
Dependently Typed Pattern Matching

Hongwei Xi1

(Computer Science Department
Boston University

Boston, MA 02215, USA
hwxi@cs.bu.edu)

Abstract: The mechanism for declaring datatypes to model data structures in pro-
gramming languages such as Standard ML and Haskell can offer both convenience in
programming and clarity in code. With the introduction of dependent datatypes in
DML, the programmer can model data structures with more accuracy, thus capturing
more program invariants. In this paper, we study some practical aspects of depen-
dent datatypes that affect both type-checking and compiling pattern matching. The
results, which have already been tested, demonstrate that dependent datatype can not
only offer various programming benefits but also lead to performance gains, yielding a
concrete case where safer programs run faster.

Key Words: dependent types, pattern matching, DML

Category: D.3.2, D.3.3

1 Introduction

In programming languages such as Standard ML (SML) [Milner et al., 1997] and
Haskell [Peyton Jones et al., 1999], the programmer can declare datatypes to
model the data structures needed in programming and then use pattern matching
to decompose the values of the declared datatypes. This is a mechanism that
can offer both convenience in programming and clarity in code. For instance,
we can declare the following datatype in SML to represent random-access (RA)
lists and then implement a function that takes O(log n) time to access the nth
element in a given RA list [Xi, 1999b].

datatype ’a ralist =

Nil

| One of ’a

| Even of ’a ralist * ’a ralist

| Odd of ’a ralist * ’a ralist

Note that we intend to use Nil for the empty list, One(x) for the singleton
list consisting of x, Even(l1, l2) for the list x1, y1, . . . , xn, yn (n > 0) where l1
and l2 represent lists x1, . . . , xn and y1, . . . , yn, respectively, and Odd(l1, l2) for
1 Partially supported by NSF grants no. CCR-0224244 and no. CCR-0229480

Journal of Universal Computer Science, vol. 9, no. 8 (2003), 851-872
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03  J.UCS

x1, y1, . . . , xn, yn, xn+1 (n > 0) where l1 and l2 represent lists x1, . . . , xn, xn+1

and y1, . . . , yn, respectively. However, this datatype declaration is unsatisfactory.
For instance, it cannot enforce the invariant that the two arguments of Even need
to represent two nonempty lists containing the same number of elements.

We have extended ML to Dependent ML (DML) with a restricted form of
dependent types [Xi and Pfenning, 1999, Xi, 1998], introducing a notion of de-
pendent datatypes that allows the programmer to model data structures with
more accuracy. In DML, we can declare a dependent datatype as follows.

datatype ’a ralist (nat) =

Nil (0)

| One (1) of ’a

| {n:pos} Even (n+n) of ’a ralist(n) * ’a ralist(n)

| {n:pos} Odd (n+n+1) of ’a ralist(n+1) * ’a ralist(n)

In this declaration, the datatype ’a ralist is indexed with a natural number,
which stands for the length of a RA list in this case. For instance, the above
syntax indicates that

– One is assigned the type scheme ∀α.α → (α)ralist(1), which means that One
forms a RA list of length 1 when given an element, and

– Even is assigned the following type scheme:

∀α.Πn : pos.(α)ralist(n) ∗ (α)ralist(n) → (α)ralist(n + n),

which states that Even yields a RA list of length n + n when given a pair
of RA lists of length n. We use {n:pos} to indicate that n is universally
quantified over positive integers, which is usually written as Πn : pos in a
dependent type theory.

Now we can implement in DML a function uncons that takes a nonempty RA
list and returns a pair consisting of the head and the tail of the RA list. We
present the implementation in Figure 1. Unfortunately, the implementation does
not type-check in DML for a simple reason. Notice that we need to prove the
list l1 is a nonempty RA list in order to type-check the following clause in the
implementation.

(x, l1) ⇒ (x,Odd(l2, l1))

In DML, pattern matching is performed sequentially at run-time. Therefore, we
know that l1 cannot be Nil when the above clause is chosen at run-time. On
the other hand, type-checking in DML, like in ML, assumes nondeterministic
pattern matching, ignoring the fact that the above clause is chosen only if the
result of uncons(l1) does not match the pattern (x,Nil). This example clearly

852 Xi H.: Dependently Typed Pattern Matching

fun(’a)

uncons (One x) = (x,Nil)

| uncons (Even (l1,l2)) =

(case uncons l1 of

(x,Nil) => (x,l2) | (x,l1) => (x,Odd (l2,l1)))

| uncons (Odd (l1,l2)) =

let val (x,l1) = uncons l1 in (x,Even (l2,l1)) end

withtype {n:pos} ’a ralist(n) -> ’a * ’a ralist(n-1)

Figure 1: The function uncons in DML

illustrates a gap between static and dynamic semantics of pattern matching in
DML.

Obviously, if all patterns in a sequence of pattern matching clauses are mu-
tually disjoint, nondeterministic pattern matching is equivalent to sequential
pattern matching. A straightforward approach, which was adopted in DML, is
to require that the programmer replace the above clause with three clauses as
follows, where p ranges over the three patters One(), Even() and Odd().

(x, l1 as p) ⇒ (x,Odd(l2, l1))

While this is a simple approach, it can cause a great deal of inconvenience in
programming as well as performance loss at run-time. For instance, in an imple-
mentation of red/black trees, one pattern needs to be expanded into 36 disjoint
patterns in order to make the implementation type-check and the expansion
causes the Caml-light compiler to produce significantly inferior code.

In this paper, we present an approach that bridges the gap between static
and dynamic semantics of pattern matching in DML. Given patterns p1, . . . , pm

and p, we intend to find patterns p′1, . . . , p
′
n such that a value matches p but

none of pi for i = 1, . . . , m if and only if it matches p′
j for some 1 ≤ j ≤ n.

Note that p′i, . . . , p
′
n do not have to be mutually disjoint. We emphasize that

resolving sequentiality in pattern matching is only needed for type-checking in
DML; it is not needed for compiling programs in DML. Similar problems have
already been extensively studied in the context of lazy pattern matching compila-
tion [Augustsson, 1985, Puel and Suárez, 1993, Laville, 1990, Maranget, 1994].
In this paper, we essentially follow Laville’s approach to resolving sequentiality
in pattern matching.2 However, there remains a significant issue in our case that
has never been studied before. We need an approach that can produce the least
2 Laville’s approach is simple but can be expensive. In theory, the approach leads to

an algorithm that is exponential on the size of input patterns. Also, the approach
cannot handle integer patterns because of the existence of infinitely many integer
constants, but this is not a problem in our setting, which we will explain shortly.

853Xi H.: Dependently Typed Pattern Matching

index expressions i, j ::= a | c | i + j | i − j | i ∗ j | i ÷ j

index propositions P ::= i < j | i ≤ j | i ≥ j | i > j | i = j | i �= j |
P1 ∧ P2 | P1 ∨ P2

index sorts γ ::= int | {a : γ | P} | γ1 ∗ γ2

index variable contexts φ ::= · | φ, a : γ | φ, P

satisfaction relation φ |= P

index constraints Φ ::= P | P ⊃ Φ | ∀a : γ.Φ

Figure 2: The syntax for type index expressions

n so as to minimize the number of constraints generated during type-checking.
We prove that we have found such an approach, which is the main technical
contribution of the paper.

There is yet another issue. When type-checking the implementation in Fig-
ure 1 (after the above expansion), the DML type-checker generates a warning
message stating that the pattern matching is nonexhaustive as it assumes that
uncons may be applied to Nil. We can eliminate this bogus warning message by
verifying that Nil can never have a type (τ)ralist(n) for any positive integer n.
This immediately implies that there is no need to insert a tag check for checking
whether the argument of uncons is Nil at run-time when we compile the imple-
mentation in Figure 1. We will explain how such tag checks can be eliminated
in Section 4. Note that this is an issue similar to array bound check elimina-
tion. Along this line, we can find cases such as an interpreter for a simply typed
functional programming language where no run-time tag checks are needed for
decomposing the values of certain datatypes.

The rest of the paper is organized as follows. In Section 2, we present some
basics on types and pattern matching in DML. We then state in Section 3 a
problem on pattern matching in DML and present a solution to this problem.
We also prove that the solution is optimal according to a reasonable criterion. In
Section 4, we study pattern matching compilation in the presence of dependent
types and present an example. We also present some experimental results in
Section 5 and provide some brief explanation. Lastly, we mention some related
work and conclude.

2 Preliminaries

We present in this section some features in DML that are necessary for our study.
Please find more details in [Xi and Pfenning, 1999, Xi, 1998].

854 Xi H.: Dependently Typed Pattern Matching

2.1 Types in DML

Intuitively speaking, dependent types are types which depend on the values of
language expressions. For instance, we may form a type int(i) for each integer i to
mean that every integer expression of this type must have value i, that is, int(i)
is a singleton type. Note that i is the expression on which this type depends.
We use the name type index expression for such an expression. There are various
compelling reasons, such as practical type-checking, for imposing restrictions on
expressions that can be chosen as type index expressions. A novelty in DML is
to require that type index expressions be drawn only from a given constraint
domain. For instance, the syntax for type index expressions in some integer
domain is given in Figure 2, where we use a for type index variables and c for
fixed integers. Note that the language for type index expressions is typed. We
use the name sort for a type in this language so as to avoid potential confusion.
We use · for the empty index variable context and omit the standard sorting
rules for this language. We write {a : γ | P} to denote the subset sort for those
elements of sort γ that satisfy the proposition P . For example, we use nat as an
abbreviation for the subset sort {a : int | a ≥ 0}. We write φ |= Φ to mean that
the constraint Φ is satisfied under the index context φ, that is, the formula (φ)Φ
is satisfiable in the domain of integers, where (φ)Φ is defined below.

(·)Φ = Φ (φ, a : int)Φ = (φ)∀a : int.Φ

(φ, P)Φ = (φ)(P ⊃ Φ) (φ, {a : γ | P})Φ = (φ, a : γ)(P ⊃ Φ)

For instance, the satisfiability relation a : nat, b : int, a + 1 = b |= b > 0 holds
since the following formula is true in the integer domain: ∀a : int.a ≥ 0 ⊃ ∀b :
int.a + 1 = b ⊃ b > 0 Note that the decidability of the satisfaction relation
depends on the constraint domain. For the integer constraint domain we use
here, the satisfaction relation is decidable as we do not accept nonlinear integer
constraints.

The types and type schemes in DML are formed as follows. We use α for
type variables and δ for type constructors. Also, we use τ and ı for (possibly
empty) sequences of types and type indexes.

types τ ::= α | (τ)δ(ı) | 1 | τ1 ∗ τ2 | τ1 → τ2 | Πa : γ.τ | Σa : γ.τ

type schemes σ ::= τ | ∀α.σ

For instance, list is a type constructor and (int)list(n) is the type for integer lists
of length n. We use Πa : γ.τ (Σa : γ.τ) for a universal (an existential) depen-
dent type. As an example, the universal dependent type Πa : nat.(int)list(a) →
(int)list(a) captures the invariant of a function which, for every natural number
a, returns an integer list of length a when given an integer list of length a. Also
we use the existential dependent type Σa : nat.(int)list(a) for integer lists of
unknown length.

855Xi H.: Dependently Typed Pattern Matching

φ � α ≡ α φ � 1 ≡ 1

φ |= τ1 ≡ τ ′
1 · · · τn ≡ τ ′

n φ |= i1
.= i′1 · · ·φ |= in

.= i′n
φ � (τ1, . . . , τm)δ(i1, . . . , in) ≡ (τ ′

1, . . . , τ
′
m)δ(i′1, . . . , i

′
n)

φ � τ1 ≡ τ ′
1 φ � τ2 ≡ τ ′

2

φ � τ1 ∗ τ2 ≡ τ ′
1 ∗ τ ′

2

φ � τ ′
1 ≡ τ1 φ � τ2 ≡ τ ′

2

φ � τ1 → τ2 ≡ τ ′
1 → τ ′

2

φ, a : γ � τ ≡ τ ′

φ � Πa : γ.τ ≡ Πa : γ.τ ′
φ, a : γ � τ ≡ τ ′

φ � Σa : γ.τ ≡ Σa : γ.τ ′

Figure 3: Type conversion rules

The typing rules for this language should be familiar from a dependently
typed λ-calculus (such as the one underlying Coq or NuPrl). The critical notion
of type conversion uses the judgment φ � τ1 ≡ τ2, which is a congruent extension
of equality on index expressions to arbitrary types. The type conversion rules
are listed in Figure 3. Notice that constraints may be generated when these rules
are applied. For instance, the constraint φ |= (a + n) + 1 .= m + n is generated
in order to derive φ � (int)list((a + n) + 1) ≡ (int)list(m + n).

2.2 Pattern Matching in DML

We briefly present some formalism and a concrete example in this section to
explain how a pattern matching clause is type-checked in DML.

We omit the definition for expressions e in DML, which are essentially ex-
pressions in a λ-calculus enriched with pattern matching. A pattern in DML
is defined as follows, where we use x for variables, • for wildcard and c for
constructors.3

patterns p ::= x | • | c(p) | 〈〉 | 〈p1, p2〉 | p1 as p2

We may write c(p1, . . . , pn) for c(〈p1, . . . , pn〉) and c for c(〈〉). Note that a variable
is allowed to occur at most once in a pattern. If p contains no variables (but
may contain wildcards), then we call p a constant pattern. We use p1 as p2 for a
composite pattern, where we require p2 to be more specific than p1 as is defined
in Definition 1, and a value v matches the pattern p1 as p2 if v matches both
p1 and p2.
3 We assume that each constructor is unary, that is, it takes exactly one argument.

For a constructor taking no argument, we can treat it as a constructor taking the
unit 〈〉 as its argument.

856 Xi H.: Dependently Typed Pattern Matching

x ↓ τ � (·; x : τ)
(pat-var)

• ↓ τ � (·; ·) (pat-wild)

〈〉 ↓ 1 � (·; ·) (pat-unit)

p1 ↓ τ1 � (φ1; Γ1) p2 ↓ τ2 � (φ2; Γ2)
〈p1, p2〉 ↓ τ1 ∗ τ2 � (φ1, φ2; Γ1, Γ2)

(pat-prod)

p1 ↓ τ � (φ1, Γ2) p2 ↓ τ � (φ2, Γ2)
p1 as p2 ↓ τ � (φ1, φ2; Γ1, Γ2)

(pat-as)

S(c) = Πa : γ.(τ → (α)δ(ı)) p ↓ τ [α := τ] � (φ; Γ)
c(p) ↓ (τ)δ(j) � (a : γ, ı .= , φ; Γ)

(pat-cons)

Figure 4: Typing rules for patterns

In DML, a typing judgment is of the form φ; Γ � e : τ , which states that the
expression e can be assigned the type τ under the index variable context φ and
the expression variable context Γ . The rule (type-match) for typing a pattern
matching clause p ⇒ e is given as follows:

p ↓ τ1 � (φ′; Γ ′) φ, φ′; Γ, Γ ′ � e : τ2

φ; Γ � p ⇒ e : τ1 ⇒ τ2

A judgment of the form p ↓ τ � (φ; Γ), which reads checking p against τ yields
φ; Γ , means that if p is required to have type τ then we need to form index and
expression variable contexts φ and Γ so that φ; Γ � p : τ is derivable. The rules
for deriving such a judgment are listed in Figure 4, where S(c) denotes the type
assigned to the constructor c in the signature S. For instance, given a pattern
p = cons(〈x, xs〉) and a type τ = (α)list(n), we can derive p ↓ τ � φ; Γ for the
following φ and Γ :

φ = (a : nat, a + 1 = n) and Γ = (x : α, xs : (α)list(a)),

where we assume that cons is assigned the following type scheme:

Πa : nat.α ∗ (α)list(a) → (α)list(a + 1).

A pattern matching clause p ⇒ e can be assigned the type τ1 ⇒ τ2 if e can be
assigned the type τ2 under the assumption that p is required to have the type
τ1.

857Xi H.: Dependently Typed Pattern Matching

3 Resolving Sequentiality

In this section, we bridge the gap between dynamic and static semantics of pat-
tern matching in DML. Given patterns p1, . . . , pm and p of type τ , what we need
is essentially to form an index variable context φ to record the constraints that
must be satisfied if a value is to match p but none of p1, . . . , pm. For integer con-
stants i1, . . . , im and an integer pattern variable x, we can simply form the index
variable context φ = (a : int, a �= i1, . . . , a �= im) if we know an integer of type
int(a) matches x but none of i1, . . . , im. However, there seems no such a strategy
for general patterns. Instead, we are to find patterns p′

1, . . . , p
′
n such that a value

matches p′i for some 1 ≤ i ≤ n if and only if it matches p but none of p1, . . . , pm.
This task itself requires no use of dependent types. For simplicity, we assume
that we are working in a simply type language ML0 [Xi, 1998], which is essen-
tially mini-ML [Clément et al., 1986] extended with general pattern matching.
In particular, a case-expression in ML0 is written as follows.

case e0 of p1 ⇒ e1 | · · · | pi ⇒ ei | · · · | pn ⇒ en

A typing judgment in ML0 is of the form Γ � e : τ , which states that expression
e is given type τ under context Γ in which all free expression variables in e are
declared, and values are defined as follows.

values v ::= x | c(v) | 〈〉 | 〈v1, v2〉 | lam x : τ.e

A value is closed if it contains no free expression variables. Given a value v and
a pattern p, we write v ↓ p � θ to mean that matching the value v against the
pattern p yields a substitution θ. The rules for deriving such a judgment are
given as follows.

v ↓ • � [] v ↓ x � [x �→ v]

〈〉 ↓ 〈〉 � []
v1 ↓ p1 � θ1 v2 ↓ p2 � θ2

〈v1, v2〉 ↓ 〈p1, p2〉 � θ1 ∪ θ2

v ↓ p � θ

c(v) ↓ c(p) � θ

v ↓ p1 � θ1 v ↓ p2 � θ2

v ↓ p1 as p2 � θ1 ∪ θ2

We use [] for the empty substitution and θ[x �→ v] for the substitution that
extends θ with a mapping from x to v. Also we use θ1 ∪ θ2 for the union of two
substitutions with distinct domains. We write v ↓ p if v matches p, i.e., v ↓ p� θ

holds for some θ, and v � ↓ p otherwise. We say two patterns p1 and p2 are disjoint
if there exists no value v such that both v ↓ p1 and v ↓ p2 hold.

Definition 1. Given two patterns p1 and p2, p1 ≤ p2 holds if we can derive
p1 ↓ p2 by treating p1 as a value. We write p1 < p2 if p1 ≤ p2 but not p2 ≤ p1.
Intuitively, p1 < p2 means that p1 is more specific than p2.

858 Xi H.: Dependently Typed Pattern Matching

e0 ↪→ v0 v0 ↓ pi � θ ei[θ] ↪→ v

case e0 of p1 ⇒ e1 | · · · | pi ⇒ ei | · · · | pn ⇒ en ↪→ v
(case-nd)

e0 ↪→ v0 v0 ↓ pi � θ v0 � ↓ pj for 1 ≤ j < i ei[θ] ↪→ v

case e0 of p1 ⇒ e1 | · · · | pi ⇒ ei | · · · | pn ⇒ en ↪→ v
(case-seq)

Figure 5: The nondeterministic and sequential evaluation rules for case-
expressions

We write e ↪→ v to mean that expression e evaluates to v, which can be
defined in the style of natural semantics [Kahn, 1987]. We present both non-
deterministic and sequential rules for evaluating a case-expression in Figure 5.
Note that DML uses the rule (case-seq) for evaluating a case-expression.

Given the following case-expression,

case e of p1 ⇒ e1 | · · · | pi ⇒ ei | · · · | pn ⇒ en

we are interested in finding constant patterns p′
i,1, . . . , p

′
i,ni

for each pi such that
a value matches p′

i,j for some 1 ≤ j ≤ ni if and only if it matches pi but none of
p1, . . . , pi−1. Note that a constant pattern is one that does not contain pattern
variables (but may contain wildcards). This allows us to replace pi ⇒ ei with a
sequence of pattern matching clauses

pi,1 as pi ⇒ ei | · · · | pi,ni as pi ⇒ ei.

while preserving the dynamic semantics of the case-expression.4 Notice that
pi,j and pi′,j′ must be disjoint patterns for i �= i′. Therefore, this replacement
closes the gap in DML between the dynamic semantics, where pattern matching
is done sequentially, and the static semantics, where pattern matching is done
nondeterministically. Clearly, for the sake of efficient type-checking, it is desirable
to keep ni as small as possible for 1 ≤ i ≤ n as this minimizes the number of
constraints generated for type-checking the clauses pi ⇒ ei.

3.1 The Approach

We present a simple example before formally describing the proposed approach
to resolving sequentiality in pattern matching. Suppose p = • and p1 = (nil, nil).
Also suppose nil and cons are the only constructors associated with the datatype
(α)list. The problem is to find patterns p′1, . . . , p′n such that a value v matches
4 We present no proof for this fact, which, though straightforward, requires a formal

definition of operational equivalence.

859Xi H.: Dependently Typed Pattern Matching

p but not p1 if and only if v matches p′j for some 1 ≤ j ≤ n. In this case, the
minimum value of n is 2 and p′1, p

′
2 are (cons(•), •), (•, cons(•)). Note that p′1

and p′2 are not (required to be) disjoint.

Definition 2. Given a type τ and a pattern p, p is a τ -pattern if p ⇓ τ is
derivable with the following rules.

� • ⇓ τ � x ⇓ τ � 〈〉 ⇓ 1

� p1 ⇓ τ1 � p2 ⇓ τ2

� 〈p1, p2〉 ⇓ τ1 ∗ τ2

� p1 ⇓ τ � p2 ⇓ τ

� p1 as p2 ⇓ τ

S(c) = τ → (α)δ � p ⇓ τ [α := τ]
� c(p) ⇓ (τ)δ

Clearly, if p ⇓ τ is derivable, then there exists Γ such that Γ � p : τ is derivable.

For the rest of this section, we assume that for every τ -pattern p there exists a
closed value v matching p if τ is closed, that is, τ contains no free type variables.
This allows us to rule out some pathological cases.5

Definition 3. Given n patterns p1, . . . , pn, where n ≥ 1, we define p1 ∨ · · · ∨ pn

as a disjunctive pattern such that a value v matches this pattern if and only if
v matches pi for some 1 ≤ i ≤ n. We use [p]τ for the set of closed values of type
τ that match p, and [p1 ∨ · · · ∨ pn]τ = [p1]τ ∪ · · · ∪ [pn]τ .

Formally speaking, we intend to find an approach that, when given a list of
τ -patterns p, p1, . . . , pn, can yield patterns p′1, . . . , p

′
n such that

[p]τ \ [p1 ∨ · · · ∨ pn]τ = [p′1 ∨ · · · ∨ p′n′]τ .

We regard a solution to be optimal if it finds the minimal n′. Without loss of
generality, we can assume that all the patterns contain no variables (but they
may contain wildcards) in the rest of the section. Note that this assumption
makes it no longer necessary to consider composite patterns.

Definition 4. Given two patterns p1 and p2, a judgment of the form p1 & p2 �p

can be derived with the following rules.

� p & • � p � • & p � p � 〈〉 & 〈〉 � 〈〉
� p11 & p21 � p1 � p12 & p22 � p2

� 〈p11, p12〉 & 〈p21, p22〉 � 〈p1, p2〉
� p1 & p2 � p

� c(p1) & c(p2) � c(p)

5 In ML, it is possible to declare a datatype that contains no values and such a datatype
seems useless in practice.

860 Xi H.: Dependently Typed Pattern Matching

• = ∅
c(p) = {c′(•) | δ(c′) = δ(c) and c′ �= c} ∪ {c(p′) | p′ ∈ p}
〈p1, p2〉 = {〈p, •〉 | p ∈ p1} ∪ {〈•, p〉 | p ∈ p2}
p1 ∨ · · · ∨ pn = {p′1 ∧ · · · ∧ p′n | p′1 ∈ p1, · · · , p′n ∈ pn}

Figure 6: The complement of patterns

If p1 & p2 � p is derivable, we use p1 ∧ p2 for the pattern p; otherwise, p1 ∧ p2 is
undefined. The intuition is that a value v matches both p1 and p2 if and only if
v matches p1 ∧ p2.

Proposition5. Given patterns p1 and p2, we have the following.

1. If v ↓ p1 and v ↓ p2 for some value v, then v ↓ p1 ∧ p2.

2. If p ≤ p1 and p ≤ p2 for some pattern p, then p ≤ p1 ∧ p2.

Proof. This is straightforward.

Definition 6. Let V be a set of closed values of type τ . A τ -pattern p is a (V, τ)-
pattern if [p]τ ⊂ V . Given a (V, τ)-pattern p, if [p]τ ⊆ [p′]τ implies [p]τ = [p′]τ
for every (V, τ)-pattern p′, then p is (V, τ)-maximal.

Proposition7. We have the following.

1. Given two τ -patterns p1 and p2, p1 ≤ p2 implies [p1]τ ⊆ [p2]τ for every type
τ .

2. Let V be a set of closed values of type τ and p be a (V, τ)-pattern. Then there
is a maximal (V, τ)-pattern p′ such that p ≤ p′

3. Let p1, . . . pn be τ -patterns and V = [p1 ∨ · · · ∨ pn]τ . If p is a (V, τ)-maximal
pattern, then pi ≤ p holds for some 1 ≤ i ≤ n.

Proof. (1) is straightforward. (2) follows the fact that there cannot exist an
infinite chain like p < p1 < p2 < (3) follows from a structural induction on
p.

Definition 8. For every constructor c in ML0, we use δ(c) for the type con-
structor δ such that c is assigned a type of the form τ → (α)δ. We define the
complement p of pattern p in Figure 6, which is a set of patterns. We define
p \ (p1 ∨ · · · ∨ pn) as

{p ∧ p′ | p′ ∈ p1 ∨ · · · ∨ pn}.

861Xi H.: Dependently Typed Pattern Matching

We assume that for each δ there are only finitely many constructors c such that
δ(c) = δ. Integer patterns are handled differently as is explained at the beginning
of the section.

Proposition9. We have the following.

1. Let p, p1, . . . , pn be τ -patterns for a type τ . Then every pattern in p \ (p1 ∨
· · · ∨ pn) is also a τ -pattern.

2. Given a type τ , every value in [p]τ \ [p1 ∨ · · · ∨ pn]τ matches some pattern in
p \ (p1 ∨ · · · ∨ pn).

3. Given a value v of type τ , if v matches some pattern in p \ (p1 ∨ · · · ∨ pn)
then v is in [p]τ \ [p1 ∨ · · · ∨ pn]τ .

Proof. This is straightforward.

Lemma 10. (Main Lemma) Let p1, . . . , pn be τ -patterns and V = [p]τ \ [p1 ∨
· · · ∨ pn]τ . Then for each given (V, τ)-pattern p′ we can find a pattern p′′ ∈
p \ (p1 ∨ · · · ∨ pn) such that p′ ≤ p′′ holds.

Proof. By Proposition 5 (2), it is enough to prove this for p = • and n = 1. We
proceed by a structural induction on p1.

– p1 = •. Then it is trivial.

– p1 = c(p11). This case immediately follows from induction hypothesis on p11.

– p1 = 〈p11, p12〉. Then τ = τ1 ∗ τ2 for some types τ1, τ2. We can assume that
p′ = 〈p′1, p′2〉 where pi are some τi-patterns for i = 1, 2. Let Vi = [•]τi \ [p1i]τi

for i = 1, 2. We have several cases.

• p′1 is a (V1, τ1)-pattern. By induction hypothesis, there exists p′′
1 ∈ p1

such that p′1 ≤ p′′1 . Hence, 〈p′1, p′2〉 ≤ 〈p′′1 , •〉 ∈ p.

• p′2 is a (V2, τ2)-pattern. This is similar to the previous case.

• Neither of p′i is a (Vi, τi)-pattern for i = 1, 2. This implies that we can
find values vi of type τi such that vi �∈ Vi hold for i = 1, 2. Thus,
vi ↓ p′i hold for i = 1, 2, and this yields v = 〈v1, v2〉 ↓ 〈p′1, p′2〉 = p′. Also
note that vi ∈ [p1i]τi for i = 1, 2, which implies v = 〈v1, v2〉 ∈ [p1]τ .
This contradicts p′ being a (V, τ)-pattern. Therefore, this case can never
occur.

Theorem 11. Let p, p1, . . . , pn be τ -patterns and V = [p]τ\[p1 ∨ · · · ∨ pn]τ for
a given type τ . Let p′1, . . . , p′m be a list of patterns in p\(p1 ∨ · · · ∨ pn) such that
(a) p′i �≤ p′j for 1 ≤ i �= j ≤ m and (b) for every p′ ∈ p\(p1 ∨ · · · ∨ pn) we have
p′ ≤ p′k for some 1 ≤ k ≤ m. Then V = [p′1 ∨ · · · ∨ p′m]τ . If V = [p′′1 ∨ · · · ∨ p′′m′]τ
for some patterns p′′1 , · · · , p′′m′ , then m ≤ m′.

862 Xi H.: Dependently Typed Pattern Matching

fun restore (R(R t, y, c), z, d) = R(B t, y, B(c, z, d))

| restore (R(a, x, R(b, y, c)), z, d) = R(B(a, x, b), y, B(c, z, d))

| restore (a, x, R(R(b, y, c), z, d)) = R(B(a, x, b), y, B(c, z, d))

| restore (a, x, R(b, y, R t)) = R(B(a, x, b), y, B t)

| restore t == B t (* == : indication for resolving sequentiality *)

Figure 7: An example in DML

Proof. By Lemma 10, it is clear that every p′
i is (V, τ)-maximal for i = 1, . . . , m.

Assume v ∈ V . By Proposition 9 (2), v matches some p′ in p\(p1 ∨ · · · ∨ pn),
that is, v ∈ [p′]τ . Since p′ ≤ p′k for some k, we have v ∈ [p′k]τ by Proposition 7
(1). Hence, V ⊆ [p′1]τ∪. . .∪[p′m]τ = [p′1∨· · ·∨p′m]τ . Obviously, [p′1∨· · ·∨p′m]τ ⊆ V

by Proposition 9 (3). Therefore, V = [p′
1 ∨ · · · ∨ p′m].

Assume V = [p′′1 ∨ · · · ∨ p′′m′]. For every 1 ≤ i ≤ m′, p′′i ≤ p′ki
holds for

some 1 ≤ ki ≤ m′ by the definition of p′1, . . . , p′m and Lemma 10. Therefore,
V = [p′k1

∨ · · · ∨ p′km′]. Assume m′ < m. Then there exists 1 ≤ j ≤ m such
that j �= ki for every 1 ≤ i ≤ m′. Since p′j is (V, τ)-maximal, we have p′ki

≤ p′j
for some 1 ≤ i ≤ m′ by Proposition 7 (3). This contradicts to the definition of
p′1, . . . , p

′
m. Thus, m ≤ m′.

Therefore, given patterns p, p1, . . . , pn, Theorem 11 gives us a method to com-
pute patterns p′1, . . . , p

′
n′ such that a value v matches some p′

i for 1 ≤ i ≤ n if
and only if v matches p but none of p1, . . . , pn and this method always yields
the minimal n′.

Note that the presented approach does not apply to integer patterns since
there are infinitely many integer constants. However, there is also no need for
applying the approach to integer patterns since we can use the simple strategy
at the beginning of this section to deal with integer patterns.

3.2 Some Applications

The code in Figure 7 is extracted from a red-black tree implementation in DML.
The function restore essentially restores through tree rotations some invariants
of a red-black tree that are destroyed after an element is inserted.

We find it useful to allow the programmer to decide whether sequentiality
in pattern matching needs to be resolved. If the programmer knows pattern
matching in some implementation can be done nondeterministically (and may
want to test it), then there is simply no need for resolving sequentiality. For
instance, it is clearly such a case where no dependent datatype are involved in
pattern matching. This is also in line with the design methodology behind DML:
the programmer should not pay for what is not used. Nonetheless, we emphasize

863Xi H.: Dependently Typed Pattern Matching

fun(’a, ’b)

zip (nil, nil) = nil

| zip (cons(x, xs), cons(y, ys)) = (x, y) :: zip (xs, ys)

withtype {n:nat} ’a list(n) * ’b list(n) -> (’a * ’b) list(n)

Figure 8: A function in DML

that the programmer can always choose to resolve sequentiality when it is unclear
whether this is needed. In Figure 7, the programmer uses the syntax to indicate
that only the last clause needs to be expanded into a sequence of clauses for
resolving sequentiality in pattern matching while there is no need to do so for
the first four clauses. In this case, the last clause expands into 36 clauses of the
form

restore(t as (p1, , p2)) = B(t),

where p1 and p2 range over the following 6 patterns: E, B(), R(E, , E),
R(E, , B()), R(B(), , E), and R(B(), , B()). If the programmer is re-
quired to resolve sequentiality in pattern matching manually, it is not only
error-prone but can also make a program less readable and probably cause a
compiler to produce inferior code.

The approach to resolving sequentiality in pattern matching is also useful
for detecting the exhaustiveness of a sequence of patterns with respect to a
given type. For instance, the code in Figure 8 implements a function that zips
together two lists of the same length. With the presented approach, we can
verify that (cons(),nil) and (nil, cons()) are the patterns such that any pair
of lists matches one of them if and only if the pair matches neither (nil,nil)
nor (cons(x, xs), cons(y, ys)). However, neither (cons(),nil) nor (nil, cons())
can have a type of the form (τ1)list(n) ∗ (τ2)list(n) for any natural number n.
Therefore, we can simply conclude that the pattern matching clauses in the
definition of zip are exhaustive. Please see [Xi, 1999a] for more details. As it is
frequent to encounter pattern matching failure in practice, it is often a standard
feature in many compilers to perform pattern matching exhaustiveness detection.
Therefore, we expect that this feature in the presence of dependent datatypes
can be of greater value for catching program errors at compile-time since data
structures can now be modeled with more accuracy.

4 Tag Check Elimination

Pattern matching compilation is essentially a process to transform pattern match-
ing into a sequence of elementary if-then-else checks on tags.

864 Xi H.: Dependently Typed Pattern Matching

4.1 The Approach

We present some basics on tag check elimination in the presence of dependent
types. An expression in ML0 is internally represented as a syntax tree and a
position in a syntax tree is of the form ◦.i1.in, where ◦ stands for the root
position and each ij indicates that we take the ijth branch of the current node
(branch numbering starts from 0). Given an expression e, the subexpression of
e at position pos is the expression represented by the subtree of the syntax tree
of e at position pos.

For instance, we can generate the tag test tree in Figure 9 (with both node
5 and node 6 uncrossed at first) for compiling the function zip. Given a value
v, we can use the tree to perform pattern matching as follows. At the root, we
assume that the value matches the pattern (•, •), that is, the value is a pair.
We then check the tag of the subexpression of v at position ◦.0, that is, the
left component of the pair, reaching either node 2 or 3 depending on whether
the tag stands for nil or cons. The rest of the nodes can be explained similarly.
In general, every node in a test tree contains a pattern which the value must
match when tag checking reaches that node, and every inner node also contains
a position that indicates the subexpression on which the subsequent tag check
should be performed.

pat = (•, •)
pos = ◦.0

1

pat = (nil, •)
pos = ◦.1

2

pat = (cons(•, •), •)
pos = ◦.1

3

pat = (nil, nil)

4

pat = (nil, cons(•, •))
5

pat = (cons(•, •), nil)

6

pat = (cons(•, •), cons(•, •))
7

Figure 9: A test tree for pattern matching compilation

We now use dependent types to prune the test tree in Figure 9. Note that the
test tree is generated for values of type τ = ((α)list(n), (α)list(n)), where n is an
index variable of sort nat. Therefore, a leaf node is reachable only if the pattern
attached to it can be assigned the type τ . For p = (nil, cons(•, •)), we can derive
p ⇓ τ � (φ; ·) with the rules in Figure 4, where φ is a : nat, a + 1 = n, 0 = n.

865Xi H.: Dependently Typed Pattern Matching

Clearly, φ is a contradictory context since no number n can be both 0 and a + 1
for some natural number a. This implies that no pair of lists of equal length
can match p as is proven in [Xi, 1999a]. We thus cross out leaf node 5 since it
is unreachable. Similarly, we can cross out leaf node 6. Since there is only one
node coming out of the node 2, there is no tag check necessary for that node.
Thus, we replace node 2 with node 4. Similarly, we replace node 3 with node
7. The final test tree is given in Figure 10, which means that we need only one
tag check on the left component of a pair of lists to determine whether the pair
matches (nil, nil) or (cons(•, •), cons(•, •)).

pat = (•, •)
pos = ◦.01

pat = (nil, nil)
4

pat = (cons(•, •), cons(•, •))
7

Figure 10: The final test tree

The general strategy for tag check elimination can be described as follows.
Let e be a case-expression case e0 of p1 ⇒ e1 | · · · | pn ⇒ en in a well-typed
program P in DML. In the typing derivation that establishes the well-typedness
of P , we can find typing derivations of φ; Γ � e0 : τ0 and φ; Γ � pi � ei : τ0 → τ

(1 ≤ i ≤ n) for some index variable context φ, expression variable context Γ and
types τ0 and τ . Given patterns p1, . . . , pn, we construct a test tree for patterns
p1, . . . , pn as is described above.6 For each leaf node, we check the attached
pattern p against τ0, deriving a judgment of the form p ⇓ τ0 � (φ0, Γ0). If the
context φ, φ0 is contradictory, we cross out the leaf node. We then cross out an
inner node if all branches coming out of it are crossed out. Finally, if there is
only one branch coming out of an inner node, we replace the inner node with
the branch. The resulting test tree is then to be used for compiling the case-
expression.

4.2 An Example

In the implementation of an interpreter for a programming language, it is often
necessary to use tags to distinguish values, namely, evaluation results, of different
types.
6 There are various methods for doing this such as the ones described in

[MacQueen and Baudinet, 1985, Leroy, 1990] or [Peyton Jones, 1987]

866 Xi H.: Dependently Typed Pattern Matching

fun evaluate e = eval(e, [])

and eval (Zero(e), env) = let

val ValInt i = eval (e, env)

in ValBool (i = 0) end

... ...

Figure 11: Code fragment for an interpreter

Let us declare two datatypes exp and value representing expressions (in the
object language) that are to be evaluated and results that are to be returned
from evaluation, respectively. For instance, we use Zero(e) for the zero test on
expression e and ValInt(i) for an integer result.

datatype exp = ... | Zero of exp | ...

datatype value =

... | ValBool of bool | ValInt of int | ...

In Figure 11, the code fragment illustrates that the evaluation function evaluate
calls function eval, which takes an expression and an environment (represented
as a list of values) binding the free variables in the expression to values, and
returns a value. The code also shows the evaluation of an expression of the form
Zero(e), that is, the zero test on e; when eval(e, env) returns, we need to check
the tag of the returned value to determine whether it represents ValInt; if it is, we
extract out the integer result i and return either ValBool(true) or ValBool(false)
depending on whether i is 0. There are usually a vast number of such tag checks
during evaluation.

Now suppose that the interpreter is written for some typed programming
language Lam and can only be applied to an expression that represents a well-
typed program in Lam. This means that e should always stand for an integer
expression in Lam when Zero(e) is formed and eval(e, env) should return a value
representing an integer, namely, a value that matches the pattern ValInt(i).
Thus, we should be able to eliminate the tag check when compiling the following
line in the definition of eval.

val ValInt i = eval (e, env)

We can indeed use the type system of DML to capture the above reasoning. The
basic idea is to refine the datatype exp into exp(t, c) such that each expression of
type exp(t, c) stands for a term in Lam that is of type t under context c, where
a context is represented as a list of types in Lam. Similarly, we refine value into
value(t). We can then assign evaluate the following type,

867Xi H.: Dependently Typed Pattern Matching

last nth zip evaluate
sml/nj 4.00/3.36 (16%) 2.03/1.34 (34%) 0.70/0.49 (30%) 3.02/2.91 (4%)
ocaml 12.11/11.45 (5%) 18.0/14.9 (21%) 2.11/2.05 (3%) 9.84/9.63 (2%)
ocamlopt 2.35/2.34(< 1%) 1.15/1.14 (< 1%) 1.40/1.40 (0%) 1.35/1.20 (11%)

Figure 12: Some experiment results on tag check elimination

{t:typ} exp(t, Empty) -> value(t)

which states that evaluate returns a result representing a value of type t in Lam
when given an expression representing a closed term of type t in Lam (note that
Empty stands for an empty context). We remark that typ is a sort (not a type)
in DML for type index expression representing types in Lam.

5 Experimentation

The approach to resolving sequentiality in pattern matching in Section 3 has
already been implemented in DML and it is frequently used in practice.

The method in Section 4 for eliminating tag checks during pattern compi-
lation has yet to be implemented. Currently, the dependent types in a DML
program are erased after type-checking and this erasure makes the DML pro-
gram a well-typed ML program, which can then be compiled using an existing
ML compiler. Unfortunately, dependent types are needed to be present for tag
check elimination. Thus, it is currently difficult to adopt the method into an
existing ML compiler, though the implementation of the method itself seems
straightforward.

There are nonetheless some unsafe features in SML/NJ (Unsafe.cast) and
Objective Caml (Obj.magic) allowing us to experiment with tag check elimina-
tion and measure the potential performance gains.

All of our experiments are performed on a machine with a Pentium 550 MHz
CPU running Linux Redhat (version 5.2). The three sets of data in Figure 12 are
collected using the SML/NJ compiler (version 110.0.3), the OCAML bytecode
compiler (version 2.02) and the OCAML native code compiler (version 2.02).
We give some brief description on the tested programs.

last We locate the last element of an integer list of length 10, 000 repeatedly for
10, 000 times.

nth We find the nth element in an integer list of length 10, 000, where n ranges
from 0 to 9999.

zip We zip together two integer lists of length 10, 000 repeatedly for 100 times.

868 Xi H.: Dependently Typed Pattern Matching

evaluate We use an interpreter for Lam to evaluate the 30th Fibonacci number.

rbtree We form a red-black tree containing 100, 000 distinct natural numbers
chosen randomly. The implementation of red-black trees is largely adopted
from [Okasaki, 1998].

We use the format t1/t2 (n%) in Figure 12 to indicate that it takes t1 (t2) seconds
to run the experiment without (with) tag check elimination and t2 is n% less
than t1. Garbage collection time is excluded when SML/NJ is used and included
otherwise.

Tag check elimination leads to virtually no gain in the case of last, nth and zip
when the OCAML native compiler is used. This is not surprising since what is
eliminated is simply a conditional test and no memory instruction is involved. On
the other hand, the significant gains in these cases when the SML/NJ compiler
is used seem to indicate that tag check elimination may have interacted with
other compiler optimizations such as loop unrolling.

Though the gains are marginal at best in some of the presented cases, we feel
that tag check elimination is justified as (a) the main machinery for tag check
elimination is already set up during type-checking, (b) tag check elimination
always removes dead code and thus leads to more efficient code that is of smaller
size, and (c) tag check elimination becomes necessary if we intend to build a
certifying compiler that can certify that no match failure can result from the
code generated from a set of exhaustive pattern matching clauses. Note that
(b) is a strong point as it clearly separates tag check elimination from various
heuristic compiler optimizations that make some programs run faster but slow
others down.

6 Related Work

In [MacQueen and Baudinet, 1985], there is a study on pattern matching compi-
lation in ML, where heuristics are presented for arranging tag checks so as to min-
imize the size of generated test trees. Also pattern matching compilation for lazy
evaluation is studied in [Augustsson, 1985, Laville, 1988, Puel and Suárez, 1993].
Clearly, we can always use the methods presented in these studies to generate a
test tree and then further prune the test tree with the method given in Section 4.

Pattern matching in the presence of dependent types as are described in
Martin-Löf’s type theory [Nordström et al., 1990] is studied in [Coquand, 1992].
There, some sufficient conditions are presented to ensure the correctness of a
function definition given through pattern matching. In this respect, the work is
casually related to ours.

A type-preserving interpreter for a language like Lam is also implemented in
[Augustsson and Carlsson, 1999]. The implementation, to which our implemen-

869Xi H.: Dependently Typed Pattern Matching

tation in DML bears certain similarity, is written in Cayenne, a functional pro-
gramming language extending Haskell with dependent types [Augustsson, 1998].
It is reported that the implementation is considerably faster than a correspond-
ing one in Haskell because of the elimination of numerous tag checks at run-time.

Dependent datatypes are most closely related to indexed types developed
in the context of lazy functional programming [Zenger, 1998] (an earlier ver-
sion can be found in [Zenger, 1997]), and a brief comparison between indexed
types and the dependent types in DML is given in [Xi and Pfenning, 1999].
Also, the use of dependent types in array bound check elimination is studied
in [Xi and Pfenning, 1998].

7 Conclusion

The primary motivation for the introduction of dependent datatypes is to allow
the programmer to express more program properties through types and thus
capture more program errors at compile-time.

In DML, nondeterministic pattern matching is assumed in static semantics
while sequential pattern matching is adopted in dynamic semantics. This gap
makes the typing rules for pattern matching in DML too conservative as is
demonstrated in many examples. We have presented and implemented an ap-
proach that can bridge the gap by resolving the sequentiality in pattern match-
ing. We have also proven the optimality of this approach according to a reason-
able criterion.

In [Xi and Pfenning, 1998], it is demonstrated that run-time array bound
checking in realistic programs can be effectively eliminated with the use of de-
pendent types. In this paper, the application of dependent types in DML to
compiler optimization is further demonstrated as it is shown with experimental
results that dependent types can also help eliminate run-time tag checking.

In general, we are interested in the use of formal methods in language design
and implementation that can lead to not only more robust but also more efficient
programs. The use of a restricted form of dependent types in DML has exhibited
some promising results in this direction.

Acknowledgments

I thank Chad Brown for proofreading a draft of this paper and providing me
with some valuable comments.

References

[Augustsson, 1985] Augustsson, L. (1985). Compiling Pattern Matching. In Jouan-
naud, J.-P., editor, Functional Programming Languages and Computer Architecture,
pages 368–381, Berlin. Springer-Verlag LNCS 201.

870 Xi H.: Dependently Typed Pattern Matching

[Augustsson, 1998] Augustsson, L. (1998). Cayenne – a language with dependent
types. In Proceedings of the 3rd ACM SIGPLAN International Conference on Func-
tional Programming, pages 239–250, Baltimore.

[Augustsson and Carlsson, 1999] Augustsson, L. and Carlsson, M. (1999). An excer-
cise in dependent types: A well-typed interpreter. Available as
http://www.cs.chalmers.se/~augustss/cayenne/interp.ps.

[Clément et al., 1986] Clément, D., Despeyroux, J., Despeyroux, T., and Kahn, G.
(1986). A simple applicative language: Mini-ML. In Proceedings of 1986 Conference
on LISP and Functional Programming, pages 13–27.

[Coquand, 1992] Coquand, T. (1992). Pattern Matching with Dependent Types. In
Proceedings of Logical Framework Workshop at Baastad.

[Kahn, 1987] Kahn, G. (1987). Natural semantics. In Proceedings of the Symposium
on Theoretical Aspects of Computer Science, pages 22–39. Springer-Verlag LNCS 247.

[Laville, 1988] Laville, A. (1988). Implementation of Lazy Pattern Matching Algo-
rithms. In Proceedings of European Symposium on Programming, pages 298–316.
Springer-Verlag LNCS 1422.

[Laville, 1990] Laville, A. (1990). A Comparison of Priority Rules in Pattern Matching
and Term Rewriting. Journal of Symbolic Computation, 11(4):321–347.

[Leroy, 1990] Leroy, X. (1990). The ZINC Experiment: An Economical Implementa-
tion of the ML Language. Technical Report No. 117, INRIA.

[MacQueen and Baudinet, 1985] MacQueen, D. and Baudinet, M. (1985). Tree Pat-
tern matching for ML. Unpublished manuscript.

[Maranget, 1994] Maranget, L. (1994). Two Techiques for Compiling Lazy Pattern
Matching. Technical Report No. 2385, INRIA.

[Milner et al., 1997] Milner, R., Tofte, M., Harper, R. W., and MacQueen, D. (1997).
The Definition of Standard ML (Revised). MIT Press, Cambridge, Massachusetts.

[Nordström et al., 1990] Nordström, B., Petersson, K., and Smith, J. M. (1990). Pro-
gramming in Martin-Löf ’s Type Theory, volume 7 of International Series of Mono-
graphs on Computer Science. Clarendon Press, Oxford.

[Okasaki, 1998] Okasaki, C. (1998). Purely Functional Data Structures. Cambridge
University Press.

[Peyton Jones et al., 1999] Peyton Jones, S. et al. (1999). Haskell 98 – A non-strict,
purely functional language. Available at
http://www.haskell.org/onlinereport/.

[Peyton Jones, 1987] Peyton Jones, S. L. (1987). The Implementation of Functional
Programming Languages. Prentice-Hall International, London.

[Puel and Suárez, 1993] Puel, L. and Suárez, A. (1993). Compiling Pattern Matching
by Term Decomposition. Journal of Symbolic Computation, 15(1):1–26.

[Xi, 1998] Xi, H. (1998). Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University. pp. viii+189. Available as
http://www.cs.cmu.edu/~hwxi/DML/thesis.ps.

[Xi, 1999a] Xi, H. (1999a). Dead code elimination through dependent types. In The
First International Workshop on Practical Aspects of Declarative Languages, San
Antonio.

[Xi, 1999b] Xi, H. (1999b). Dependently Typed Data Structures. In Proceedings of
Workshop on Algorithmic Aspects of Advanced Programming Languages, pages 17–33,
Paris, France.

[Xi and Pfenning, 1998] Xi, H. and Pfenning, F. (1998). Eliminating array bound
checking through dependent types. In Proceedings of ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 249–257, Montréal,
Canada.

[Xi and Pfenning, 1999] Xi, H. and Pfenning, F. (1999). Dependent types in practi-
cal programming. In Proceedings of ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 214–227, San Antonio, Texas.

871Xi H.: Dependently Typed Pattern Matching

[Zenger, 1997] Zenger, C. (1997). Indexed types. Theoretical Computer Science,
187:147–165.

[Zenger, 1998] Zenger, C. (1998). Indizierte Typen. PhD thesis, Fakultät für Infor-
matik, Universität Karlsruhe.

872 Xi H.: Dependently Typed Pattern Matching

