(K), min(πa, πb)) = infs, t max(µG(s, t), 1−πa(s), 1−πb(t)).    (6) 
 

We can also estimate to what extent it is certain that two dates are (at least) 
approximately equal in the sense of the fuzzy relation E (defined by (1)) ; namely, 

 
 N(a E(L) b) = N(E(L), min(πa, πb)) = infs, t max(µL(s, t), 1−πa(s), 1−πb(t)).    (7) 

 

Example: Let us consider two dates a~  and b
~

 imprecisely known and represented by 
the trapezoidal distributions a~π  = (5, 5, 0, 0.4) and 

b
~π  = (5.45, 5.45, 0.35, 0) 

respectively (as pictured in Figure 6).  
 

 
 
 
 
 
 
 
 
                                                                                                                        Time unit 
 

 
 
 
 

Figure 6 
 
Let L = (−0.4, 0.4, 0.1, 0.1) (see Figure 3) be the fuzzy parameter underlying the 

semantics of an approximate equality E. The certainty that a~ and b
~

are (at least) 

approximately equal in the sense of E is expressed  by N( a~  E(L) b
~

), see (7). It is 

easy to check that N( a~  E(L) b
~

) = 0.5.  

4.1  Certainty Degrees of Ordinary and Fuzzy Allen Relations 

Possibility and necessity measures can also be used to discuss the relative positions of 
two time intervals A = [a, a’] and B = [b, b’] and to estimate to what extent it is 
possible, or certain, that some Allen relations (or their fuzzified versions) hold 
between time intervals, when knowledge is pervaded with uncertainty. It is assumed 
that all the considered intervals [a, a’] are such that N(a’ > a) = 1. For instance, the 
degree of necessity (or certainty) that A is before B is evaluated by  

1 

5.45 

5.4 5 

5.10 

b
~π

b
~π
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N(A before B) = N(b > a’).  
 
Similarly, the degree of necessity (or certainty) that A overlaps B is estimated by 
  

N(A overlaps B) = min(N(b > a), N(a’ > b), N(b’ > a’)),  
 

while the degree of necessity that A occurs during B is given by  
 

N(A during B) = min(N(a > b), N(b’ > a’)).  
 

We can as well estimate to what extent it is certain that the assertion A r B, where 
r is a disjunction of atomic Allen relations, holds between A and B. For example, N(A 
r B) with r = overlaps ∨ during, is estimated by min(N(a’ > b), N(b’ > a’)).  

 
For the other Allen relations, i.e. those defined on the basis of the strict equality 

between the intervals boundaries, we shall use the index N(. =E . )[2], where =E is an 
approximate equality in the sense of E, defined according to (7). Then, we obtain the 
following results 

 
N(A equalE B) = min (N(a =E b), N(a’ =E b’)), 

N(A meetsE B) = N(a’ =E b), 

N(A startsE B) = min (N(a =E b), N(b’ > a’)), 

N(A finishesE B) = min (N(a’ =E b’), N(a > b)).  
 

Now using the indices N(G(K), .) and N(E(L), .) defined by (6) and (7) 
respectively, we can evaluate to what extent it is certain that the fuzzy Allen relations 
hold between two time intervals, as showed in Table 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                 
[2] Since our knowledge about the values of a, a’, b and b’ is fuzzy, and we cannot check the 
strict equality of two quantities with certainty from their values if these values are imperfectly 
known. 
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Fuzzy Allen Relation 

r~  
Certainty degree 

N(A r~ B) 
A fb(L) B  N(b G( cL+ ) a’) 

A fm(L) B N(a’ E(L) b) 

A fo(L) B min(N(b G( cL+ ) a), N(a’ G( cL+ ) b),  

N(b’ G( cL+ ) a’)) 

A fd(L) B min(N(a G( cL+ ) b), N(b’ G( cL+ ) a’)) 

A fs(L) B min(N(a E(L) b), N(b’ G( cL+ ) a’)) 

A ff(L) B min(N(a’ E(L) b’), N(a G( cL+ ) b)) 

A fe(L) B min(N(a E(L) b), N(a’ E(L) b’)) 

 
Table 4: Certainty degrees of fuzzy Allen relations. 

4.2  Patterns of Inference with Fuzzy Allen Relations 

Let A = [a, a’], B = [b, b’] and C = [c, c’] be three time intervals. Using the transitivity 

property of N(>, .) and the above definitions, several patterns of reasoning can be 
easily established. For instance, we have 
 
 N(A before B) ≥ α                                        N(A before B) ≥ α                       
 N(C during A) ≥ β                        (8)           N(C finishes B) ≥ β                    (9)  ______________________                          ______________________ 

 N(C before B) ≥ min(α, β)                           N(A before C) ≥ min(α, β) 
 

Let us prove (8). It is easy to see that the following assertions hold: N(b > a’) ≥ α 
and min (N(c > a), N(a’ > c’)) ≥ β. Now, from N(b > a’) ≥ α and N(a’ > c’) ≥ β we 

deduce N(b > c’) ≥ min(α, β) by the transitivity property of N(>, .). This means that 
N(C before B) ≥ min(α, β). In the similar way, we can prove (9) observing that N(b > 
a’) ≥ α and min (N(c > b), N(c’ = b’)) ≥ β.  

The above patterns can be viewed as a particular case of the possibilistic 
resolution rule [Dubois and Prade (1991)]. Note that similar results hold, changing 
during into overlaps (resp. starts) in the pattern (8) and finishes in during (resp. 
overlapped by) in (9).   

In order to establish patterns of inference with fuzzy Allen relations, let us first 
introduce the following useful pattern, which involves an ordering relation and an 
approximate equality relation, already discussed in [Dubois and Prade (1989)]:   
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 N(a R b) ≥ α 
 N(b R’) c) ≥ β                                                             (10)  _____________________________ 

 N(a R°R' c) ≥ min(α, β). 

 
With R, R' ∈ {G(K), E(L)}. For instance, if R = G(K) and R' = E(L), we deduce G(K) 

° E(L) = G(K ⊕ L) using a variant of rule R7 (i.e., rule a G(K) b and b E(L) c ⇒ a 

G(K⊕L) c). Then, N(a G(K ⊕ L) c) ≥ min(α, β).  
Using rules R1 to R7, we could easily establish several inference patterns of the 

following form (with L2 = [L1 ⊕ c
2 )L( + ]c ): 

 
N(A fm(L1) B) ≥ α                                              N(A fb(L1) B) ≥ α  
N(C fd(L2) A) ≥ β                       (11)                 N(C fd(L2) A) ≥ β                          (12) __________________________                        __________________________            

N(C fb(L2) B) ≥ min(α, β)                               N(C fb(L1 ⊕ L2) B) ≥ min(α, β) 
 
N(A fm(L1) B) ≥ α                                               N(B fd(L1) A) ≥ α  
N(C fs(L2) B) ≥ β                         (13)                N(C fd(L2 ) B) ≥ β                         (14)  __________________________                        __________________________            

N(C fm(L1 ⊕ L2) A) ≥ min(α, β)                         N(C fd(L1 ⊕ L2) A) ≥ min(α, β) 
 
Proof. Let us just consider the proof of (11) and (12). It easy to see that the two initial 

assertions of (11) write N(b E(L1) a’) ≥ α and min (N(c G( c
2 )L( + ) a), N(a’ G( c

2 )L( + ) 

c’)) ≥ β  respectively. Now applying pattern (10) on N(b E(L1) a’) ≥ α and N(a’ 

G( c
2 )L( + ) c’) ≥ β, we deduce N(b E(L1) ° G( c

2 )L( + ) c’) ≥ min(α, β) which implies that 

N(b G( c
2 )L( +  ⊕ L1) c’) ≥ min(α, β), according to rule R7. This means that N(C fb(L2) 

B) ≥ min(α, β).  
 
In the similar way we can prove pattern (12) observing that its initial conditions also 

write N(b G( c
1 )L( + ) a’) ≥ α and min (N(c G( c

2 )L( + ) a), N(a’ G( c
2 )L( + ) c’)) ≥ 

β respectively. By (10), we obtain N(b G( c
1 )L( + ) ° G( c

2 )L( + ) c’) ≥ min(α, β). Then, 

we conclude that N(b G( c
1 )L( +  ⊕ c

2 )L( + ) c’) ≥ min(α, β), by rule R6. This means that 

N(C fb(L1 ⊕ L2) B) ≥ min(α, β).                                                   ♦ 
 

Similar results hold, changing fuzz-during to fuzz-overlaps in pattern (11) and 
(12). It can be checked that a similar result holds, changing fuzz-starts in fuzz-equals 
in pattern (13). More generally, patterns (11-14) can be extended similarly to the 
whole composition table of the Appendix since each relation between intervals is a 
conjunction of conditions on dates.  
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5  Conclusion 

In this paper, we have suggested how different types of problems raised by the 
fuzziness of the categories used for expressing information can be handled in temporal 
reasoning. Especially, we have provided a fuzzy set-based extension of Allen’s 
approach to interval-based representation of temporal relations. Reasoning on the 
basis of fuzzy temporal relations can be achieved using the inference machinery based 
on the fuzzy absolute comparators E(L) and G(K), in a convenient and expressive 
way. Moreover, we have shown that indices for expressing the uncertainty pervading 
Allen relations between two time intervals (or their fuzzified versions), can be 
estimated in terms of necessity measures, and used as a basis in deductive reasoning 
patterns. The present work can be developed in number of ways, especially: i) by 
adapting algorithms for propagating classical temporal relations to fuzzy relations; ii) 
by investigating the tolerance-based approach to fuzzy Allen relations. Besides, 
interval orderings have been introduced for a long time in operation research [Roubens 
and Vincke (1985)], and their extension to fuzzy intervals has been studied [Roubens 
and Vincke (1988)], [Dubois and Prade (1991)]. The relationship between the 
approach presented in this paper and the above works would worth investigating. 

Lastly, another promising line for further research is the extension of the ideas 
presented here to fuzzy spatial reasoning, following preliminary work by [Cobb et al. 
(2000)], [Guesgen and Albrecht (2000)], or [Bloch (2002)]. 
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Appendix 
 
 

B r2 C 

A r1 B 

 
fb(L2) 

 
fa(L2) 

 
fm(L2) 

 
fmi(L2) 

 
fo(L2) 

 
foi(L2) 

 
fd(L2) 

 
fdi(L2) 

 
fs(L2) 

 
fsi(L2) 

 
ff(L2) 

 
ffi(L2) 

 
fe(L2) 

 
fb(L1) 

fb 
(L1⊕L2) 

 
T-IND 

 
fb(L1) 

 
<fb..fd> 

(L1) 

 
fb 

(L1⊕L2) 

 
<fb..fd> 
(L1⊕L2) 

 
<fb..fd> 
(L1⊕L2) 

 
fb 

(L1⊕L2) 

 
fb(L1) 

 
fb(L1) 

 
<fb..fd> 
(L1⊕L2) 

 
fb 

(L1⊕L2) 

 
fb(L1) 

 
fa(L1) 

 
T-IND 

 
fa 

(L1⊕L2) 

 
<fa..fd> 

(L1) 

 
fa(L1) 

 
<fa..fd> 
(L1⊕L2) 

 
fa 

(L1⊕L2) 

 
<fa..fd> 
(L1⊕L2) 

 
fa 

(L1⊕L2) 

 
<fa..fd> 

(L1) 

 
fa 

(L1⊕L2) 

 
fa(L1) 

 
fa(L1) 

 
fa(L1) 

 
fm(L1) 

 
fb(L2) 

 
<fa..fdi> 

(L2) 

 
fb 

(L1⊕L2) 

 
<ff..ffi> 
(L1⊕ L2) 

 
fb(L2) 

 
<fo..fd> 

(L2) 

 
<fo..fd> 

(L2) 

 
fb(L2) 

 
fm 

(L1⊕L2) 

 
fm 

(L1⊕L2) 

 
<fo..fd> 

(L2) 

 
fb(L2) 

 
fm 

(L1⊕L2) 

 
fmi(L1) 

 
<fb..fdi> 

(L2) 

 
fa(L2) 

 
<fs..fsi> 
(L1⊕ L2) 

 
fa 

(L1⊕L2) 

 
<foi..fd> 

(L2) 

 
fa(L2) 

 
<foi..fd> 

(L2) 

 
fa(L2) 

 
<foi..fd> 

(L2) 

 
fa(L2) 

 
fmi 

(L1⊕L2) 

 
fmi 

(L1⊕L2) 

 
fmi 

(L1⊕L2) 

 
fo(L1) 

 

 
fb 

(L1⊕L2) 

 
<fa..fdi> 
(L1⊕L2) 

 
fb(L1) 

 
<foi..fdi> 

(L1) 

 
<fb..fo> 
(L1⊕L2) 

 
P-IND 

 
<fo..fd> 
(L1⊕L2) 

 
<fb..fdi> 
(L1⊕L2) 

 
fo 

(L2⊕L1) 

 
<foi..fdi> 

(L1) 

 
<fo..fd> 

(L1) 

 
<fb..fo> 
(L1⊕L2) 

 
fo(L1) 

 
foi(L1) 

 
<fb..fdi> 
(L1⊕L2) 

 
fa 

(L1⊕L2) 

 
<fo..fdi> 

(L1) 

 
fa(L1) 

 
P-IND 

 
<fa..foi> 
(L1⊕L2) 

 
<foi..fd> 
(L1⊕L2) 

 
<fa..fdi> 
(L1⊕L2) 

 
<foi..fd> 

(L1) 

 
<fa..foi> 

(L1) 

 
foi(L1) 

 
<foi..fd> 

(L1) 

 
foi(L1) 

 
fd(L1) 

 
fb 

(L1⊕L2) 

 
fa 

(L1⊕L2) 

 
fb(L1) 

 
fa(L1) 

 
<fb..fd> 
(L1⊕L2) 

 
<fa..fd> 
(L1⊕L2) 

 
fd 

(L1⊕L2) 

 
T-IND 

 
fd(L1) 

 
<fa..fd> 

(L1) 

 
fd(L1) 

 
<fb..fd> 

(L1) 

 
fd(L1) 

 
fdi(L1) 

 
<fb..fdi> 
(L1⊕L2) 

 
<fa..fdi> 
(L1⊕L2) 

 
<fo..fdi> 

(L1) 

 
<foi..fdi> 

(L1) 

 
<fo..fdi> 
(L1⊕L2) 

 
<foi..fdi> 
(L1⊕L2) 

 
P-IND 

 
fdi 

(L1⊕L2) 

 
<fo..fdi> 

(L1) 

 
fdi(L1) 

 
<foi..fdi> 

(L1) 

 
fdi(L1) 

 
fdi(L1) 

 
fs(L1) 

 

 
fb 

(L1⊕L2) 

 
fa(L2) 

 
fb(L1) 

 
fmi 

(L1⊕L2) 

 
<fb..fo> 

(L2) 

 
<foi..fd> 

(L2) 

 
fd(L2) 

 
<fb..fdi> 

(L2) 

 
fs 

(L1⊕L2) 

 
<fs..fsi> 
(L1⊕L2) 

 
fd(L) 

 

 
<fb..fo> 

(L) 

 
fs(L1) 

 
fsi(L1) 

 
<fb..fdi> 

(L2) 

 
fa(L2) 

 
<fo..fdi> 

(L1) 

 
fmi 

(L1⊕L2) 

 
<fo..fdi> 

(L2) 

 
foi(L2) 

 
<foi..fd> 

(L2) 

 
fdi(L2) 

 
<fs..fsi> 
(L1⊕L2) 

 
fsi 

(L1⊕L2) 

 
foi(L) 

 

 
fdi(L) 

 

 
ffi(L1) 

 
ff(L1) 

 
fb(L2) 

 
fa 

(L1⊕L2) 

 
fm 

(L1⊕L2) 

 
fa(L1) 

 
<fo..fd> 

(L2) 

 
<fa..foi> 

(L2) 

 
fd(L2) 

 
<fa..fdi> 

(L2) 

 
fd(L) 

 

 
<fa..foi> 

(L) 

 
ff 

(L1⊕L2) 

 
<ff..ffi> 
(L1⊕L2) 

 
ff(L1) 

 
ffi(L1) 

 
fb(L2) 

 
<fa..fdi> 

(L2) 

 
fm 

(L1⊕L2) 

 
<foi..fdi> 

(L1) 

 
fo(L2) 

 
<foi..fdi> 

(L2) 

 
<fo..fd> 

(L2) 

 
fdi(L2) 

 
fo(L) 

 

 
fdi(L) 

 

 
<ff..ffi> 
(L1⊕L2) 

 
ffi 

(L1⊕L2) 

 
ffi(L1) 

 
fe(L1) 

 
fb(L2) 

 
fa(L2) 

 
fm 

(L1⊕L2) 

 
fmi 

(L1⊕L2) 

 
fo(L2) 

 
foi(L2) 

 
fd(L2) 

 
fdi(L2) 

 
fs(L2) 

 
fsi(L2) 

 
ff(L2) 

 
ffi(L2) 

 
fe 

(L1⊕L2) 

 
Table 3: Composition table for the thirteen fuzzy Allen relations. 

 

L = [(L1 ⊕ c
2 )L( + ) ∪ ( c

1 )L( +  ⊕ L2)]
c   

L1 = [ c
1 )L( +  ⊕ L2]

c ,   L2 = [L1 ⊕ c
2 )L( + ]c  
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