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Abstract: We present a new constant propagation (CP) algorithm for predicated code,
for which classical CP-techniques are inadequate. The new algorithm works for arbi-
trary control flow, detects constancy of terms, whose operands are not constant them-
selves, and is optimal for acyclic code such as hyperblocks, the central “compilation
units” for instruction scheduling of predicated code. The new algorithm operates on
the predicated value graph, an extension of the well-known value graph of Alpern et
al. [Alpern et al., 1988], which is tailored for predicated code and constructed on top
of the predicate-sensitive SSA-form, which has been introduced by Carter et al. [Carter
et al., 1999]. As an additional benefit, the new algorithm identifies off-predicated in-
structions in predicated code. They can simply be eliminated thereby further increasing
the performance and simplifying later compilation phases such as instruction schedul-
ing.
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1 Motivation

Constant propagation (CP) aims at replacing term occurrences which always
yield the same constant value at run-time by this value (cf. [Aho et al., 1977; Aho
et al., 1985; Kennedy, 1981; Muchnick, 1997]). It belongs to the most important
and widespread optimizations in contemporary compilers. However, current CP-
techniques are inadequate to handle predicated code, i.e., code where instructions
are guarded by a 1-bit register, which dynamically controls whether the effect
of an instruction is committed or nullified. In order not to corrupt the program
semantics, they have to be overly conservative. For illustration consider Figure
1, where statements are written using the syntax of the IA-64 for predication
[Intel Corp., 1999; Dulong, 1998].
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Symposium on Programming Languages (SBLP 2003) (Ouro Preto, MG, Brazil, May
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(q) x = ...

5(p) y =

(p) x = 2

b)

(p) x = 2

(q) x = ...

(p) y = x+3

a)

cmp.unc p,q = a<b cmp.unc p,q = a<b

Figure 1: Illustrating the essence of CP on predicated code.

In this example, the predicates p and q guarding the execution of the state-
ments will always have different truth values according to the semantics of the
IA-64 machine model (cf. Section 2). The classical CP-techniques, however, are
not prepared to incorporate such information. They do not realize that the as-
signment to y is not committed in case the second assignment to x is commit-
ted. Hence, they have to conservatively assume that variable x can be modified
between the first assignment to x and its use site in the assignment to y. Conse-
quently, they fail to achieve the desired optimization of Figure 1(b). Predicated
code, however, is getting more and more common due to the emerging dissemi-
nation of architectures such as the IA-64 (cf. [Intel Corp., 1999; Dulong, 1998]).
This demands for new predicate-sensitive techniques. Though two generic frame-
works for bit-vector problems have recently been proposed [Hu, 2000; August,
2000], we are not aware of any predicate-sensitive technique applicable to con-
stant propagation.

1.1 Predicated Code and Hyperblocks

An important advantage of predicated code is that it allows a compiler to elim-
inate branches by melting both paths of a branch to a single path. Even more,
due to predication several smaller basic blocks can be combined to one larger hy-
perblock (cf. [Mahlke et al., 1992]). Following [Mahlke et al., 1992], a hyperblock
is a predicated portion of code consisting of a group of basic blocks with one
entry point and possibly multiple exit points. In predicated form, a hyperblock
reduces to a straightline sequence of code. Fundamental for the construction of a
hyperblock is a transformation known as if-conversion (cf. [Allen et al., 1983]).
In the context of a hyperblock, if-conversion eliminates branches where both tar-
gets are in the hyperblock, by converting them to predicated instructions. As a
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consequence, there are no cyclic control-flow or data-flow dependences within the
hyperblock, since remaining branches have targets outside the hyperblock. For
architectures such as the IA-64, the importance of switching by means of predi-
cated execution from (smaller) basic blocks to (larger) hyperblocks is that it in-
creases instruction level parallelism (ILP) and removes hard-to-predict branches.
As a consequence, basic blocks to be included in a hyperblock are carefully se-
lected by compilers for predicated code. Typically, this is done on the basis of so-
phisticated program profiling exploiting information such as execution frequency,
basic block size, operation latencies, and other characteristics (cf. [August et al.,
1997; Allen et al., 1983; Carter et al., 1999; Park and Schlansker, 1991; Warter
et al., 1993]). In fact, hyperblocks are most important “compilation units” for
compilers handling predicated code, particularly for scheduling.

In this scenario, CP has an important impact on the quality of instruction
schedules. Firstly, replacing arbitrary loads by more efficient loads of constants
reduces the risk of pipeline stalls due to cache misses. Secondly, CP easily iden-
tifies dead instructions whose guarding predicates are equivalent to false (this
is also called “off-predicated).” They can simply be removed from the code en-
hancing the performance further. Moreover, this clearance makes subsequent
compilation phases more effective, in particular, the scheduling process of the
instructions of the corresponding hyperblock (cf. [Carter et al., 1999]).

In comparison to ordinary code, hyperblocks show two important characteris-
tics, which are central for the design of our CP-algorithm. First, they originate
from acyclic control flow. This enables optimal solutions detecting all constants
(cf. [Steffen and Knoop, 1989; Steffen and Knoop, 1991]). Second, they are of
moderate size. In addition, this size is under the control of the compiler. Hence,
the size of hyperblocks can be considered a (usually small) constant in that of
the overall program. Together, these characteristics recommend hyperblocks as
subjects also of in the worst case expensive, but powerful and aggressive opti-
mizations. Optimal CP is one such an example.

1.2 The New CP-Algorithm

In this article, we propose a new algorithm for CP, which is tailored for predi-
cated code. Conceptually, this algorithm resembles the CP-algorithm of [Knoop
and Rüthing, 2000]. The algorithm of [Knoop and Rüthing, 2000] is unique in
that it performs CP on the value graph (cf. [Alpern et al., 1988]) of a program,
which is constructed on top of the static single assignment (SSA) form (cf. [Ay-
cock and Horspool, 2000; Cytron et al., 1989; Cytron et al., 1991]) of a program;
an intermediate program representation, which has been used with much success
in optimizing compilation (cf. [Chow et al., 1997; Kennedy et al., 1999; Kennedy
et al., 1998; Rosen et al., 1988]). As shown in [Knoop and Rüthing, 2000], the
value graph is not only most adequate for CP, the resulting algorithm is even
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Figure 2: The running example.

more powerful than the state-of-the-art algorithms used in contemporary com-
pilers for CP computing simple constants (cf. [Kildall, 1973; Kam and Ullman,
1977]). The algorithm, which we are going to present here, consists of a local
component for predicated hyperblocks, and a global component propagating the
locally gained information on constant terms throughout the program. The local
component of this algorithm is based on an extension of the value graph being
tailored for predicated code: the predicated value graph (PVG). The PVG of
a program is constructed on top of the predicated SSA (PSSA) form for predi-
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cated hyperblocks, which has been proposed by Carter et al. [Carter et al., 1999].
Moreover, the local component is parameterized in the treatment of predicates.
Already the basic version of the local component detects all constants in a hy-
perblock, which do not depend on the predication. Intuitively, this corresponds
to a nondeterministic interpretation of the branching structure of the underlying
hyperblock. The corresponding full version takes branching into account, too. In
a hyperblock, it detects all constants with respect to the deterministic interpre-
tation of branches, whose outcome depends only on the context the hyperblock
is analyzed in. It is trace-precise as we call this property.

1.3 Illustrating the Power of the New CP-Algorithm

The power of the new algorithm is illustrated by means of the example of Figure
2 and Figure 3. In the article, we focus on the effect of our algorithm on a specific
hyperblock of the program of Figure 2, where the shadowed boxes are assumed
to represent hyperblocks, too. The basic version of our algorithm detects already
the constancy of z at the end of this program fragment of Figure 3(a) in block J

as it does not depend on the particular branching structure. The full version of
our algorithm detects additionally the constancy of w at the end of the blocks
G and H . Note that the outcome of the branching condition odd(z) in block F

cannot statically be determined – neither the true-branch nor the false-branch
originating there are dead code, which, e.g., prevents the algorithm of [Wegman
and Zadeck, 1985; Wegman and Zadeck, 1991] to detect the constancy of w in
the blocks G and H . In fact, detecting this requires a “trace-precise” analysis.
In this example, a successful analysis has to prove that only the occurrence of
variable z assigned to in block A reaches the use site in block G (but not the one
assigned to in block E), while only the occurrence of x assigned to in block E

reaches the use site in block H (but not the occurrences assigned to in the blocks
B and D). In fact, none of the occurrences of w is a conditional constant in the
sense of [Wegman and Zadeck, 1985; Wegman and Zadeck, 1991]. Hence, their
constancy will not be detected by the algorithm of [Wegman and Zadeck, 1985;
Wegman and Zadeck, 1991].3 Likewise, the occurrence of z in block J is neither
a simple constant, nor a constant in the sense of Kam and Ullman’s heuristic
extension of simple constants of [Kam and Ullman, 1977]. Hence, the constancy
of z will not be detected by the standard CP-algorithms used in contemporary
optimizing compilers (though it would be detected using the algorithm of [Steffen
and Knoop, 1989; Steffen and Knoop, 1991]).

3It should be noted that the algorithm of Wegman and Zadeck works for arbitrary
control flow. However, it is not clear, how to adopt this algorithm to predicated code.

833Knoop J., Ruething O.: Constant Propagation on Predicated Code



b > 0 ?
C

w = 
v = 7
u = 5

1

G

b > 0 ?
C

H

w = x
v = 5
u = 7

b > 0 ?
C

H

w = x
v = 5
u = 7

x = 3
y = 2

D

x = 2
y = 3

B

b = random()
z = 3
a > 0 ?

a = random()
A

odd(z) ?
F

y = 1
x = 4
z = 2

E

w = z mod 2

G

v = 7
u = 5

J

z = s+t
t = y+v
s = x+u

true false

true false

true false

c)

x = 3
y = 2

D

x = 2
y = 3

B

b = random()
z = 3
a > 0 ?

a = random()
A

odd(z) ?
F

y = 1
x = 4
z = 2

E

J

z =
t = y+v
s = x+u

true false

true false

true false

17

H

w =
v = 5
u = 7

4

The Deterministic Path-Precise

b)

x = 3
y = 2

D

x = 2
y = 3

B

b = random()
z = 3
a > 0 ?

a = random()
A

odd(z) ?
F

y = 1
x = 4
z = 2

E

w = z mod 2

G

v = 7
u = 5

J

z =
t = y+v
s = x+u

true false

true false

true false

17

The Non-Deterministic Path-Precise
Full OptimizationBasic Optimization

a)

Original Hyperblock

Figure 3: The running example: Illustrating the unique power of path-precise
constant propagation.

1.4 Structure of the Article

In Section 2 we present our preliminaries, before recalling the PSSA-form of
[Carter et al., 1999] in Section 3. Fundamental is Section 4, in which we illustrate
our new algorithm for CP for predicated code. In particular, we oppose its local
component to the CP-algorithm of [Knoop and Rüthing, 2000]. Subsequently,
we present the main results applying to the new approach in Section 5, and
discuss benefits-for-free evolving from it. In Section 6 , finally, we present our
conclusions.

2 Preliminaries

Predication. We assume the architectural support of general predicated execu-
tion as modelled in the IA-64 architecture [Intel Corp., 1999; Dulong, 1998], in
which the execution of an instruction can be guarded by a qualifying predicate.
In particular, there is a special predicate p0, which cannot be written and whose
value is always equal to true.4 Predicates can be set by means of compare in-
structions of the form: (qp) cmp.ctype p1, p2 = r2, r3 (crel), where p1

and p2 are two target predicates, and qp is the qualifying predicate. The two
4Such a predicate is featured by several predicated architectures including the IA-64.
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source operands, r2 and r3, are compared based on the relation specified by
crel. There is a number of comparison types, in the article, however, we will
only use the type unc which is a shorthand for unconditional (see e.g. [Knoop
et al., 2000] for other types). If the qualifying predicate holds then p1 and p2 are
set exclusively true, otherwise p1 and p2 are set to false.

To explore predication, a compiler usually applies a technique called if-conv-
ersion (cf. [Allen et al., 1983]). This technique eliminates branch instructions
and converts affected instructions to appropriate predicated form. Table 1 sum-
marizes the result of the if-conversion transformation for our running example of
Figure 3(a). The left column of this table shows the source code of this example.
The right column shows the code after if-conversion. In the following we focus
on programs representing hyperblocks, which are given in if-converted form.

Original Hyperblock | After if-Conversion
=================== | ===================

|
begin | begin
a = random(); | (p0) a = random();
b = random(); | (p0) b = random();
z = 3; | (p0) z = 3;
if a>0 then | (p0) cmp.unc B,C (a>0);

x = 2; | (B) x = 2;
y = 3 | (B) y = 3;

elsif b>0 then | (C) cmp.unc D,E (b>0);
x = 3; | (D) x = 3;
y = 2 | (D) y = 2;

else |
z = 2; | (E) z = 2;
x = 4; | (E) x = 4;
y = 1 fi; | (E) y = 1;

if odd(z) then | (p0) cmp.unc G,H (odd(z));
u = 5; | (G) u = 5;
v = 7; | (G) v = 7;
w = z mod 2 | (G) w = z mod 2;

else |
u = 7; | (H) u = 7;
v = 5; | (H) v = 5;
w = x fi; | (H) w = x;

s = x+u; | (p0) s = x+u;
t = y+v; | (p0) t = y+v;
z = s+t | (p0) z = s+t
end. | end.

Table 1: Source code and if-converted code of the running example of Figure 3(a).

Semantics of Terms. We consider terms t ∈ T which we assume to be in-
ductively built from variables v ∈ V, constants c ∈ C, and operators op ∈
Op of arity r ≥ 1. The semantics of terms is induced by an interpretation
I = ( D′ ∪ {⊥,�}, I0 ), where D′ denotes a non-empty data domain, ⊥ and �
two new data not in D′, and I0 a function mapping every constant c ∈ C to
a datum I0(c) ∈ D′, and every r–ary operator op ∈ Op to a total function
I0(op) : Dr → D, D=df D′ ∪ {⊥,�} being strict in ⊥ and � with ⊥ priori-
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tized over � (i.e., I0(op)(d1, . . . , dr )=⊥, whenever there is a j, 1 ≤ j ≤ r, with
dj =⊥, and I0(op)(d1, . . . , dr )=�, whenever there is no j, 1 ≤ j ≤ r, with
dj =⊥, but a j, 1 ≤ j ≤ r, with dj =�). Σ=df { σ |σ : V → D } denotes the set
of states, and σ⊥ the distinct start state assigning ⊥ to all variables v ∈ V. This
choice reflects that we do not assume anything about the context of a program
being optimized. The semantics of a term t ∈ T is then given by the inductively
defined evaluation function E : T → (Σ → D):

∀ t ∈ T ∀σ ∈ Σ. E(t)(σ)=df




σ(x) if t = x ∈ V
I0(c) if t = c ∈ C
I0(op)(E(t1)(σ), . . . , E(tr)(σ)) if t = op(t1, . . . , tr)

Note that the above definitions can naturally be extended to predicate registers
and to terms composed of relators like < , = , >, etc. For both, the semantic
domain is given by the set of Boolean truth values B=df {true, false}. This ex-
tension allows us to take the outcome of branching instructions into account,
too. For convenience we assume B⊆D′ ⊆T, i.e., we identify the set of data D′

with the set of constants C.

3 Predicated Static Single Assignment Form

Intuitively, the predicated static single assignment (PSSA) form of a program
proposed by Carter et al. [Carter et al., 1999] is a predicate-sensitive implemen-
tation of the well-known static single assignment (SSA) form (cf. [Cytron et al.,
1989; Cytron et al., 1991; Aycock and Horspool, 2000]), which is tailored for
hyperblocks.

In non-predicated code, the essence of SSA is to reveal use-definition chains
of variables by replacing the variables of the original program by new renamed
versions such that every variable has a unique definition point. At join points of
the control flow pseudo-assignments xk := φ(xi1, . . . , xik) are introduced mean-
ing that xk gets the value of xij , if the join node is entered via the jth ingoing
edge. This is illustrated in Figure 4(b). It shows the SSA-representation of the
program of Figure 4(a), where φ-operators are indexed by their corresponding
join node.

The PSSA form presented in [Carter et al., 1999] is a predicate-sensitive ex-
tension of the SSA-form for predicated hyperblocks, whose construction rests
on the following substantial design decisions. First, φ-statements are resolved
in PSSA-form. Reflected in terms of SSA, this would essentially mean to trans-
form the program of part (a) of Figure 4 into the one of part (c) rather than
the one of part (b). This means, instead of φ-functions path-specific duplicates
of statements are introduced. Second, for each basic block of a hyperblock, a
so-called full-path predicate (FPP) is introduced in PSSA. Intuitively, an FPP
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Figure 4: SSA-form and value graph: (a) the original program, (b) the program
after SSA-conversion, and (c) the SSA-form with resolved φ-functions.

specifies the unique path along which an operation is valid for execution. Each
of the FPP-definitions has the appropriate operand versions for its path, and is
guarded by the FPP that defined the path prior to reaching the new block. This
enables PSSA to provide correct guarding predicates for the duplicate statements
previously described. Third, block predicates are introduced which are defined
as the union of the FPPs associated with the paths that reach the block. In the
PSSA-form the block predicates are defined by means of OR-statements.

The motivation underlying these design decisions is to enable the PSSA-form
of a program to encode information about each path existing in the hyperblock.
Hence, it is exponential in the size of a hyperblock. It is thus important to
remember that the size of a hyperblock is compiler-controlled, which in practice
can be considered a (reasonably sized) constant in the overall program size.

The construction of the PSSA form of a program proceeds by successively
processing the instructions of the if-converted hyperblock. This process relies on
two subprocedures, called Control PSSA and Normal PSSA (cf. [Carter et al.,
1999]). They are invoked depending on the instruction encountered in the if-
converted code. If this is a normal instruction, i.e., different from a predicate
register defining cmp-instruction, Normal PSSA is invoked. This procedure pro-
ceeds essentially as its counterpart for ordinary SSA-conversion except for the
case that the instruction is part of a join block. In this case multiple versions
of the operands may be alive. In ordinary SSA, this is handled by means of
φ-functions. In PSSA, however, these instructions are duplicated for each path
leading to the join, and the correct operand versions for each path will be used.
The intuition behind this duplication is illustrated in Figure 4(c). The duplicates
are guarded by the FPPs associated with the path along which the operands are
defined. It is worth noting that all these duplicates are predicated on disjoint
predicates. Hence, at run-time only one of them can possibly be true, and be
committed. For illustration consider the multiple guarded assignments to s1 and
t1 at the bottom of the right column of Table 2 which are all guarded by distinct
FPPs.

When a cmp-instruction is encountered, Control PSSA is invoked. The cmp-
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instruction is then replaced by one or more new cmp-instructions, where each of
them is associated with a particular path leading to that block.

In [Carter et al., 1999], the process of PSSA-conversion is described in full
detail. In particular, it is exposed how to avoid the introduction of unnecessary
duplicates, i.e., of “duplicated” duplicates, and thus an unnecessary growth of
the PSSA-form. In this article, we do not make use of this heuristics in order to
keep the technical development of Section 4 as simple as possible. Table 2 shows
the PSSA-form of the if-converted code of Table 1.5

4 Constant Propagation on Predicated Code

In this section, we present the new CP-algorithm. It operates on a new data
structure called the predicated value graph (PVG), which is constructed on top
of the PSSA-form of a program. For the convenience of the reader, we recall
the essence of the underlying CP-algorithm for non-predicated code of [Knoop
and Rüthing, 2000] first. This algorithm works on the value graph, which is
constructed on top of te SSA-form of a program.

4.1 Background

Basically, the value graph of a program represents the value transfer of SSA vari-
ables along the control flow of the program. Following the definition in [Much-
nick, 1997], the value graph is a labelled directed graph, where

– the nodes correspond to occurrences of nontrivial assignments, i.e., assign-
ments whose right-hand sides contain at least one operator, and to occur-
rences of constants in the program. Every node is labelled with the cor-
responding constant or operator symbol, and additionally with the set of
variables whose value is generated by the corresponding constant or assign-
ment. The generating assignment of the left-hand side variable of a trivial
assignment x := y is defined as the generating assignment of y. An operator
node is always annotated with the left-hand side variable of its correspond-
ing assignment, and the left-hand side variable of a trivial assignment x := c

is attached to the annotation of the corresponding node associated with c.
By convention, constant and operator labels are written inside the circle
visualizing the node, and variable annotations outside.

– Directed edges point to the operands of the right-hand side expression asso-
ciated with the node. Here, we make the implicit assumption that edges are

5Instructions marked by “[∗]” can be eliminated as a side-effect of our approach. They
are off-predicated as detected by our CP-algorithm. Similarly, instructions marked by
“[−]” can be simplified as certain predicates occurring are detected to be false. The
resulting program is shown in Table 3. For (algorithmic) details see Section 4.
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begin
(p0) A = OR(TRUE);
(A) a1 = random();
(A) b1 = random();
(A) z1 = 3;
(A) cmp.unc BA,CA (a1>0);
(p0) B = OR(BA);
(p0) C = OR(CA);
(B) x1 = 2;
(B) y1 = 3;
(C) cmp.unc DCA,ECA (b1>0);
(p0) D = OR(DCA);
(p0) E = OR(ECA);
(D) x2 = 3;
(D) y2 = 2;
(E) z2 = 2;
(E) x3 = 4;
(E) y3 = 1;
(BA) FBA = OR(TRUE);
(DCA) FDCA = OR(TRUE);
(ECA) FECA = OR(TRUE);
(p0) F = OR(FBA,FDCA,FECA);
(FBA) cmp.unc GFBA,HFBA (odd(z1));
(FDCA) cmp.unc GFDCA,HFDCA (odd(z1));
(FECA) cmp.unc GFECA,HFECA (odd(z2));

[-] (p0) G = OR(GFBA,GFDCA,GFECA);
[-] (p0) H = OR(HFBA,HFDCA,HFECA);

(GFBA) w1 = z1 mod 2;
(GFDCA) w1 = z1 mod 2;

[*] (GFECA) w1 = z2 mod 2;
(G) u1 = 5;
(G) v1 = 7;

[*] (HFBA) w2 = x1;
[*] (HFDCA) w2 = x2;

(HFECA) w2 = x3;
(H) u2 = 7;
(H) v2 = 5;
(GFBA) JGFBA = OR(TRUE);
(GFDCA) JGFDCA = OR(TRUE);

[*] (GFECA) JGFECA = OR(TRUE);
[*] (HFBA) JHFBA = OR(TRUE);
[*] (HFDCA) JHFDCA = OR(TRUE);

(HFECA) JHFECA = OR(TRUE);
[-] (p0) J = OR(JGFBA,JGFDCA, JGFECA,JHFBA, JHFDCA,JHFECA);

(JGFBA) s1 = x1+u1;
(JGFBA) t1 = y1+v1;

[*] (JGFDCA) s1 = x2+u1;
[*] (JGFDCA) t1 = y2+v1;

(JGFECA) s1 = x3+u1;
(JGFECA) t1 = y3+v1;

[*] (JHFBA) s1 = x1+u2;
[*] (JHFBA) t1 = y1+v2;
[*] (JHFDCA) s1 = x2+u2;
[*] (JHFDCA) t1 = y2+v2;
[-] (JHFECA) s1 = x3+u2;

(JHFECA) t1 = y3+v2;
(J) z3 = s1+t1;

end.

Table 2: The PSSA-form of the if-converted code of Table 1.
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ordered from left to right. For convenience, we assume that all operators are
binary.6

Figure 5(a) illustrates the construction above by means of the value graph of
the program of Figure 4(b). Note that the toned oval boxes are not part of the
value graph, but represent the auxiliary information used by the CP-algorithm
working on it. Intuitively, the CP-algorithm of [Knoop and Rüthing, 2000] iter-
atively visits the nodes of the value graph of a program, until the greatest fixed
point is reached. Figure 5 illustrates this fixed point iteration for the example
of Figure 4(b). Key is the evaluation of nodes labelled by ordinary operators
and φ-operators, respectively. It is done according to the following two rules,
which reflect the evaluation of terms, and the merge of data-flow information
at join nodes in the program. The variable dfi[n] (short for data-flow informa-
tion) stores the information at the value graph node n: (1) Evaluating terms :
dfi[n] = I0(ω)(dfi[l(n)], dfi[r(n)]) with opt the operator at node n. (2) Merging
DFA-info’s at join nodes : dfi[n] =dfi[l(n)] 
 dfi[r(n)].

4.2 The Global CP-Algorithm

The complete algorithm is composed of a global and a local component. In
essence, the global component controls the propagation of the constant propa-
gation information collected by the local component in hyperblocks throughout
the program. Hence, the global algorithm works on a partitioning of the program
in hyperblocks, and matches the usual pattern of a fixed point algorithm. Note
that a hyperblock may have multiple exits. This must be taken care of when
propagating data-flow information through the program during the course of
updating the successor-environment of a hyperblock. In the algorithm below, we
denote the data-flow information valid at an (exit) instruction m in a hyperblock
hb by Info[hb@m]. This information can easily be extracted from the predicated
value graph, the data structure used by the local component of our algorithm
(cf. Section 4.3).

Algorithm 1 The Global CP-Algorithm.

Input: (1) A flow graph G=(N, E, s, e), and (2) a partitioning of G into a set
of hyperblocks HB = {HB1, . . . , HBk} such that HB1 contains the start node s
of G, and a start information cs ∈ [Var→D′ ∪ {⊥,�}] mapping every variable
occurring in the program to a value ensured to be valid on entering G.

Output: An annotation of G with constant propagation information.

Remark: The variable workset controls the iterative process. Its elements are
hyperblocks of G, whose annotating informations have recently been updated.
6Extensions to operators of arbitrary arity are straightforward.
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Figure 5: The data-flow analysis on the value graph of the program of Figure
4(b): (a) the start annotation and (b) the greatest fixed point annotation.

�F is assumed to denote the greatest element of [Var→D′ ∪ {⊥,�}], pred and
succ denote the predecessors and successors of a node.

( Prologue: Initialization of the annotation array inf, and the variable workset )

FORALL hb ∈ HB\{HB1} DO inf[hb] := �F OD;
inf[HB1] := cs;
workset := {HB1};

(Main process: Iterative fixed point computation )

WHILE workset �= ∅ DO

CHOOSE hb ∈ workset;
workset := workset\{hb};
( Calling the Local Component for CP on Hyperblocks (cf. Section 4.3) )

“choose basic resp. full version of the local algorithm to analyze hb”;
( Update the successor-environment of block hb )

FORALL hb′ ∈ succ(hb) DO
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meet := inf[hb′] 
 
{Info[hb@m] |m ∈ Nodes(hb) ∩ pred(start(hb′))};
IF meet � inf[hb′]

THEN

inf[hb′] := meet;
workset := workset ∪ {hb′} FI

OD

ESOOHC

OD.

4.3 The Local CP-Algorithm

The local component of our new algorithm works on predicated hyperblocks.
Conceptually, it follows the lines of the algorithm of [Knoop and Rüthing, 2000]
working on the value graph of a program. Most important is thus the introduction
of a predicated version of the value graph. We do this in two steps leading us to
two value graph variants of different expressivity. Each of them induces a local
CP-algorithm, called the basic and the full version, respectively. The unique
power of these algorithms as illustrated in part (b) and (c) of the running example
of Figure 3.

4.3.1 Basic CP-Algorithm

Figure 6 shows the PSSA-based variant of the value graph resulting from the
first step mentioned above. We call it the basic variant as it does not model
guarding predicates. In essence, this means that program branches are treated
non-deterministically. This value graph variant allows already trace-precise CP
with respect to non-deterministically interpreted program branches. In compar-
ison to the value graph for non-predicated code, the super nodes represented
by rectangular boxes are the only novelty. They allow us to handle the vari-
ous duplicates introduced in PSSA for computations occurring in join blocks.
While the indexed versions of e.g., s1 and t1 represent unique SSA-names for
the left-hand sides of the duplicated instructions, the unindexed variables s1
and t1 attached to the super nodes allow us to maintain information com-
mon to all their indexed versions representing pathwise specializations. Given
this value graph, the new CP-algorithm proceeds essentially as its counterpart
of [Knoop and Rüthing, 2000]. This is illustrated in Figure 7. The only nov-
elty is the treatment of nodes whose outgoing edges point to supernodes, like
e.g., the node labelled by z3. Here, the evaluation has to take all combinations
of corresponding, also called matching operands into account, i.e., to evaluate
s1JGFBA + t1JGFBA, s1JGFDCA + t1JGFDCA, . . . , s1JHFECA + t1JHFECA, and
to merge the results. This way, the new algorithm detects the constancy of z at
the end of the hyperblock, though none of its subterms is constant. Finally, it is
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worth noting that the annotation of the PSSA-based value graph requires only
a single pass starting from the leafs and proceeding to the root nodes. This is
because of the absence of cyclic dependencies as the local component is dealing
with hyperblocks. The following paragraph makes the notion of the basic version
of the predicated value graph (PVG), and the evaluation procedure more precise.

The basic predicated value graph consists of elementary nodes EN and su-
per nodes SN . Elementary nodes correspond to the nodes of an ordinary value
graph. Those encapsulated by a super node are also called component nodes. The
indexed variables attached to a component node are unique SSA-names for the
left-hand sides of the duplicated instructions. The index of the corresponding
full path predicate identifies them uniquely. Applied to a supernode, the func-
tion ElemNodes yields the set of its component nodes, applied to an elementary
node, it returns the argument. Two component nodes ns1 and ns2 of different
super nodes s1 and s2 match each other if their indexing full path predicates are
the same.7 Additionally, a component node of a supernode matches each elemen-
tary node which is not a component node. We denote the corresponding relation
by match. It is central to formulate the rule governing the evaluation of terms
having super nodes as operands. Next, we are presenting these evaluation rules
which are the analogue to the rules of the unpredicated setting recalled earlier
in Section 4. The extension of the function ElemNodes and the relation match
to elementary nodes allows us to avoid lengthy case distinctions. Note that the
main step below does not require iterated visits of a node, if nodes are visited
levelwise starting at the level of leaves, and if on each level the elementary nodes
are processed before their enclosing super nodes.

Initial Step: For each node n in the predicated value graph initialize:

dfi[n] =
{

I0(c) if n is an elementary leaf node with lab[n] = c

� otherwise

Main Step:

1. For an elementary inner node n labelled with operator ω:
dfi[n] =
{I0(ω)(dfi[cnl], dfi[cnr]) | cnl ∈ ElemNodes(l(n)) ∧
cnr ∈ ElemNodes(r(n)) ∧match(cnl, cnr)} (Evaluating terms)

2. For a supernode n: dfi[n] =
{dfi[cn] | cn ∈ ElemNodes(n)}
(Merging DFA-info’s of duplicated variables)

7Suppressing the introduction of (some) unnecessary duplicates in the style of Carter
et al., the indexing predicates are generally disjunctions of full path predicates. In this
case, the nodes ns1 and ns2 match each other, if the indexing predicate of ns1 is a
disjunctive operator in the one of ns2 or vice versa.
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4.3.2 Full CP-Algorithm

The full version of the PSSA-based PVG takes additionally guarding predicates
into account. In essence, predicates are treated as any other variable occurring
in the program. In addition, however, the PVG connects each variable with the
PVG node representing the predicate guarding the instruction in the PSSA of the
program assigning to it. This makes the PVG predicate-sensitive as illustrated in
Figure 8, and allows us to interpret branching deterministically, where possible.
For clarity only those edges are shown in Figure 8, which are needed for the
example.

Given the PVG, the evaluation process proceeds essentially as for the basic
algorithm. It proceeds from the leaves towards the roots and does not require
any iterations. In fact, as in the basic algorithm, each node is visited exactly
once. The result of this evaluation process is displayed in Figure 9. In distinc-
tion to the basic algorithm, the evaluation of nodes whose outgoing edges point
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to supernodes is now controlled by the edges indicating the relevant guarding
predicates. Technically, this is achieved by replacing the evaluation step for terms
of the evaluation procedure of the basic algorithm by

1′. For an elementary inner node n labelled with operator ω:
dfi[n] =
{I0(ω)(dfi[cnl], dfi[cnr]) | cnl ∈ ElemNodes(l(n)) ∧

cnr ∈ ElemNodes(r(n)) ∧match(cnl, cnr) ∧
guardingPred({cnl, cnr}) ⊆ {true,�} }

(Evaluating terms)

New is the predicate guardingPred. It acts as a predicate-sensitive filter causing
the evaluation of terms only for those operands, whose guarding predicate is true
(“true”), or has not yet been evaluated (“�”). To avoid case distinctions in the
definition, guardingPred is defined to be true for elementary nodes which are no
component nodes. For a component node it holds, if the data-flow information
attached to the node of its guarding predicate is true or �. The complete step
then leads to predicate-sensitive trace-precise CP. In addition to z3, the full
algorithm detects the constancy of w1 and w2 located in the blocks G and H in
the original program, too.
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Figure 8: The predicated value graph (as far as being relevant for the example).

4.3.3 The Running Example.

Table 3 shows the effect of our CP-algorithm to the running example. Off-
predicated instructions marked by [∗] in Table 2 have been removed. Instruc-
tions marked by [−] have been simplified in comparison to their counterparts
of Table 2 as some predicates occurring as operands in these instructions have
been detected to be false by our algorithm.

845Knoop J., Ruething O.: Constant Propagation on Predicated Code



+

odd

odd

s1 s1 s1 s1 s1 s1

t1

1

t1

1

t1

0

17

t1

11

t1

10

t1

w1

9

, w1

9

w1’’’

87

6788
+9

z3

1 2 3 4 5 7

x1,y2,z2,w2 x2,y1,z1,w2

? ?

u2,v1u1,v2 a b

+

+ +

+ +

++ +

+

+

J

+

mod 2 mod 2

w2
x3,w2y3

HFBA
HFDCAHFECAneg neg

GFBA
GFDCAId GFECA Id

s1

or

false

t1
10

754

w1

w1

true

false
true

false

true

1

4

2 3

GFECA

HFECAHFDCAHFBA

JHFECAJHFDCAJHFBAJGFECAJGFDCA
JGFBA

GFDCAGFBA

JHFECAJHFDCAJHFBAJGFECAJGFDCAJGFBA

Figure 9: The predicated value graph after constant propagation.

5 Main Results

In this section we summarize the main results applying to the new algorithm and
its local components. First of all, the overall approach is sound, i.e., whenever a
term is reported to be a specific constant, then it is.

Theorem 2 Soundness.
The global CP-algorithm (Algorithm 1) as well as the basic and full version of
its local component are sound.

Additionally, both the basic and the full version of its local component enjoy
specific completeness (optimality) results. The basic version is optimal on acyclic
code with respect to a non-deterministic interpretation of control branches; the
full version is optimal with respect to a trace-precise deterministic interpretation.
In essence, both the soundness and optimality results are consequences of the
power of the underlying PSSA-form, which maintains information about each
control path existing in the underlying hyperblock.

Theorem 3 Completeness (Optimality).

1. The basic version of the local component of the new CP-algorithm is trace-
precise with respect to the non-deterministic interpretation of branching, i.e.,
it detects all constants, which do not depend on the particular branching
structure of the underlying hyperblock.

2. The full version of the local component of the new CP-algorithm is predicate-
sensitive trace-precise, i.e., it detects all constants in the hyperblock, which
do not depend on specific initial information being valid on entering the
underlying hyperblock.
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begin
(p0) A = OR(TRUE);
(A) a1 = random();
(A) b1 = random();
(A) z1 = 3;
(A) cmp.unc BA,CA (a1>0);
(p0) B = OR(BA);
(p0) C = OR(CA);
(B) x1 = 2;
(B) y1 = 3;
(C) cmp.unc DCA,ECA (b1>0);
(p0) D = OR(DCA);
(p0) E = OR(ECA);
(D) x2 = 3;
(D) y2 = 2;
(E) z2 = 2;
(E) x3 = 4;
(E) y3 = 1;
(BA) FBA = OR(TRUE);
(DCA) FDCA = OR(TRUE);
(ECA) FECA = OR(TRUE);
(p0) F = OR(FBA,FDCA,FECA);
(FBA) cmp.unc GFBA,HFBA (TRUE));
(FDCA) cmp.unc GFDCA,HFDCA (TRUE);
(FECA) cmp.unc GFECA,HFECA (FALSE);

[-] (p0) G = OR(GFBA,GFDCA);
[-] (p0) H = OR(HFECA);

(G) w1 = 1;
(G) u1 = 5;
(G) v1 = 7;
(HFECA) w2 = 4;
(H) u2 = 7;
(H) v2 = 5;
(GFBA) JGFBA = OR(TRUE);
(GFDCA) JGFDCA = OR(TRUE);
(HFECA) JHFECA = OR(TRUE);

[-] (p0) J = OR(JGFBA,JGFECA,JHFECA);
(JGFBA) s1 = 7;
(JGFBA) t1 = 10;
(JGFECA) s1 = 9;
(JGFECA) t1 = 8;
(JHFECA) s1 = 11;
(JHFECA) t1 = 6;
(J) z3 = 17;

end.

Table 3. The PSSA-form of the if-converted code of the running example after
constant propagation and simplification.

As mentioned earlier, there are two important benefits of our approach coming
for free. First, the local component of our CP-algorithm provides a new approach
for CP of acyclic non-predicated code. Remapping the analysis results obtained
by its basic and full version to the original program results in the promised results
of part (b) and (c) of Figure 3. Second, the full version of the local component
allows us to identify off-predicated insertions as it detects the guarding predicate
of being equivalent to false. They can simply be eliminated as demonstrated in
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Table 3. Besides enhancing the performance further, it makes subsequent com-
pilation phases such as instruction scheduling more effective [Haga and Barua,
2001]. In fact, the positive impact on such interdepending transformations is a
major achievement of our approach.

6 Conclusions

We presented an algorithm for CP on predicated code, which, to the best of
our knowledge, is the first CP-algorithm for the predicated setting. The new
algorithm works for arbitrary control flow, detects constancy of terms whose
operands are not constant themselves, and is optimal for hyperblocks, i.e., its
results are trace-precise taking the guarding predicates of the instructions fully
into account. As an important side-effect, this allows us to identify off-predicated
instructions. Eliminating them enhances the performance, and makes compila-
tion phase like scheduling more effective. Moreover, the new algorithm provides
a new means for optimal CP on acyclic programs. Because of taking branching
into account, it is even more powerful than the algorithm for finite constants of
[Steffen and Knoop, 1989; Steffen and Knoop, 1991], which interprets branch-
ing non-deterministically. The complexity of both algorithms is exponential, but
unavoidably for optimal algorithms as recent research indicates (cf. [Müller-Olm
and Rüthing, 2001]). Moreover, the compiler-controlled construction of hyper-
blocks provides an easy means for controlling the computational costs of the
algorithm’s local component. Conceptually, this component resembles the algo-
rithm of [Knoop and Rüthing, 2000] for non-predicated code as both work on a
(P)SSA-based variant of a value graph. On the one hand side, the elegant ex-
tensibility of this approach from the non-predicated setting with the SSA-form
to the predicated one with the PSSA-form shows the adequacy of the overall
approach simultaneously answering a demand posed in [Carter et al., 1999] for
further applications of the PSSA-form. As mentioned, with the advent of the
IA-64 architecture the need for such techniques will dramatically increase (cf.
[Knoop et al., 2000]). On the other hand, the limitation of the PSSA-form of
[Carter et al., 1999] to hyperblocks shows that predicated code still lacks a fully
adequate analogue of the successful SSA-representation of non-predicated code.
We are currently investigating such extensions and their applications.
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