
�����������	�����
��
�������������
���
�����
�������������������������������	�������

�����������������
(Universidade Federal de Campina Grande, Brazil

Universidade Federal de Pernambuco, Brazil
franklin@dsc.ufcg.edu.br, fsr@cin.ufpe.br)

 ��!���������

(Universidade Federal de Pernambuco, Brazil
jr@cin.ufpe.br)

���������"�����

(Universidade Federal de Pernambuco, Brazil
roberto@cin.ufpe.br)

Abstract: In this paper, we present XOCL, an XML-based language to represent OCL (Object
Constraint Language) constraints in UML models. XOCL was designed in two steps from the
UML meta-model and OCL EBNF grammar published by OMG: (1) construction of a simple
OCL meta-model and (2) derivation of an XML Schema for this meta-model. XOCL
applications include full interoperability among UML modelling tools as well as finely grained
structured input for automatic behavioral code generation and model checking.

Keywords: OCL, UML, XML, Meta-Modelling, XMI, XMLShema.
Categories: D.1.5, D.1.6, D.2.12, D.3.3

#� $������������

UML (Unified Modeling Language) [Booch et al. 1998] has emerged as the main
standard language for pre-code software engineering artifacts for several reasons:

• It is able to model all aspects of a system: structural, behavioral, distributed,
etc.

• It provides a simple and concise graphical notation;
• It provides mechanisms that allow its extension for several problem

domains;
• It is supported by a wide variety of CASE tools.
With its use progressively outgrowing its original high-level object-oriented

modeling purpose, new requirements emerged for UML. One of them is the ability to
specify integrity constraints and application domain rules within models in a detailed,
structured, unambiguous and semi-formal way. To address this requirement, OMG
incorporated from version 1.4 of the UML standard the semi-formal textual model
annotation language OCL (Object Constraint Language) [Warmer and Kleppe 1999].

Specifying constraints and rules as OCL expressions instead of natural language
notes brings numerous benefits:

Journal of Universal Computer Science, vol. 9, no. 8 (2003), 956-969
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03 J.UCS

1. It avoids ambiguity and therefore misunderstandings between developers;
2. It allows for much more thorough automatic correctness and consistency

model checking [Brucker and Wolff 2001];
3. It greatly facilitates automated behavioral code-generation from models

[Mellor and Balcer 2002];
4. It widens the applicability of UML beyond software engineering to new

fields in which detailed, rigorous constraint or rule specification is crucial.
These fields include data and metadata integration in data warehouses [Poole
et al. 2001], disparate federated information systems [Purvis et al. 2000],
semantic web ontologies [Cranefield and Purvis 1999], knowledge
engineering [Schreiber 1999] [Devedzic 2001] and multi-agents systems
engineering [Bergenti and Poggi 2000].

Several UML modeling tools such as Poseidon [Poseidon 2003] and Rose [Rose
2003] already support OCL constraints. However, each of these tools relies on an
internal UML model storage format that: (1) is proprietary, and (2) mixes model
content with its graphical layout. This virtually prevents reuse and integration of
models developed with different tools. However, such reuse is a key aspect of the
most modern trends in software engineering, information systems, databases and
artificial intelligence.

To address this problem, OMG put forward XMI [OMG 2003], an XML based
standard for representing UML models in textual format. XMI defines one XML
element or attribute for each element of the UML graphical notation. Therefore, XMI
encodes UML model content and structure separately from their visual presentation,
much like XML does with web pages. Being based on XML also makes the XMI
codification of an UML model both legible by humans and an appropriate input to
model exchange, model checking and code generation software.

Although XMI has elements and attributes for all UML diagrams, its current
version does not cover OCL constraints. This gap has prevented UML, OCL and XMI
to reach their full potential as an integrated standard set for a variety of emergent
applications. These applications include reuse of pre-code development artifacts in
modern software engineering processes based on component markets, product lines,
design patterns, frameworks and software architectures [Atkinson et al. 2002],
automated model checking and fully automated code generation.

In this paper we propose XOCL, an XML language for detailed, fully structured
encoding of OCL constraints and rules that completes the OMG and W3C standard
puzzle to support such advanced applications. An XMI document with embedded
XOCL expressions captures the complete structure and semantics of a UML model
detailed with OCL constraints in a format that is adequate for both interchange and
sophisticated processing.

Consider for example an automated behavioral code generator. An OCL
constraint might serve as the basis for generating exception-raising code to call upon
violation of the constraint. With current UML editors, the OCL constraint will appear
in the XMI document exported by the editor and input to the code generator as a long,
unstructured string inside a single ��������	��
 tag. Before tackling its generation
task, the code generator will first need to parse this string into semantically relevant
syntactic constituents and hence incorporate an OCL syntax grammar. But this defeats
the very purpose of XML mediation among components, namely to avoid

957Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

encapsulating knowledge about upstream component languages into downstream ones
to achieve a more modular and extensible task distribution.

%� &�������
�����"���
������

%'#� �����

OCL permits the specification of three kinds of constraints: invariants, which are
static, and pre and post-conditions, which are dynamic. An invariant is associated to a
class, an interface or a type. It specifies a condition that must be true for all instances
of the associated class, interface or type, at any time. In contrast, a pre or post-
condition is associated to an UML operation and specifies a condition that needs to be
verified only immediately before or immediately after its execution (respectively).

Figure 1 shows an excerpt from the class diagram of a simple company UML
model. The diagram includes two OCL constraints. The first one, �������������	��
is an invariant that requires all instances of the ������� class that constitutes its
context to have its ������ association filled with an instance of the ����� class
with the �� integer attribute value within the [18,65] interval and the 	���������
boolean attribute set to ����. The second one, ��������������	���is a post-condition
that requires the method 	���� of the ����� class that constitutes its context to
always return a value greater than ����.

Company
name : String
numberOfEmployees : Integer

stockPrice()

Person
isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
sex : Sex

income()

0..*

+managedCompanies

0..*+manager

Sex

male
female

<<enumeration>>

Context Company inv managerConstraint :
self.manager.age > 18 and self.manager.age <
65 and self.manager.isUnemployed = false

Context Person::income(d : Date) : Integer
 post resultOkConstraint: result > 5000

Figure 1: Example of an UML model with OCL constraints

These two example constraints illustrate the design rationale underlying OCL: to
achieve the most practical balance between formal precision and intuitiveness for the
widest possible user base.

958 Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

%'%� �	�������	���

XML (eXtensible Markup Language) [W3C 2003] was initially created for publishing
documents on the Web. Its main goals were: (1) divide semantic structure of
document content (in XML) from its visual rendering by the browser (in HTML); and
(2) codify the semantic structure in a format adequate for being used as both
documentation (human legible) and data (input prepared for automated processing).
These two features combined with the fact that XML is an open and general purpose
standard, have progressively turned XML the choice for interoperability among
databases, programming languages and intelligent agents in heterogeneous distributed
applications. In these multiple roles, XML has blurred the distinctions between
documents, concepts, data, information and knowledge and between areas such as
information systems, distributed system, databases and artificial intelligence.

This new role for XML as a universal platform for interoperability made
necessary to address two new requirements: (1) schema specification (or metadata)
for XML data and (2) data and metadata distribution among multiple web sites. The
W3C put forward XML Schema (XMLS) to address the first of these requirements
and XML Name Spaces (XMLNS) to address the second one.

The ������
 element of an XML document generally indicates the URL where
to find the schema that specifies the structure pattern to which the document must
conform. This use of namespaces and schemas allows establishing, in a non-
centralized way, a common understanding about the validity and the meaning of the
XML data interchanged between components of an open system.

XMLS allows defining:
• The elements that can appear in a XML document;
• The attributes that can appear in each of these elements;
• How these elements can be nested;
• How these elements must be ordered at a specific nesting level;
• The data types of the elements and attributes, as well as its default or fixed

values.
Before the XMLS definition, an XML document schema could be specified only

using a DTD (Document Type Definition). Although handy for the initial, restricted,
document representation purpose of XML, the DTD formalism revealed too limited
for adequately specifying database schemas and the intentional part of knowledge
bases. XMLS improves on DTD for such purposes thanks to the following features:

• Support for a richer set of built-in data-types than DTDs, including byte,
date, integer, and SQL and Java primitive data-types;

• Use of an XML-based syntax, thus preventing the user to have to learn yet
another syntax (that of DTD) and allowing reuse of all tools and languages
available to create and manipulate XML documents to work with XMLS
documents;

• Extensibility through XMLS constructs that allows reusing of parts of
schemas in other schemas;

• Object-oriented user-defined data types with inheritance of element,
attribute, and data-type definitions;

• Integration with XML namespaces.

959Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

%'(� 	�����)�����*������)��	������+	��

Three trends recently emerged in computational language design. The first one is the
use of meta-circularity to specify language parts or extensions using the language
itself. The relation between XML and XMLS exemplifies this trend: XML provides a
syntactic standard for XMLS, whereas XMLS provides a structural standard for any
documents, data or knowledge about a specific application domain codified in XML
syntax. The second trend is the use of UML class diagrams together with OCL
constraints to specify object-oriented models for representing basic types and
language constructors. Such diagram is frequently called a language meta-model
[Carlson 2001]. The third trend is the use of XMI for representing such meta-models
in textual format with XML syntax. This approach permits using XLST [Kay 2000] to
declaratively implement software that process artifacts written in the projected
language (in our case, XOCL). Declarative programming within the XML paradigm
allows faster prototyping and maintenance for a wide range of services such as
automated code-generation, language translation, compilation and compression
[OMG 2003].

Cooperation between such services in an open, component-based, heterogeneous
system requires the definition of a common XMI meta-model schema. For a language
meta-model is essentially a conceptual ontology of what the language can express, the
use of a DTD to specify a meta-model schema is as problematic as its use to specify
an artificial intelligence application knowledge base. XMI meta-model schemas are
thus preferentially defined in XMLS.

(� �����,���
��	��������
��

The three trends mentioned in the previous section can be combined in a two step
language design methodology: (1) define an object-oriented meta-model of the
language using a visual CASE tool that supports UML and OCL; and (2) codify in
XMLS the schema for the XMI textual format of this meta-model. This is the
approach we followed to design XOCL. We first defined a meta-model of OCL using
UML and OCL itself. From this meta-model, we then specified an XML Schema for
XOCL expressions to be embedded in XMI encoding of domain application UML
models.

('#� -������	���*	�����

Our OCL meta-model consists UML class diagrams with OCL constraints that
represent the OCL constructs and their associated UML constructs. Although being
much simpler than the current draft meta-model under construction by OMG [OMG
2003], our meta-model covers all OCL constructs. We developed it from three
sources: (1) the OMG UML 1.4 meta-model [OMG 2003] to guarantee its integration
with the latest UML standard; (2) the OCL EBNF (Extended Bacchus-Naur Form)
grammar [Reisner 1984], and (3) the OMG natural language OCL specification.

Figure 2 shows a small excerpt of our proposed OCL meta-model. Our OCL
construct classes are shown in gray whereas the reused UML OMG meta-model
classes are shown in white. An OCL constraint (�������	���class)�consists of one or
more expressions (������	�� class) and is associated to a context (������ class).

960 Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

This context either is structural (���������������� class) for invariant constraints or
OCL variable definitions (respectively �� ��	��� and !�	�	�	�� subclasses of the
�����������������	�� class), or behavioral ("#� 	���������� class) for pre and post-
condition constraints (respectively ������	�	�� and ��������	�	�� subclasses of the
"#� 	�����������	�� class)1. In addition, a structural constraint applies to either a
$���� or an %����	��	�����, two classes reused from the UML meta-model, while a
behavioral constraint only applies to a "#� 	����$���� another UML meta-model
class that subsumes UML methods and operations.

���������	
�������

InvariantDefinition

PreCondition

���������	������

isQuery : Boolean

1..*

*
+constrainedBehavioralFeature

1..*+constraint

*

PostCondition
result : ResultType

������

ownerScope : ScopeKind
visibility : VisibilityKind

����	�	����

name : Name

������

ownerScope : ScopeKind
visibility : VisibilityKind

AssociationEnd
isNavigable : Boolean
ordering : OrderingKind
aggregation : AggregationKind
targetScope : ScopeKind
multiplicity : Multiplicity
changeability : ChangeableKind
visibility : VisibilityKind

�������	
�������
1

*
+constrainedFeature

1 +constraint
*

1

*

+constrainedAssociantionEnd

1

+constraint *

BehavioralContext
operationName : Operation

StructuralContext

�������

name : Name
body : Expression

Expression

1..** 1..**

Operator

1..*

0..*

1..*

0..*

�����

Package
name : Name

Context
name : UMLModel

1 *1

+expression

**1 *

+package

1

Figure 2 : Part of the OCL meta-model

('%� ������������

With this schema, applications can interchange XOCL messages with the guarantee
that: (1) the receptor will have the same understanding about the data sent; (2) these
data will not present any syntactical error; and (3) any piece of OCL code included at
the XML document will not be incomplete.

Figure 3 shows an excerpt from the XOCL schema written in XMLS. This
schema specifies that an XOCL constraint be identified through an <OCLConstraint>
root element (line 1). According to the meta-model showed in section 3.1, a constraint
is classified as StructuralConstraint or as BehavioralConstraint. A
StructuralConstraint can be further classified as a Definition or an Invariant, whereas
a BehavioralConstraint can be classified as a PreCondition or as a PostCondition. An
<Invariant> element, specified between the lines 13 and 24 in Figure 3, has two
mandatory child elements: <Context> (line 17) and <Body> (line 19) in order to

[1] This cross association between constraint subtypes and their respective associated

context subtype is actually represented in the complete OCL meta-model as an OCL constraint
that we omitted from Figure 2 to avoid cluttering it.

961Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

validate only XOCL constraints with a specified context and a specified OCL code
body.

Figure 3: XOCL elements definition in XMLS

Each OCL construct of our complete OCL meta-model has a corresponding XML
construct, either an element or an attribute, in XOCL. In addition to define such
constructs, the XOCL XMLS also specifies valid nesting among these constructs.
There are many different possible ways to encode such constructs and nesting
constraints in XMLS. The most straightforward codifications turned out to be very
verbose and thus hard to understand by human users. There are several XMLS design
issues involved making XOCL a concise and clear language. They are discussed in
the next section.

1 <xs:element name="OCLConstraint" type="xocl:ConstraintType"/>
2 <xs:complexType name="ConstraintType" abstract="true"/>
3 <xs:complexType name="StructuralConstraintType" abstract="true">
4 <xs:complexContent>
5 <xs:extension base="xocl:ConstraintType"/>
6 </xs:complexContent>
7 </xs:complexType>
8 <xs:complexType name="BehavioralConstraintType" abstract="true">
9 <xs:complexContent>
10 <xs:extension base="xocl:ConstraintType"/>
11 </xs:complexContent>
12 </xs:complexType>
13 <xs:complexType name="InvariantConstraintType">
14 <xs:complexContent>
15 <xs:extension base="xocl:StructuralConstraintType">
16 <xs:sequence>
17 <xs:element name="Context"
18 type="xocl:StructuralContextType"/>
19 <xs:element name="Body" type="xocl:ExpressionType"/>
20 </xs:sequence>
21 <xs:attribute name="name" type="xs:string"/>
22 </xs:extension>
23 </xs:complexContent>
24 </xs:complexType>
25 <xs:complexType name="PreConditionConstraintType">
26 <xs:complexContent>
27 <xs:extension base="xocl:BehavioralConstraintType">
28 <xs:sequence>
29 <xs:element name="Context"
30 type="xocl:BehavioralContextType"/>
31 <xs:element name="Body"
32 type="xocl:ExpressionType"/>
33 </xs:sequence>
34 <xs:attribute name="name" type="xs:string"/>
35 </xs:extension>
36 </xs:complexContent>
37 </xs:complexType>

962 Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

.� $���������	�����
�������*���������	����������	���������

The design of XOCL raised many issues concerning the relative conciseness,
genericity and extensibility of alternative codifications and the resulting compromise
between human legibility and machine processing simplicity. For lack of space, we
focus our discussion here on only two key issues: (1) usage of inheritance and (2)
usage of XMLS grouping.

.'#� +��
����$�����������

In XMLS, inheritance is provided by the �����	��
 constructor, which allows a
type to extend another already declared. This is illustrated in Figure 3:
<��&�������	��
 is declared as a �������	��'�� (line 1). This type is complex, in
the sense that it may have at least one child element or attribute, and abstract, in the
sense that it cannot be instantiated as an XML element. Two others abstract types that
extend �������	��'�� are �����������������	��'��� (line 3) and
"#� 	�����������	��'�� (line 8). While �� ��	����������	��'�� (line 13) extends
�����������������	��'��, it is not abstract and can type any ���&�������	��

element. ������	�	���������	��'��� (line 25) similarly extends
"#� 	�����������	��'��. Given this type hierarchy, declaring in a XML document
that an OCL constraint is an invariant, only involves adding the single element:
���&�������	��� ��	(���)*�� ��	����������	��'��*
� �. Using inheritance, one of
the features that make XMLS more expressive than DTD, allows an XOCL
specification to be concise without leaving out details. This carries over to the code of
processing applications taking as input XMI documents with embedded XOCL. For
example, an XSLT application can have different rules for processing invariants and
for processing pre-conditions. Such differentiated processing would not be
straightforward were all constraints identified only through the ��������	��

element.

As mentioned in section 3.1, while the context of an invariant is only an UML
classifier (e.g., a class), the context of a pre or post-condition consists of a pair <UML
classifier, UML operation> (e.g., a class and one of its methods). In our OCL meta-
model, this is accounted for by a constraint context type hierarchy that reflects the
constraint type hierarchy. How XMLS type inheritance allowed us to encode this
directly in XOCL is shown in Figure 4. The StructuralContextType has just two child
elements: (1) <Package> (line 6) that identifies the package where the UML artefact
is; and (2) <UMLClassifier> (line 8) that identifies the UML artifact whose constraint
is applied. On the other hand, the BehavioralContextType has three additional child
elements: (1) <OperationName> (line 22) that identifies the method name where the
pre or post-condition is applied; (2) <FormalParameterList> (line 23) that contains a
list of all parameters of the method identified by <OperationName> tag; and (3)
<ReturnType> (line 25) that declares the return type of the method.

[2] The xsi:type attribute is a XML keyword for typing the current element, in the case,

<OCLConstraint>.

963Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

Figure 4: Type inheritance in XOCL schema

.'%� +��
����/�������0������

In our XOCL schema, all operators are defined through the <xs:group> XMLS
constructor. This allows defining element groups to be reused in various complex type
definitions, so as to avoid repetitions of the same element definitions within several
other different complex type definitions. An example of the combined usage of
element grouping and type inheritance in XOCL is given in Figure 5. An expression
type hierarchy first distinguishes between atomic and compound expressions. For
example, ‘A > B’ is a compound expression of subtype comparative. Its components
are the comparative operator ‘>’ and its operand A and B, both atomic expressions.
Lines 8-23 in Figure 5 define the group of comparative operators
(ComparativeOperators group). This group can then be referenced anywhere as a
substitute for the repetition of the all the comparative operators definition. Lines 3-5
contain an example of such reference. Figure 6 shows the XOCL <GreaterThan>
element encoding the ‘A > B’ expression following the Schema fragment of Figure 5.

1 <xs:complexType name="ContextType" abstract="true"/>
2 <xs:complexType name="StructuralContextType">
3 <xs:complexContent>
4 <xs:extension base="xocl:ContextType">
5 <xs:sequence>
6 <xs:element name="Package" type="xocl:PackageType"
7 minOccurs="0"/>
8 <xs:element name="UMLClassifier"
9 type="xocl:UMLModelType"/>
10 </xs:sequence>
11 </xs:extension>
12 </xs:complexContent>
13 </xs:complexType>
14 <xs:complexType name="BehavioralContextType" abstract="true">
15 <xs:complexContent>
16 <xs:extension base="xocl:ContextType">
17 <xs:sequence>
18 <xs:element name="Package" type="xocl:PackageType"
19 minOccurs="0"/>
20 <xs:element name="UMLClassifier"
21 type="xocl:UMLModelType"/>
22 <xs:element name="OperationName" type="xs:string"/>
23 <xs:element name="FormalParameterList"
24 type="xocl:FormalParameterListType"/>
25 <xs:element name="ReturnType" type="xocl:Type"/>
26 </xs:sequence>
27 </xs:extension>
28 </xs:complexContent>
29 </xs:complexType>

964 Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

Figure 5: ComparativeOperator group and ComparativeOperatorType composed
type specification

Figure 6: Use of <GreaterThan> element

1 <xs:complexType name="ComparativeExpressionType">
2 <xs:complexContent>
3 <xs:extension base="xocl:CompoundExpressionType">
4 <xs:group ref="xocl:ComparativeOperators"/>
5 </xs:extension>
6 </xs:complexContent>
7 </xs:complexType>
8 <xs:group name="ComparativeOperators">
9 <xs:choice>
10 <xs:element name="Equal"
11 type="xocl:ComparativeOperatorType"/>
12 <xs:element name="GreaterThan"
13 type="xocl:ComparativeOperatorType"/>
14 <xs:element name="LessThan"
15 type="xocl:ComparativeOperatorType"/>
16 <xs:element name="GreaterOrEqualThan"
17 type="xocl:ComparativeOperatorType"/>
18 <xs:element name="LessOrEqualThan"
19 type="xocl:ComparativeOperatorType"/>
20 <xs:element name="NotEqual"
21 type="xocl:ComparativeOperatorType"/>
22 </xs:choice>
23 </xs:group>
24 <xs:complexType name="ComparativeOperatorType">
25 <xs:sequence minOccurs="2" maxOccurs="2">
26 <xs:choice>
27 <xs:sequence>
28 <xs:element name="Exp"
29 type="xocl:ArithmeticExpressionType"/>
30 </xs:sequence>
31 <xs:sequence>
32 <xs:element name="Exp"
33 type="xocl:AtomicExpressionType"/>
34 </xs:sequence>
35 </xs:choice>
36 </xs:sequence>
37 </xs:complexType>

<Exp xsi:type="ComparativeExpressionType">
 <GreaterThan>

 <Exp xsi:type="StringLiteralExpressionType">
 <Literal value="A"/>
 </Exp>
 <Exp xsi:type="StringLiteralExpressionType">
 <Literal value="B"/>
 </Exp>

 </GreaterThan>
</Exp>

965Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

1� /2���������������������������������������

Having discussed some aspects of the XOCL schema, let us now look at an example
XML element that follows this schema. Such element is given in Figure 7. It codifies
in XOCL the first example OCL constraint of section 2.1 reproduced below:

�������������� Company ��	 managerConstraint:

 self.manager.age > 18
�� Self.manager.age < 65
�� self.manager.isUnemployed = false

In Figure 7, the ���&�������	��
 root element, at line 1, just identifies the

element as specifying an OCL constraint. Lines 3 to 5 declare the context associated
with the constraint. Line 4 specifies that this context is an UML class identified
through an xsi:type attribute of the <UMLClassifier> element. At line 4, the class
associated to the constraint is identified via a name attribute, in this example with
value “Company”.

Next comes the <Body> element that contains the OCL expressions specified in
lines 6-51. Line 6 indicates that the constraint body expression is of type
NaryLogicalExpressionType. In this example, the expression is a Boolean
conjunction encoded by an <And> element in line 7. This element has three operands,
each one being a comparative expression (indicated by an <Exp> element). They are
respectively encoded in lines 8-20, 21-34 and 35-49.

The first comparative expression specifies the “self.manager.age > 18” constraint
consisting of the ‘>’ operator and its two operands: ‘self.manager.age’ and ‘18’. This
constraint is encoded as a <GreaterThan> element with one child element per
operand. The first one, in lines 9-15, is an <Exp> element, with the xsi:type attribute
filled with “UMLModelPropertyCallExpressionType” because it references a role
(manager) and an attribute (age) of a class (Company). <PropCall> elements appear
as child elements which nesting reflects the construct nesting of the OCL expression.
Therefore, we have one <PropCall> element (line 10) for the ‘self’ OCL keyword,
another (line 11) for the ‘manager’ role and another (line 12) for the ‘age’ attribute.
The second operand, in lines 16-18, is an expression element of type
StringLiteralExpressionType with one child <Literal> element that contains the
operand value specified through the value attribute.

The two other comparative expressions of the constraint, “self.manager.age < 65”
and “self.manager.isUnemployed = false" that appear next as child elements of the
<And> element are encoded following the same conventions.

3� ������������

In this paper we presented XOCL, an XML language to codify OCL constraints.
XOCL elements can be embedded within XMI documents to provide the same
detailed XML structuring for constraints as for the other parts of a UML model. To
design XOCL, we started by constructing a complete, but simple OCL meta-model
using UML and OCL itself. From this meta-model we then specified an XOCL
document schema using XMLS. Our main concern when faced with alternative design

966 Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

Figure 7 – Example of code in XOCL language

1 <OCLConstraint xsi:type="InvariantConstraintType"
2 name="managerConstraint">
3 <Context>
4 <UMLClassifier xsi:type="ClassType" name="Company"/>
5 </Context>
6 <Body xsi:type="NaryLogicalExpressionType">
7 <And>
8 <Exp xsi:type="ComparativeExpressionType">
8 <GreaterThan>
9 <Exp xsi:type="UMLModelPropertyCallExpressionType">
10 <PropCall name="self" type="Object">
11 <PropCall name="manager" type="Association">
12 <PropCall name="age" type="Attribute"/>
13 </PropCall>
14 </PropCall>
15 </Exp>
16 <Exp xsi:type="ArithmeticalLiteralExpressionType">
17 <Literal value="18"/>
18 </Exp>
19 </GreaterThan>
20 </Exp>
21 <Exp xsi:type="ComparativeExpressionType">
22 <LessThan>
23 <Exp xsi:type="UMLModelPropertyCallExpressionType">
24 <PropCall name="self" type="Object">
25 <PropCall name="manager" type="Association">
26 <PropCall name="age" type="Attribute"/>
27 </PropCall>
28 </PropCall>
29 </Exp>
30 <Exp xsi:type="ArithmeticalLiteralExpressionType">
31 <Literal value="65"/>
32 </Exp>
33 </LessThan>
34 </Exp>
35 <Exp xsi:type="ComparativeExpressionType">
36 <Equal>
37 <Exp xsi:type="UMLModelPropertyCallExpressionType">
38 <PropCall name="self" type="Object">
39 <PropCall name="manager" type="Attribute">
40 <PropCall name="isUnemployed"
41 type="Attribute"/>
42 </PropCall>
43 </PropCall>
44 </Exp>
45 <Exp xsi:type="BooleanLiteralExpressionType">
46 <Literal value="false"/>
47 </Exp>
48 </Equal>
49 </Exp>
50 </And>
51 </Body>
52 </OCLConstraint>

967Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

options for this schema has been to make XOCL elements as concise as possible to
facilitate their understanding by both human readers and software applications.
Concision also save communication bandwidth for model interchange over the
network.

The methodology we outlined in this paper for the design of XOCL is general. It
can be used to design XML codification of any language. This is an interesting
contribution given the ubiquitous need for such codifications triggered by the growing
success of XML mediated multi-language development process and platform such as
the MDA architecture [OMG 2003] and .net.

The XOCL language presented in this paper provides a key missing piece of the
OMG and W3C standard puzzle, that includes XML, XMLNS, XMLS, XSLT, UML,
OCL, XMI and CWM, to support advanced applications and development practices
within such open, heterogeneous paradigms. We intend to submit it as a proposal to
the appropriate OMG working group. It is available for inspection and feedback on
the web at www.cin.ufpe.br/~fsr/xocl.

The purpose of XOCL is to fill a gap in XMI. To be useful in practice, it needs to
be integrated XOCL with XMI. This not an immediate step because the current XMI
specification provided by OMG is encoded as a DTD. For the same reasons discussed
in sections 2.2 and 4 which motivated specifying XOCL as an XMLS, the expressive
limitations of DTD turn this XMI specification under-constrained and the documents
that conform to it extremely verbose. To address this problem, an OMG working
group is currently drafting an XMLS for XMI.

XMLS suffers himself from some limitations. For example, it does not allow
expressing validity constraints that involve elements located in different branches of
an XML document viewed as a tree. To address this limitation and others,
Schematron [Schematron 2002] and XCSL [XCSL 2001] have been proposed to
complement XMLS to encode more sophisticated XML document schemas. Theses
languages are based on arbitrary document fragment matching and transformation
patterns using the W3C standards XPath [Kay 2000] and XSLT. They can be easily
integrated with XMLS (+�+, Schematron expression can even be embedded within an
XMLS ����	���
 element). As future work, we intend to choose one of these
constraint specification languages to refine and more concisely and generically
express the most complex constraints of our XOCL Schema.

-����4���
�������

This research was supported by grants from CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico) of the Brazilian Federal Government.

����������

[Atkinson et al. 2002] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O.,
Laqua, R., Muthig, D., Paech, B. Wust, J. and Zettel, J.: “Component-based product line
engineering with UML”; Addison-Wesley, Reading/MA (2002).
[Bergenti and Poggi, 2000] Bergenti F. and Poggi A.: “Exploiting UML in the Design of Multi-
Agent Systems”; Proc. ECOOP - Workshop on Engineering Societies in the Agents' World,
Sophia Antipolis and Cannes (2000), 96-103.

968 Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

[Booch et al. 1998] Booch, G., Jacobson, I. and Rumbaugh, J.: “The Unified Modeling
Language User Guide”; Addison-Wesley, Reading/MA (1998).�

[Brucker and Wolff 2001] Brucker, A. D. and Wolff, B.: “Checking OCL Constraints in
Distributed Systems Using J2EE/EJB”, Technical Report 157, Albert-Ludwigs-University at
Freiburg, Germany (2001).

[Carlson 2001] Carlson, D.:� “Modeling XML applications with UML: practical e-buisiness
applications”; Addison-Wesley, Reading/MA (2001).

[Cranefield and Purvis 1999] Cranefield and Purvis, M.: “UML as an ontology modelling
language”; Proc. Workshop on Intelligent Information Integration, 16th International Joint
Conference on Artificial Intelligence, Stockholm (1999).

[Devedzic 2001] Devedzic, V.: “Knowledge Modeling State of the Art”; Integrated
Computer-Aided Engineering, 8, 3 (2001), 257-281.

[Poseidon 2003] Poseidon for UML, May 2003, http://www.gentleware.com

[Kay 2000] Kay, M.: “XSLT Programmer's Reference”; Wrox Press, (2000).

[Mellor and Balcer 2002] Mellor, S.J. and Balcer, M.J.: “Executable UML: a foundation for the
model driven architecture”; Addison-Wesley, Reading/MA (2002).

[OMG 2003] OMG - Object Management Group; Link: http://www.omg.org

[Poole et al. 2001] Poole, J., Chang, D. Tolbert, D. and Mellor, D.: “Common Warehouse
Meta-model: an introduction to the standard for data warehouse integration”; Wiley & Sons
(2001).

[Purvis et al. 2000] Purvis, M.K., Cranefield, S., Bush, G., Carter, D. McKinlay, B.,
Nowostawski, M. and Ward, R.: “The NZDIS Project: An Agent-based Distributed Information
Systems Architecture”; Proc. Hawaii International Conference on Systems Sciences, Big Island
(2000).

 [Reisner 1984] Reisner P.: “Formal grammar as a tool for analyzing ease of use”; Proc. Human
Factors in Computing Systems, (Thomas J.C. & Schneider M.L.; eds.), New York (1984), 53-
78.

[Rose 2003] Rational Rose, May 2003, http://www.rational.com/uml

[Schematron 2002] Schematron Assertion Language, Version 1.5, October 2002,
http://www.ascc.net/xml/resource/schematron/Schematron2000.html

[Schreiber 1999] Schreiber, G.: “Knowledge engineering and management: the CommonKADS
methodology”; MIT Press, Cambridge/MA (1999).

[Warmer and Kleppe 1999] Warmer J. and Kleppe A.; “ The Object Constraint Language:
Precise Modeling with UML”, Object Technology Series, Addison-Wesley, Reading/MA
(1999).

[W3C 2003] W3C – World Wide Web Consortium; Link: http://www.w3.org/

[XCSL 2001] XML Constraint Specification Language, Version 2.2, May 2001,
http://www.di.uminho.pt/~jcr/PROJS/xcsl-www/

969Ramalho F., Robin J., Barros R.: XOCL - An XML Language ...

