
Haskell#:

Parallel Programming Made Simple and Efficient

Francisco Heron de Carvalho Junior
(Centro de Informática

Universidade Federal de Pernambuco, Recife, Brazil
fhcj@cin.ufpe.br)

Rafael Dueire Lins
(Departamento de Eletrônica e Sistemas

Universidade Federal de Pernambuco, Recife, Brazil
rdl@ee.ufpe.br)

Abstract: This paper presents the final result of the designing of a new specification
for the Haskell# Language, including new features to increase its expressiveness, but
without losing either efficiency or obedience to its original premisses.

Key Words: Fuctional Programming, Petri Nets, Parallelism, Languages.

Category: C.2.4, D.1.1, D.1.3, D.2.2, D.3.2, D.3.3

1 Introduction

Haskell# (“Haskell hash”) is an explicit parallel distributed language, defined
on top of Haskell, that has evolved since 1998 [Lima and Lins 1998]. The pre-
misses that guide its design attempt to make parallel programming a task
reachable for most programmers, without having to pay for loss of efficiency of
parallel programs when running over distributed architectures, such as clusters
[Baker et al. 1999]. Below, we discuss them:

– Ideally, parallelism would be implicit, freeing programmers from the burden
of control communication and synchronization concerns. However, practice
has demonstrated that efficient implicit parallelism is hard to obtain in its
general case, due to the high complexity of the configuration tasks required
to parallelize sequential programs, such as partitioning, allocation, granular-
ity control, and so on. To parallelize efficiently, compilers should take into
account many aspects of the intrinsic features of the target architecture and
the application. This is not always easy to model. Even in functional lan-
guages, where parallelism is easier to detect, the results obtained are very
poor, if compared to explicit approaches [Loidl et al. 2000];

– Dynamic control of parallelism, involving tasks such as process migration for
load balancing processors and on demand creation of processes, generates a

Journal of Universal Computer Science, vol. 9, no. 8 (2003), 776-794
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03 J.UCS

high overhead in the run-time of parallel programs, increasing proportionally
to the communication latency amongst processors of the target distributed
architecture;

– In parallel programs, the interleaving of the primitives for control of par-
allelism and the computation code makes the analysis of formal properties
very hard. This way, it is impossible to abstract process interaction from
computation;

– The mixture of computation and parallelism control code also makes pro-
gramming difficult, requiring skilled and well trained parallel programmers,
increasing the costs of the development of complex parallel applications;

– The lack of an agreed model for parallel programming lessens portability and
the chances for the existence of systematic parallel development methods
and tools. The intimate relationship between existing programming mod-
els and parallel architectures serves to explain the diversity of the former
[Skillicorn and Talia 1998].

Haskell# was designed based on the above assumptions. Thus, it now sup-
ports the following features:

– Explicit and static parallelism configuration. This minimizes over-
heads in the execution time of parallel programs, assuming that the pro-
grammer is the most capable specialist to perform the configuration of par-
allel tasks efficiently, due to his/her knowledge about target architecture
and the application and the non-existence of efficient algorithms to perform
optimally configuration tasks in their general instances automatically;

– Efficient and simple implementation. Haskell# only needs to “glue” a
Haskell sequential compiler to a message passing library. GHC and MPI,
respectively, have been used in this work. The use of an efficient sequential
Haskell compiler is important, assuming that Haskell# style of programming
encourages coarse grained parallelism, where most of time is expended in
performing sequential computations;

– Abstraction of parallelism from computation. In essence, Haskell#
encompasses a coordination language [Gelernter and Carriero 1992]
[Carvalho Jr. et al. 2002a]. Computations (Functional Processes) are descri-
bed in Haskell, while coordination (parallelism configuration) is described
by means of HCL (Haskell# Configuration Language). HCL is syntactically
orthogonal to Haskell. No extensions or libraries are necessary in Haskell for
gluing processes to coordination medium, described in HCL. This charac-
teristic induces a process hierarchy, with several benefits, such as a higher

777de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

degree of modularity, in many aspects of programming, and simplication of
programming tasks;

– Equivalence to Petri Nets. HCL descriptions can be translated into (la-
beled) Petri nets[Petri 1966] that describe the process interaction and com-
munication behaviour of parallel programs, making possible effective formal
analysis of their properties[Carvalho Jr. et al. 2002b];

– Hierarchical Compositional Programming. Compositional program-
ming is an important technique to increase the modularity of programming
languages, most specially in parallel ones [Foster 1985]. Hierarchical com-
position is an important feature supported by modern configuration lan-
guages in distributed systems[Krammer 1994, Magee et al. 1995]. It adds
to Haskell# new abstraction mechanisms for describing complex network
topologies in a simple way;

– Partial Topological Skeletons. Skeletons are an important programming
technique developed by Murray Cole[Cole 1989]. They allow to orthogonalise
the description of an algorithm from its efficient implementation in a specific
architecture. General reusable patterns of process interaction found in con-
current programs define a skeleton. Haskell# partial topological skeletons
make it easier to describe complex network topologies, giving support for
nesting and overlapping operations to allow composition of skeletons from
existing ones[Carvalho Jr. 2003].

Three other sections compose this paper. Section 2 briefly explains the evo-
lution of Haskell# since its original conception. Section 3 describes the structure
of Haskell# programs, and also presents some representative examples. Finally,
Section 4 draws some conclusions and lines for current and further works in
Haskell#.

2 The Evolution of Haskell#

Since the publication of its original design in 1998 [Lima and Lins 1998], three
versions of the Haskell# language have appeared. Each version has tried to im-
prove upon the previous one in meeting the targets described in Section 1 of this
paper.

In the first Haskell# version [Lima et al. 1999], funcional processes communi-
cated by making explicit calls to message passing primitives defined on top of the
Haskell IO monad. HCL was used to define the communication topology of pro-
cesses, connected via OCCAM-style channels[Inmos, 1984]. The use of explicit
message passing primitives extending Haskell allows a mixture of the primitives
for the synchronisation of parallelism with computational code, breaking down

778 de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

Haskell# principle of process hierarchy. This makes nearly impossible the anal-
ysis of formal properties of programs with Petri nets or any other formalism.

The first revision of Haskell# produced a new version, where explicit message
passing primitives were abolished in favor of process hierarchy. Communication
input and output ports of functional processes became mapped onto arguments
and elements of the tuple returned by their main functions, respectively. Ports
are connected to define communication channels, as in the first version. Func-
tional Processes were strict, thus parameters are transmitted in their normal
form as values. A process is executed by performing the following tasks in se-
quence: read input ports in the order in which they were declared in the HCL
program; call the main function, passing as arguments the values received by
input ports, in the order they were received; send each element of the tuple
returned by function main to the output ports in the order they were declared.

Not allowing functional processes to perform communication interleaved with
computation made it difficult to express important concurrent patterns of pro-
cess interaction used in some parallel applications, such as systolic and pipe-line
computations. These applications require that processes exchange information
while they compute, or keep the state of computation between communication
operations during computation. However, this version made possible to define
the first translation of Haskell# programs into Petri nets and to analyse the com-
munication behaviour of some applications, such as an ABS (Anti-Lock Braking
System) control unit [Lima and Lins 2000]. This was very important to demon-
strate the potential of Haskell# approach for parallel programming.

The lastest version of Haskell#, described in this paper, was developed to rec-
oncile maximal concurrency expressiveness with process hierarchy and also to
provide a higher abstraction programming mechanism without loss of efficiency.
Special attention has been dedicated to the translation into Petri nets. Lazy
stream communication was introduced to allow processes to interleave commu-
nication and computation operations in a transparent way. From the functional
module point of view, lazy streams are Haskell lazy lists whose elements can be
read or written on demand. Ports now can be read on demand. The support for
skeletons and hierarchical compositional programming allow for a more abstract
and higher-level style of programming. This version of Haskell# is described in
the following sections.

3 The Structure of Haskell# Programs

This section describes the structure of Haskell# programs, illustrating syntactic
aspects by means of examples. The main example used here is a Haskell# imple-
mentation of a well known systolic algorithm for matrix multiplication, described
in [Manber 1999]. This example allows to demonstrate some important aspects

779de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

mA

mB mC

mm[1][1]

mm[2][1] mm[2][2]

mm[1][2] ...

...
...

Figure 1: Matrix Multiplication Topology

of Haskell# programming, such as the use of skeletons, hierarchical composition,
etc.

The implementation of the matrix multiplication follows the network struc-
ture presented on Figure 1. Two processes, mA and mB, distribute matrices,
named A and B, respectively, element by element, amongst a collection of pro-
cesses organized in a square grid. These processes are responsible for calculating
the resulting matrix C, the multiplication of the matrices A and B. The indexes
that identify each process indicate its position (line and column) in the matrix of
processes. The process mC collects matrix C from the processes in the grid. The
Haskell# skeletons FARM and TORUS [Carvalho Jr. 2003] are used to compose
the network topology of processes in the matrix multiplication program.

Figures 2 and 3 present the HCL code for the Matrix Multiplication com-
ponent and for the functional module Haskell code of the cooperating processes
in the grid, respectively. The declarations in HCL code will be explained in the
rest of the paper.

780 de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

– In File matrix multiplication.hcl
component MatrixMultiplication<N> with

index i, j range [1,N]

use module MatrixMultiplication.MatMult
use module MatrixMultiplication.ReadMatrix
use module MatrixMultiplication.ShowMatrix

use configuration Skeletons.Common.FARM
use configuration Skeletons.Common.TORUS

– interface for processes that compose the systolic mesh
interface IMatMult (aij, bij::Array (Int,Int) Float; l*, t*::Float)

→ (r*, b*::Float, cij::Array (Int,Int) Float)
behaving as seq { par {aij?; bij?};

repeat alt {counter < N → seq {l?; t?; r!; b!}};
cij! }

– process units that configure functionality of the application
unit mA as ReadMatrix N → out # Distributor () → out
unit mB as ReadMatrix N → out # Distributor () → out
unit mC as ShowMatrix in → () # Collector in → ()

– cluster units (skeletons) that configure topological organization of processes
unit farmA as FARM<N*N>
unit farmB as FARM<N*N>
unit mmgrid as TORUS<N>

– overlapping skeletons to configure final topology
[/ unify farmA.worker[(i+1)*N + j] # a → c,

farmB.worker[(i+1)*N + j] # b → c,
mmgrid.meshcell[i][j] # (l,u) → (r,d)

to matmult[i][j] as MatMult (N,a,b,l,u) → (r,d,c)
IMatMult (a,b,l,u) → (r,d,c) /]

unify mmfarmA.collector # c → (),
mmfarmB.collector # c → () to showmatrix # c → ()

– mapping processes onto the topology above defined (overlapping of the skeletons)
assign mA to mmfarmA.distributor () → (divide matrix out)
assign mB to mmfarmB.distributor () → (divide matrix out)
assign mC to showmatrix (combine matrix in) → ()

Figure 2: HCL code for a matrix multiplication on a circular mesh

3.1 Units: The Building Blocks of HCL Configurations

Haskell# programs are essentially described by HCL configurations. The main
unit defines the computation of the program. An interface and a component
should be associated with each unit and are detailed as follows.

781de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

– In File matmul.hs
module MatMult(main) where

type MatrixElem = Array (Int,Int) Double

main :: Int→MatrixElem→MatrixElem→[Int]→[Int]→ IO (MatrixElem,[Int],[Int])
main n aij bij as bs = return cij

where
((i,j),aij’) = (head.assocs) aij
((,),bij’) = (head.assocs) bij
cij’ = (matmul (aij’*bij’) n aij bij as bs)
cij = array (1,1) [((i,j),cij’)]

matmul :: Float→Int→Float→Float→[Float]→[Float] → (Float,[Float],[Float])
matmul c 1 = (c,[],[])
matmul c n aij bij (a:as) (b:bs) = (cij,aij:as’,bij:bs’)

where
(cij,as’,bs’) = matmul (c+a*b) (n-1) a b as bs

Figure 3: The MatMult Functional Module

3.1.1 Interfaces: Describing How Units Interact

An interface defines the set of input and output ports of the unit for com-
municating with each other, as well as the order in which they are activated
(communication behaviour). The order is defined by an expression written in an
OCCAM-like [Inmos, 1984] language, designed in such way that its expressive
power is equivalent to expressive power of labelled Petri nets. The HCL piece of
code below defines an interface:

interface SystolicMeshCell (left*, above*::t) → (right*, below*::t)
behaving as Pipe # left → right

as Pipe # above → below
as: repeat alt {

right! → below!; below! → right!;
common: par { left?; above? }

}

The interface SystolicMeshCell has two input ports, named left and above,
and two output ports, named right and below. All ports have some unknown type
(polymorphism). The * after the name of each port means that the port trans-
mits a stream of values of type t. The behaving as clause introduces behaviour
constraints. In the example, SystolicMeshCell has three behaviour constraints.
The first one says that a systolic mesh cell must behave like a pipe-line stage
when considering only ports left and right, which make the role of the input and
the output ports of a pipe-line stage, respectively. The second statement works
similarly for ports above and below. The last declaration specifies the commu-
nication behaviour of the units that use this interface. A language based on
0-counter synchronised regular expressions is used, a formalism equivalent to

782 de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

Petri nets. The compiler has to ensure the compatibility of the specified com-
munication behaviour with the other behaviour constraints, producing an error
message whenever necessary. An interface may have many behaviour restrictions
(like the first two in the example above), but at most one could describe a com-
munication behaviour. If the programmer does not specify the communication
behaviour, the compiler generates the weakest communication behaviour by de-
fault. This behaviour must satisfy any the other existing behaviour constraint.
The generation algorithm is not detailed in this paper.

The combinators used to build communication behavior descriptions are de-
scribed below:

– seq: Specifies a strict order for a collection of communication actions (se-
quential composition) ;

– par: Denotes interleaved execution of a collection of communication actions
(concurrent composition) ;

– alt: Stands for alternative execution amongst a collection of actions (alter-
native composition). Each actions is guarded by a watchdog port. The choice
of the action to be performed follows the semantics of CSP;

– repeat alt: Specifies repeated execution of a collection of alternative actions.
Here, watchdog ports must be streams. The termination condition is reached
when all streams communicated by all watchdog ports receives the EOS
(end of stream) message. A special type of guard can be used to control the
number of iterations. Its form is counter < N , where N is an HCL numeric
expression. Also, the skip guard is used to model a guard that is always
active (default guard). It can be used to model infinite repetition.

– p?: Indicates activation of input port p, trying to receive a message its
communication pair;

– p!: Denotes activation of output port p, trying to send a message to its
communication pair;

– wait sem: Corresponds to the wait primitive in a counter semaphore sem.
The action is delayed until a sufficient number of signal sem actions are
performed;

– signal sem: Corresponds to the signal primitive in a counter semaphore
sem;

3.1.2 Components: Describing What Units Compute

A component defines the computation performed by a unit. It can be simple or
compound. Simple components are Haskell programs, called functional modules,

783de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

that are the primitive computational entities of Haskell# programs. Units instan-
tiated from simple components are called processes. Compound components are
HCL configurations, defining a network of cooperating units. Units instantiated
from compound components are called clusters. The use of clusters provide a
higher degree of modularity and potential for reuse of code at coordination level
of Haskell# programming, by means of hierarchical compositional programming
and skeleton programming.

Programs in Figure 2 and 3 illustrate a compound component declaration
(HCL configuration) and a functional module, respectively. In the compound
component MatrixMultiplication, the parameter N defines the dimension of the
matrices. The declarations that follow configure the functional process network,
whose diagram is shown in Figure 1. In the functional module MatrixMult, one
may observe that there are no extensions or special libraries introduced into the
Haskell code, due to the total orthogonality between HCL and Haskell.

ignored
value

ignored
value

a 2expr

expr::t

module Example(main) where

main x y z = ... return (v,w)
main :: t −> u −> v −. IO (r, s, q)

ClusterProcess

Figure 4: Entry and Exit Points

Components may have entry and exit points. For functional modules (simple
components), entry points are the arguments of the function main, while exit
points are the elements of the tuple returned in the resulting IO action. For HCL
configurations (compound components), entry and exit points are linked, respec-
tively, to input and output ports that are not connected to other ports. Entry
and exit points are illustrated in Figure 4. In the compound component declared
in Figure 10, one entry point and one exit point are declared, respectively named
in and out. The bind declaration at the end of the HCL configuration declares
that the input and output ports are bound to the entry and exit points.

784 de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

An injective mapping from entry and exit points of the component onto
input and output ports, respectively, must be defined. Values must be provided
explicitly to the entry points that are not associated with an input port. The
value produced by exit points not connected to an output port is ignored. A wire
function should be specified to transform values between entry and exit points
and input and output ports. If not specified, the identity function is assumed.
The wire function maps a value of type t to a type u.

In the hierarchical view of any Haskell# program, instantiated in Figure 5,
the units at the leaves are processes, while internal units are clusters. The units
that have the same parent node belong to the same HCL configuration.

Main Unit
Simple Component

Composed Component

Units

Functional Process

Cluster

Figure 5: Unit Hierarchy in a Haskell# Program

3.1.3 Repetitive and Non-Repetitive Units

There are two kinds of processes: non-repetitive and repetitive. The former ones
reach final state after evaluating the function main, while the latter will execute
forever, by calling repeated and sequentially their function main. A cluster is said
to be repetitive if all units that compose it are repetitive. The compiler generates
an error message if the programmer attempts to declare as non-repetitive a
cluster where all composing unit are repetitive. A Haskell# program that has as

785de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

main unit a repetitive unit is said to be repetitive. Repetitive applications are
very useful to implement iterated reactive applications, programs that neither
reach a final state nor store state information between iterations. In general,
those are reactive systems such as some operating or control systems. An example
of such a declaration of a repetitive unit is shown below:

unit * random as Random # seed → number

The * symbol after the keyword denotes that the unit random is repetitive.
Each time the unit (process) random is activated, a random number is generated
according to a seed value. Notice that to obtain a different random value, it is
necessary to provide different seeds at each unit activation.

3.1.4 How to Declare a Unit

The HCL declaration below declares N units in a single line, using indexed no-
tation supported by HCL:

index i, j range [1,N]
...
[/ unit grid cols[i] as PIPE-LINE<N> in → out # Pipe in → out /]

The index declaration specifies two indexes, i and j, whose range is config-
ured in range clause, from 1 to N, where N is a configuration parameter. The
tokens [/ and /] delimit the scope for variation indexes used in their context. In
the example, notice that i is the index that is in the scope of the delimiters. N
units are declared, named grid cols, which are indexed from 1 to N. The grid cols
units are instances of the compound component PIPE-LINE, forming clusters
that represent a topological structure. Their interface is Pipe, defining one input
port, named in and one output port, named out. The entry and exit points of
PIPE-LINE component are mapped onto input and output interface ports of
the unit by matching identifiers. In the declaration of a toroidal mesh skeleton
(Figure 8), the ports in and out of grid cols clusters will be connected to define
circular pipe-lines.

3.1.5 Replication of Ports in Unit Declarations

In a unit declaration, after mapping component entry and exit points to interface
ports, it is still possible to replicate an interface port, forming a group of ports.
Groups of ports are associated with either an entry or exit point. The default
wire function for groups of ports is choice, that chooses one of the ports in the
group to perform communication. The wire function for input ports must have
one of the following types:

786 de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

wire in :: Int→ (Int→ t)→ u

wire in io :: Int→ (Int→ IO t)→ IO u

The programmer can choose between IO or non-IO version. The first argu-
ment is the number of ports in the group, while the second one is a function that
receives an integer, that indicates the index of a port, and returns the value, of
type t, received by that port. The returned value of type u is passed to the
associated entry point.

The wire function for output ports can have one of the following types:

wire out :: Int→ u→ (Int→ t)

wire out io:: Int→ u→ (Int→ IO t)

The first argument specifies the number of ports in the group, while the
second one is the value produced in the exit point of the component. A function
must be returned, which receives an integer that indicates the index of an output
port and returns the value sent through it.

Figure 2 shows how groups of ports are declared in interface specification of
units mA, mB and mC.

3.2 Communication Channels

Haskell# communication channels are used to connect ports of opposite direc-
tions from two units, forming the network topology of a HCL configuration. They
are synchronous, point-to-point, unidirectional and typed. In this new Haskell#
version, bounded buffers are introduced to allow a weak form of asynchronous
communication. The declaration below illustrates the syntax of a channel decla-
ration in HCL :

index i, j range [1,N]
...
[/ connect * grid cols[i].pipe[N]→out to grid cols[i].pipe[1]←in buffered 10 /]

In the example above, N channels are declared. Let v be an index value
(value of i), the channel links the port pipe[N] of unit grid cols[v] to the port
pipe[1] of the same unit. The * after the connect combinator indicates that the
channel transmits a stream. The ports connected by a stream channel must be
declared to be streams too, or the compiler will generate an error message. The
clause buffered is optional and establishes a buffered channel. The buffer size is
configured as an integer value after buffered clause. In the example, its value is
10. If omitted, the buffer size is assumed to be limited to the amount of memory
available.

787de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

?

interface

component

interface

virtual unit(non virtual) unit

Figure 6: Virtual and non-virtual

3.3 Virtual Units: Towards Skeleton Programming

It is possible to define a unit without a component, but an interface is always
required. When an interface is not provided, a default one is implicitly assumed.
A unit for which a component does not exist is called a virtual unit (Figure 6).

Virtual units are essentially templates from which non-virtual units can be
defined. At any moment, a non-virtual unit can be assigned to a virtual unit,
occupying its place and assuming its role in the network of units. For that, there
must be a behaviour constraint that associates the interface of the assigned unit
with the interface of the virtual unit. Behaviour constraints were discussed in
Section 3.1.1.

The syntax for declaration of virtual units is presented on Figures 7 and 8.
It is similar to a non-virtual unit declaration, but the virtual keyword is used
before the unit keyword. The clause as, used to define the component, is not
necessary. An example of use of assignment operation is presented on Figure
2. The process mA is assigned to the virtual unit distributor of the cluster
mmFarmA. In the declaration of process mA. It is configured to be the interface
Distributor, the same of the virtual unit distributor, allowing the compiler to
perform the appropriate assignment.

Virtual units are at the heart of the Haskell# support for skeleton program-
ming, an important programming technique introduced by Cole[Cole 1989]. In
his seminal work, Cole defined the notion of algorithm skeletons to capture com-
mon patterns found in large classes of programs. The motivation for skeletons is
the possibility to use them to increase reuse and modularity of code and to allow
to abstract implementation concerns from specification of algorithms, without
compromising their performance. Each skeleton of an algorithm could be imple-
mented for each target architecture in an optimized way. An important point to
notice is that, in the research developed about skeletons in the subsequent years
after Cole introduce the idea, special attention was deserved to skeletons that
captured patterns of concurrent and parallel interaction, as a way to make par-

788 de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

allel programming more abstract. As a consequence, several parallel languages
now support skeletons[Skillicorn and Talia 1998].

Haskell# introduces the notion of partial topological skeleton, which cap-
tures common patterns of topology and communication behaviour. A skeleton
in Haskell# is essentially a component with at least one virtual unit. If all of
them are virtual, then this component is called a total skeleton, a widely adopted
assumption. However, in Haskell# skeletons, some of the computational entities
(units) can be completely defined, having a component and an interface. There-
fore, Haskell# skeletons are partial. The compound components in Figures 7
(FARM), 8 (MESH), 9 (TORUS), and 10 (PIPE-LINE) are examples of com-
mon total skeletons, once they define virtual units in their compositions.

Besides providing a higher degree of modularity and potential for reuse of
code at coordination programming level, another important use of skeletons is
to provide to the HCL compiler explicit information about the topology of the
functional processes. Depending on the skeleton used to organise a certain group
of processes, the compiler can use special rules to generate more efficient parallel
code, more appropriate to the execution environment. For example, Haskell#
provides skeletons that abstract collective communication primitives of MPI,
allowing the compiler to make more efficient use of them. Another possibility that
has been investigated is to allow programmers to specify, in a meta-language,
how MPI code is generated for a given skeleton.

– In file farm.hcl
component FARM<N> with

export interface Distributor, Worker, Collector

interface Distributor () → out behaving as: repeat alt {out! → skip}
interface Worker in → out behaving as: repeat alt {in? → skip}
interface Collector in → () behaving as: repeat alt {in? → skip}
virtual unit distributor # Distributor () → out
virtual unit worker # Worker in → out
virtual unit collector # Collector in → ()

connect distributor→out to worker←in
connect worker→out to collector←in

replicate N worker

Figure 7: FARM Skeleton

789de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

– In file mesh.hcl
component MESH<N> # # ([/ l[i] /], [/ u[i] /]) → ([/ r[i] /], [/ d[i] /]) with

use configuration Skeletons.Common.PIPE-LINE
export interface SystolicMesh

index i, j range [1,@N]

interface SystolicMeshCell (left*, above*::t) → (right*, below*::t)
behaving as Pipe # left → right

as Pipe # above → below
as: repeat alt {

right! → below!; below! → right!;
common: par { left?; above? }

}
[/unit grid cols[i] as PIPE-LINE<N> # in → out/]
[/unit grid rows[i] as PIPE-LINE<N> # in → out/]

[/ bind grid cols[i].pipe[1]→out to u[i] /]
[/ bind grid cols[i].pipe[N]→out to d[i] /]
[/ bind grid rows[i].pipe[1]→out to l[i] /]
[/ bind grid rows[i].pipe[N]→out to r[i] /]

[/unify grid cols[i].pipe[j] # l → r, grid rows[j].pipe[i] # t → b
to cell[i][j] # SystolicMeshCell (l,t) → (r,b)/]

Figure 8: MESH Skeleton

– In file torus.hcl
component TORUS<N> with

index i range [1..N]

use configuration Skeletons.Common.MESH

unit torus as MESH # ([/ l[i] /], [/ u[i] /]) → ([/ r[i] /], [/ d[i] /])

[/ connect torus→r[i] to torus→l[i] /]
[/ connect torus→d[i] to torus→u[i] /]

Figure 9: TORUS Skeleton

3.3.1 Unification and Factorization of Virtual Units

Two operations can be performed with virtual units: unification and factoriza-
tion. The former allows for programmers to compose new virtual units from a
set of virtual units, by composing them. The interface of the new virtual unit
assumes behavioural constraints that relate it to the interfaces of the original
units. This means that the new unit must preserve the behaviour of the original

790 de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

– In File pipe.hcl
component PIPE-LINE<N> in → out with

index i range [1,N-1]
index j range [1,N]

export interface Pipe in*::[t] → out*::[u]
behaving as: repeat alt {in? → out!}

[/virtual unit pipe[j] # Pipe in → out;/]

[/channel link[i] connect * pipe[i]→out to pipe[i+1]←in/]

bind pipe[1]←in to in
bind pipe[N]→out to out

Figure 10: PIPE Skeleton

units in the network. Factorisation is the dual of unification, allowing for a unit
to be divided into two or more units, preserving the behaviour of the original
units, by applying the restrictions of their interface.

An example of unification is presented in the HCL code for the MESH skele-
ton component on Figure 8. The units that compose the N grid cols pipe-line
units and N grid rows pipe-line units are unified in a mesh. This is an example
of overlapping of skeletons, which can be used to compose a new skeleton as
demonstrated in the presented example. Another way to compose new skeletons
from existing ones is nesting, where a skeleton unit is assigned to a virtual unit
of another skeleton.

In general, in Haskell# programming, it is convenient to make use of skele-
tons to define topology of processes, without making use of the connect clause.
The skeletons are overlapped using unification and factorisation operations (de-
scribed below), forming a network skeleton of the program. Then, processes are
assigned to the resulting virtual units. This technique is used to build the matrix
multiplication configuration on Figure 2.

3.4 Replication of Units: Configuring Distributed Data Parallel

Computations

An operation is defined over any kind of unit: replication. It allows the construc-
tion of many copies of a unit in the network. Amongst other uses, replication is
suitable to define distributed data-parallel computations. An example of replica-
tion is shown in FARM skeleton declaration on Figure 7. A unit named worker
is defined and then replicated to form the set of farm worker processes, indexed
from 1 to N. Special attention must be given to the ports connected to the repli-
cated process. They must be also replicated, in such way that now there is a copy

791de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

of the original port for each unit derived from replication. Notice that, in the
example, the resulting groups of ports of units distributor and collector have no
wire function defined. When assigning non-virtual units to FARM virtual ones,
the programmer should define these functions, configuring the FARM according
to his needs. An example of this approach can be seen in the matrix multipli-
cation HCL code 2, where wire functions dist matrix and combine Matrix are
configured to be the required wire function of FARM’s farmA, farmB, and
farmC, after the assignment of mA, mB and mC to their virtual units.

3.5 Startup Modules: Putting Things to Work

Startup modules define the main unit of the application, giving, whenever neces-
sary, values to be passed onto its entry ports. If the main unit has output ports,
their values produced at the end of computation can be given to an exit Haskell
function, which performs some final computation with the yielded values. The
startup module for the matrix multiplication program is presented on Figure 11.
The component associated with the main unit is called application component.

application MatrixMultiplication with
use configuration MatrixMultiplication.MatrixMultiplication
unit main as MatrixMultiplication<4>

Figure 11: Matrix Multiplication Startup Module

The example below demonstrates the full functionality that could be pre-
sented in a startup module.

application StartupDemonstration with
{# fat 0 = 1

fat n = n * fat (n-1)
#}
use OneComponente in ’one component.hcl’
unit main as OneComponent<"Hello World!!!"> ([1..],fat 10) → (a::Int; ;b::Int)
{# exit :: Int → Int → IO()

exit x y = print x >>
print y

#}

The expressions [1..] and fat10 produce values that are passed to the entry
points of the component. The underscore at the second output port declaration of
the main unit says that the value of that port may be ignored. The values passed
as arguments to the exit function at the end of the computation are that pro-
duced by output ports a and b, in the order that they appear. "Hello World!!!"

is a string parameter given to the instance of the component OneComponent.

792 de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

3.6 Libraries: Enhancing Reuse Capabilities

In libraries, programmers can put HCL declarations that can be imported in
the HCL configuration that define distinct components, imposing a discipline
for reuse of code. An example of library is presented below:

library LibraryExample(Send,Receive) with

interface Send () → out*
interface Receive in* → ()

The library above declares and exports two interfaces, named Send and Re-
ceive. They can be imported in a HCL configuration by using the following
declaration:

import LibraryExample(interface Send, interface Receive)

4 Conclusions and Lines for Further Works

This paper describes the last efforts on the design of Haskell#, a language tar-
geted at making parallel programming more abstract and modular, with con-
cerns on efficiency and formal analysis of programs. An integrated environ-
ment development, simulation, and formal analysis of parallel programs, based
on Haskell#, is currently being developed, in JAVA. This environment, named
VHT (Visual Haskell# Tool) should be able to manage the development of high-
performance and complex applications, taking into account modularity and reuse
of code, making use of skeletons and the composition of programming com-
ponents. Because Haskell# covers several hot topics in advanced parallel pro-
gramming in a unified and simple way, VHT may be also used for educational
purposes in graduate or undergraduate courses. A simulator for Haskell# pro-
grams, based on network simulator tools[Fall and Varadhan 2002], and a Petri
net based analysis tool are under development. VHT should offer integration to
PEP[Best E. et al. 1997] and INA[Roch and Starke 1999], for the analysis of for-
mal properties of Petri nets, giving support for automatic translation of Haskell#
programs into that formalism.

Acknowledgements

The authors are grateful to professor Simon Thompson careful reading and com-
ments on this paper.

References

[Baker et al. 1999] Baker, M., Buyya, R., and Hyde, D. (1999). Cluster Computing:
A High Performance Contender. Communications of the ACM, 42(7):79–83.

793de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

[Best E. et al. 1997] Best E., Esparza J., Grahlmann B., Melzer S., Rmer S., and Wall-
ner F. (1997). The PEP Verification System. In Workshop on Formal Design of
Safety Critical Embedded Systems (FEmSys’97).

[Carvalho Jr. et al. 2002a] Carvalho Jr., F., Lima, R., and Lins, R. (2002a). Coordi-
nating Functional Processes with Haskell#. In ACM Press, editor, ACM Symposium
on Applied Computing, Special Tracking on Coordination Languages, Models and Ap-
plications, pages 393–400.

[Carvalho Jr. et al. 2002b] Carvalho Jr., F., Lins, R., and Lima, R. (2002b). Translat-
ing Haskell# Programs into Petri Nets. In Faculdade de Engenharia, Universidade
do Porto, editor, Proceedings of VECPAR’2002.

[Carvalho Jr. 2003] Carvalho Jr., F. H. (2003). Topological Skeletons in Haskell#. In
International Parallel and Distributed Symposium (IPDPS 2003). IEEE Press. (april
2003).

[Cole 1989] Cole, M. (1989). Algorithm Skeletons: Structured Management of Paralell
Computation. Pitman.

[Fall and Varadhan 2002] Fall, K. and Varadhan, K. (2002). The NS Manual (formely
NS Notes and Documentation). Technical report, The VINT Project, A Collabora-
tion between researchers at UC Berkeley, LBL, USC/ISI, and Xerox PARC.

[Foster 1985] Foster, I. (1985). Compositional Parallel Programming Languages.
ACM Transactions on Programming Languages and Systems, 18(4):454–476.

[Gelernter and Carriero 1992] Gelernter, D. and Carriero, N. (1992). Coordination
Languages and Their Significance. Communications of the ACM, 35(2):97–107.

[Inmos, 1984] Inmos (1984). Occam Programming Manual. Prentice-Hall, C.A.R.
Hoare Series Editor.

[Krammer 1994] Krammer, J. (1994). Distributed Software Engineering. In Proceed-
ings of 16th International Conference on Software Engineering (ICSE). IEEE Com-
puter Society Press.

[Lima et al. 1999] Lima, R. M. F., Carvalho Jr., F. H., and Lins, R. D. (1999).
Haskell#: A Message Passing Extension to Haskell. CLAPF’99 - 3rd Latin American
Conference on Functional Programming, pages 93–108.

[Lima and Lins 1998] Lima, R. M. F. and Lins, R. D. (1998). Haskell#: A Functional
Language with Explicit Parallelism. LNCS VECPAR‘98 - International Meeting on
Vector and Parallel Processing, pages 1–11.

[Lima and Lins 2000] Lima, R. M. F. and Lins, R. D. (2000). Translating HCL Pro-
grams into Petri Nets. In Proceedings of the 14th Brazilian Symposium on Software
Engineering.

[Loidl et al. 2000] Loidl, H. W., Klusik, U., Hammond, K., Loogen, R., and Trinder,
P. W. (2000). GpH and Eden: Comparing two Parallel functional Languages on a
Beowulf Cluster. In 2nd Scottish Functional Programming Workshop.

[Magee et al. 1995] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. (1995). Spec-
ifying Distributed Software Architectures. In Schafer, W. and Botella, P., editors,
5th European Software Engineering Conf. (ESEC 95), volume 989, pages 137–153,
Sitges, Spain. Springer-Verlag, Berlin.

[Manber 1999] Manber, U. (1999). Introduction to Algorithms: A Creative Approach.
Addison-Wesley, Reading, Massachusetts.

[Petri 1966] Petri, C. A. (1966). Kommunikation mit Automaten. Technical Report
RADC-TR-65-377, Griffiths Air Force Base, New York, 1(1).

[Roch and Starke 1999] Roch, S. and Starke, P. (1999). Manual: Integrated Net Ana-
lyzer Version 2.2. Humboldt-Universität zu Berlin, Institut für Informatik, Lehrstuhl
für Automaten- und Systemtheorie.

[Skillicorn and Talia 1998] Skillicorn, D. B. and Talia, D. (1998). Models and Lan-
guages for Parallel Computation. ACM Computing Surveys, 30:123–169.

794 de Carvalho Junior F.H., Lins R.D.: Haskell#: Parallel Programming ...

