
Organizing the Knowledge Used in
Software Maintenance

Márcio Greyck Batista Dias
(Universidade Católica de Brasília, Brazil

myck@brturbo.com)

Nicolas Anquetil
(Universidade Católica de Brasília, Brazil

anquetil@ucb.br)

Káthia Marçal de Oliveira
(Universidade Católica de Brasília, Brazil

kathia@ucb.br)

Abstract: Knowledge engineering emerged as a very promising area to help improve software
engineering practice. One of its possible applications would be to help in solving the numerous
problems that affect the software maintenance activity. Maintainers of legacy systems
developed years ago with obsolete techniques and tools, and not documented, need all kinds of
knowledge (application domain, programming skills, software engineering techniques, etc.) It
is generally assumed that formalizing all this knowledge and recording it would be a
worthwhile effort. However, research is still in a early stage and numerous questions need to be
answered: What knowledge should be targeted first? Where to find this knowledge? etc. To
answer these questions, one needs a precise understanding of what knowledge is at stake here.
We, therefore, propose an ontology of the knowledge needed to perform software maintenance.
This ontology would be most useful as a framework for future research in knowledge
engineering for software maintenance.

Keywords: ontology, software maintenance, knowledge management.
Categories: K.6.3, D.2, D.2.7, D.2.9

1 Introduction

Knowledge management techniques are raising great expectation in the software
engineering community. Of particular interest are the possibilities that knowledge
management opens to solve the numerous problems in maintenance. Software
maintenance must still cope with systems developed years ago, with languages and
processes now considered deficient, for computers with severe limitations imposing
convoluted algorithms. This is a knowledge intensive activity, maintainers needs
knowledge of the application domain, of the organization using the software, of past
and present software engineering practices, of different programming languages (in
their different versions), programming skills, etc. Concurrently a recurring problem of
software maintenance is the lack of system documentation. Studies report that 40% to
60% of the software maintenance effort is devoted to understanding the system
[Pfleeger 2001] (p.475), [Pigoski 1996] (p.35).

Journal of Universal Computer Science, vol. 9, no. 7 (2003), 641-658
submitted: 3/2/03, accepted: 21/7/03, appeared: 28/7/03  J.UCS

To help maintainers face these difficulties, one could envision specialized tools
providing easy access to the various domains of knowledge required. However there
is no clear, exhaustive definition of what knowledge would be useful to perform
software maintenance. In this paper we describe our research in the identification and
organization of this knowledge using ontology.

This work is part of a long-term project that aims at building a knowledge
management system to assist in the software maintenance activities (e.g., system
investigation, postmortem project review, etc.). This system will address the main
requirements for promoting knowledge management in an organization as emphasized
by [Rus and Lindvall, 2002]: first, to access domain knowledge, not only knowledge
about software engineering itself (in our case specifically maintenance) but also
knowledge about the domain for which the software is being developed/maintained;
second, to share knowledge about local policies and practices, since new
developers/maintainers in an organization need knowledge about the existing software
base and local programming conventions; third, to know who knows what, for
efficiently staffing projects, identifying training needs, and matching employees with
training offers; fourth, to collaborate and share knowledge, independently of time and
space. With these needs in mind we started our research in knowledge organization
focusing specifically on software maintenance.

In the following sections we first discuss the importance and problems of
software maintenance (section 2). In section 3, we give a short definition of ontology,
what are its possible uses and how it may be build. Section 4 is the core of the article
with the presentation of the ontology for maintenance. Then in section 5, we discuss
the evaluation of this ontology. Finally, we discuss related work in section 6 and
conclude in section 7.

2 Software Maintenance

The last decade or so has seen huge progress in software development techniques:
new processes, languages, tools, etc. have been proposed and adopted. Software
maintenance, on the contrary, seems to lag behind: "this extremely relevant subject
receives relatively little attention in the technical literature" (R.S. Pressman in the
foreword of [Pigoski 1996]). Systematization of maintenance is difficult because it is
fundamentally a reactive activity, hence more chaotic than development. Maintenance
results from the necessity of adapting software systems to an ever-changing
environment. In most cases, it can be neither avoided nor delayed much: One has little
control on the promulgation of new laws or on the concurrence’s progresses.
Organizations must keep pace with these changes, and this often means, modifying
the software that support their business activities.

As a consequence, software maintenance happens in a relatively disorganized
way and naturally leads to the deterioration of software systems’ structure (Lehman’s
second law of software evolution [Lehman 1980]). This gradual loss of structure is
as much the result as the cause of the lack of knowledge maintenance teams have on
the software systems they work on. Lacking a complete knowledge of all the
implementation details, they apply modifications that will result in a loss of structure,
which in turn makes the systems more difficult to understand fully and therefore to
maintain.

642 Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

To break this vicious circle we aim at developing a knowledge management
approach for software maintenance. One of the first steps of our research was to
identify what knowledge is needed during maintenance and formalize it in an
ontology.

3 Ontology Definition and Methodology

An ontology is a description of entities and their properties, relationships, and
constraints [Grüninger and Fox 1995]. Ontologies can promote organization and
sharing of knowledge, as well as interoperability among systems. There are various
methodologies to design an ontology (e.g. [Grüninger and Fox 1995]), all consider
basically the following steps: definition of the ontology purpose, conceptualization,
validation, and finally coding. The conceptualization is the longest step and requires
the definition of the scope of the ontology, definition of its concepts, description of
each one (through a glossary, specification of attributes, domain values, and
constraints). It represents the knowledge modeling itself.

We defined our ontology using theses steps. The purpose is to define an ontology
describing the knowledge relevant to the practice of software maintenance. The
conceptualization step was based on a study of the literature and the experience of the
authors. We identified motivating scenarios and competency questions (i.e.,
requirements in the form of questions that the ontology must answer [Grüninger and
Fox 1995]). It resulted in a set of all the concepts that will be presented in the next
section. The validation will be discussed in section 5. The formalization was done
using first order logic. There are various editing tools available to describe an
ontology (see for example [Staab et al. 2000], [Grosso et al. 1999], [Domingue
1998]), each one using a specific language and having particular features. In this first
work, we chose to focus on the identification of the knowledge itself, and did not
study any of these tools. We opted for a manual representation of the ontology, which
should be later entered into one of these tools. For the same reasons, we described the
constraints on relations and concepts, in first order logic.

4 An Ontology for Software Maintenance

We started the ontology construction by looking for motivating scenarios where the
knowledge captured would be useful. Some of those scenarios are: deciding who is
the best maintainer to allocate to a modification request, based on her-his experience
of the technology and the system considered; learning about a system the maintainer
will modify (which are its documents and components and where to find it); defining
the software maintenance activities to be followed in a specific software maintenance,
and also the resources necessary to perform those activities.

These and other situations induced us to organize the knowledge around five
different aspects [see Figure 1]: knowledge about the Software System itself;
knowledge about the Maintainer’s Skills; knowledge about the Maintenance Activity;
knowledge about the Organizational Structure; and knowledge about the Application
Domain. Each of these aspects was described in a sub-ontology. For each one of the
sub-ontologies we defined competency questions [see Section 3], captured the

643Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

necessary concepts to answer these questions, established relationships among the
concepts, described the concepts in a glossary and validated them with experts.

To express the constraints over the concepts and relations, we defined 53 axioms
in first order logic. These do not include axioms formalizing the specialization and
composition relationships (i.e. axioms for the “is_a” and “has_a” relations). Some
examples of axioms will be presented in the description of each sub-ontology.

Building such an ontology is a significant work. We spent three months to define
it, the main investigator working part-time, and the two others participating in weekly
validation meetings. Our first difficulty was to define clearly what was to be the focus
of the ontology. This was solved defining scenarios (see beginning of the section) for
the use of the knowledge. A second difficulty was to review the relevant literature in
search of definitions and validation of the concepts. In this phase, we deemed
important to base each and every concept on independent sources from the literature.
This literature review is summarized in the concept glossary, which will not be
presented here for lack of space.

4.1 The System Sub-ontology

The System sub-ontology is one of two sub-ontologies corresponding to the more
computer science oriented knowledge. Knowledge about the system is also intuitively
fundamental to software maintenance. The sub-ontology is pictured in Figure 21.

The competency questions for the System sub-ontology are: What are the artifacts
of a software system? How do they relate to each other? Which technologies are used
by a software system? Where is the system installed? Who are the software system
users? Which functionalities from the application domain are considered by the
software system?

Answering these questions led to a decomposition of the software system in
artifacts, a taxonomy of those artifacts and the identification of the hardware where
the system is installed, its users and the technologies that was used in its development.

[1] In all figures of the sub-ontologies, the default cardinality for the relations is 0,n.
Cardinality is only represented when it differs from this default.

Modification
Process

Deals with Made
upon

Regulates Requires

Needs

System

Organizational
Structure

Skills Application
Domain

Figure 1: Ontology overview

644 Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

The artifacts of a system can generally be decomposed in documentation and
software components. Briand [Briand et al. 1994] considers three kinds of
documentation: product related, describing the system itself (i.e., software
requirement specification, software design specification, and software product
specification); process related, used to conduct software development and

describes

implements

1,n

user*

logical model

hardware*

CC technology*

task*

physical model

test plan configuration
plan

quality
assurance plan

software
development plan

user
manual

maintenance
manual

hardware
manual

operation
manual

requirement
specification

design
specification

product
specification

deployment
component

work product
component

execution
component

work
product

process
document

support
document

system

document component

artifact

1,n

interacts with

installed on
1,n

uses
1,n

interacts

realizes

1,n

name* concept from other

sub-ontology
name relation

is_a relation

name

Legend

concept

has_a relation

correlated

Figure 2: System sub-ontology

645Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

maintenance (i.e., software development plan, quality assurance plan, test plan, and
configuration management plan); and support related, helping to operate the system
(i.e., user manual, operator manual, software maintenance manual, firmware support
manual). Considering that the software design specification proposed by Briand
should represent the behavior and structure of the system and that we can have
different abstraction models we refined the software design specification into logical
and physical models.

Software components represent all the coded artifacts that compose the software
program itself. Booch [Booch et al. 1997] classifies them in: execution components,
generated for the software execution; deployment components, composing the
executable program; and work product components, that are the source code, the data,
and anything from which the deployment components are generated.

All those artifacts are, in some way, related one to the other. For example, a
requirement is related to design specifications, which are related to deployment
components. We call this first kind of relation realization, relating two artifacts of
different abstraction levels. Another relation between artifacts is a correlation
between artifacts at the same abstraction level. And finally, artifacts may be
composed of other artifacts (e.g. one document may be composed of several parts).

Other relations in this sub-ontology are: the software system is installed on some
hardware, the system may interact with other systems, the user interacts with the
software system, the system implements some domain tasks to be automated (the
functionalities of the system), and finally, the software requirement specifications
describe these domain tasks. To express the constraints over the relations (e.g.
realization or correlation) we defined a set of axioms like (∀ a1,a2) (correlation(a1,a2)
∧ requirementspec(a1) → requirementspec(a2)) and (∀ a1,a2) (realization(a1,a2) ∧
requirementspec(a1) → ¬ requirementspec(a2)). The fist one specifies that if a1 is a
requirement specification and a1 correlated to a2, then a2 must also be a requirement
specification (i.e. the correlation relation stands between artifacts of the same type).
Similarly, the second axiom specifies that realization may only stand between two
artifacts of different kind.

4.2 The Skills Sub-ontology

Figure 3 shows the second sub-ontology, on the skills in computer science needed by
software maintainers. A scenario of use would be to be able to select the best
participants for a given type of maintenance. Some competency questions we
identified are: What kind of CASE tools does the software maintainer know? What
kind of procedures (methods, techniques, and norms) does s-he know? What
programing and modeling languages does s-he know?

There are several things a maintainer must know or understand to perform his-her
task adequately: s-he must know (be trained in) the specific maintenance activity s-he
will have to perform (e.g. team management, problem analysis, code modification),
the hardware the system runs on, and various computer science technologies (detailed
below). Apart from that, the maintainer must also understand the concepts of the
application domain and the tasks performed in it. To express those relations, we
defined axioms like: (∀ m) (maintainer(m) → (∃ t) (tecnology(t) ∧ knowCCT (m,t))

646 Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

and (∀ m) (maintainer(m) → (∃ a) (maintenanceActivity(a) ∧ knowsActivity(m, a))
(any maintainer knows at least one tecnology and one activity).

There are four computer science technologies of interest: possible procedures to
be followed, modeling language used (e.g. the UML), CASE (Computer Aided
Software Engineering) tools used (for modeling, testing, suporting or developing),

system’s
software

testing
CASE

procedure CASE

reverse
engineering
technique

re-engineering
technique

impact analysis
technique

program
understanding

programming
language

requirement
elicitation
technique

maintenance
support

programming
technique

testing
technique

modeling
technique

analyzing
technique

designing
technique

computer
network

operational
system

middleware

DBMS utility

guideline norm

method directive technique

configuration
management

execution
support CASE

CASE for
documentation

compiler

debugger

modeling
CASE

supporting
CASE

IDE

source
code editor

hardware maintenance
activity*

maintainer* task*

concept* 1,n
knows

understands

understands

adopts

1,n

compiles
1,n

0,1

0,1

0,1

1,n

adopts

modeling
language

1,n
knows

CC technology

name* concept from other

sub-ontology
name relation

is_a relation

name

Legend

concept

has_a relation

knows

Figure 3: Skills sub-ontology

647Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

and finally the programming language used in the system. According to [Kitchenham
et al. 1999] procedures are all structured descriptions used in a software development
activity like methods (kind of sistematic procedures with semantic and syntatic
definitions to be followed), techniques (sistematic procedures less formal and rigorous
than a method), and directives (standards like guidelines or norms in an organization).
Based on [Chandra and Ramamoorthy 1996],[Leffingwell and Widrig 2000],
[Pressman 2001], we classified the techniques in: (a) requirement elicitation,
procedures to assist in the identification of the requirents (e.g., interviews,
brainstorming, etc.); (b) modeling, procedures, using specific modelling languages, to
assist in the definition of a sistematic solution for the problem (classified in analysis
and design); (c) programming, procedures for coding (e.g., structured or object
oriented programming); (d) testing, procedures for testing the software (e.g., white or
black box techinique); and (e) maintenance support, procedures to assist in the
modification of a program (classified in reverse engineering, re-engineering, impact
analysis and program compreension tecniques [Pigoski 2001]).

Pressman [Pressman 2001] gives a very complete list of CASE tools, with tools
for modelling, used for the design model definition according to a specific modelling
language; testing, used to define and control tests for a system; developing, that is the
Integrated Development Environment (IDE - with compiler, debugger, and editor),
and supporting, the execution, documentation, or configuration management. The
execution supporting CASE tools represent any tool that can be used in some way
during the system’s execution like data base management systems, utilities, and
system’s software (computer network, operational system and all middleware).

4.3 The Modification Process Sub-ontology

Figure 4 shows the concepts of the Modification Process sub-ontology. Here, we are
interested in organizing concepts from the modification request (and its causes) to the
maintenance activities. Possible competency questions are: What are the types of
modification requests? Who can submit them? What are their possible sources? What
are the activities performed during maintenance? What does one need to perform
them? Who perform them? What do they produce?

According to [Pigoski 1996], a maintenance project originates from a
modification request submited by a client. The requests are classified either as
problem report, describing the problem detected by the user, or enhancement request,
describing a new requirement. Pigoski also lists the different origins of a modification
request (where the problem was detected or the new requirement originates): on-line
documentation (like helps and tool tips), execution (features about the execution of
the system itself, like performance, instability), architectural design (like dynamic
library reuse), requirement (change in a requirement or a specification of a new one),
security (like not allowed access), interoperability (features related with the
communication with others systems) and data structure (like structure of data files or
data bases). One or more modification requests generate a maintenance project that
will be composed of different software maintenance activities.

648 Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

Based on [Briand et al. 1994], [Kitchenham et al. 1999], and [Pigoski 1996] we
classified the maintenance activities in the following types: (a) investigation activity,
assessing the impact of undertaking a modification; (b) management activity, relating
to the management of the maintenance process or to the configuration control of the
products; (c) quality assurance activity, aiming at ensuring that the modification does

on-line
documentation

execution

architectural
design

requirement security

inter-
operability

data
structure

maintenance
origin

maintenance
activity

maintenance
project

modification
request

problem
report

enhancement
report

corrective
maintenance

enhancement
maintenance

adaptive
maintenance

perfective
maintenance

preventive
maintenance

management
activity

modification
activity

investigation
activity

quality
assessment

activity

artifact*

hardware*

CC technology*

human
resource

client user supplier maintainer

client human
resource

maintenance
manager

software
engineer

indicates

originates

1,1
submits

uses affects

addresses

participates

uses

1,n
uses

defines

1,1

1,n

precedes

name* concept from other

sub-ontology
name relation

is_a relation

name

Legend

concept

has_a relation

Figure 4: Modification Process sub-ontology

649Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

not damage the integrity of the product; and (d) modification activity, which may be a
corrective maintenance or enhancement maintenance (adaptative maintenance,
preventive or perfective maintenance). A maintenance activity uses one or more input
artifacts and affects one or more output artifacts, it is inserted in a sequence of
activities (and therefore has preceeding activities), it addresses some maintenance
origin (already detailed), uses hardware resources, and uses some computer science
technologies. Axioms are used for example to specify that the maintenance activities
or ordered: (∀ a1 , a2) (preactivity (a1 , a2) → ¬ preactivity (a2 , a1)) and (∀ a1, a2,
a3) (preactivity (a1 , a2) ∧ preactivity (a2 , a3) → preactivity (a1 , a3)) (expressing the
anti-symetry and transitivity on the ordering of activities).

Finally, different people (human resource) can participate in these activities (from
[Briand et al. 1994], [Kitchenham et al. 1999], [Pigoski 1996] and [IEEE-12119
1998]): software engineers (supplier or maintainer, respectively, who developed and
maintain the system), maintenance manager, and client’s human resources (client,
who pays for the modification, and user, who uses the system).

4.4 The Organizational Strucuture Sub-ontology

The fourth sub-ontology, on the organizational structure, is pictured in Figure 5. We
considered a traditional definition of an organization (see for example [Fox et al.
1996]) composed of units where different functions are performed by human
resources. We also included the fact that an organization defines directives to be
followed in the execution of the tasks. Our goal here was not to define all possible
aspects of an organization, but only to define that the maintenance is an activity
performed by people in some organizational unit that compose the whole organization
with its own rules.

To define the scope of this sub-ontology we set the following competency
questions: What organizational units compose the organization? What positions exist
and who occupies each position? What directives does the organization adopt? How
do the organizations relate one to the other?

Figure 5: Organizational Structure sub-ontology

collaborate

1,n

fills in

defines
1,n

1,n

1, 1

adopts

1,1

located

directive*organization

organizational
unit

human
resource*

position

name*
concept from other
sub-ontology

name
relation

is_a relation

name

Legend

concept

has_a relation

collaborate

1,n

fills in

defines
1,n

1,n

1, 1

adopts

1,1

located

directive*organization

organizational
unit

human
resource*

position

name*
concept from other
sub-ontology

name
relation

is_a relation

name

Legend

concept

has_a relation

650 Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

Based on [Fox et al. 1996] and [Uschold et al. 1995] we defined that any
organization adopts its own directives and defines the positions to be occupied by a
humam resource. Also, organizations can collaborate with each other and each one is
composed of organizational units. Those organizational units are organized in a
hierarchical structure where one is composed of other ones.

4.5 The Application Domain Sub-ontology

Finally the fifth sub-ontology [Figure 6] organizes the concepts on the application
domain. The competency questions are: What concepts and tasks compose an
application domain? What are the properties of each concept? How do the concepts
relate one to the other? What concepts are used in each task? What restrictions apply
to the application domain?

We choose to represent it at a very high level that could be instantiated for any
possible domain. We actually defined a meta-ontology specifying that a domain is
composed of domain concepts, related to each other by relations and having
properties which can be assigned values and restrictions that defines constraints for
the concepts. This meta-ontology would best be instantiated for each application
domain with a domain ontology as exemplified in [Oliveira et al. 1999]. We also
considered that the concepts in an application domain are associated with the tasks
performed in that domain and those tasks are regulated by some restrictions.

5 Ontology Validation

With the ontology defined, we started its validation in two ways: validation of the
quality of the ontology itself (how clear it is, how complete, concise, etc.), and
validation of the usefulness of the concepts for maintenance (which was the
ontology’s purpose as specified in Section 4).

In this section we present how we validated the ontology in these different ways.

Figure 6: Application Domain sub-ontology

relates

associated
with

regulates

1,n

property

concept task

restriction

1,n

1,n

has
name*

concept from other
sub-ontology

name
relation

is_a relation

name

Legend

concept

has_a relation

relates

associated
with

regulates

1,n

property

concept task

restriction

1,n

1,n

has
name*

concept from other
sub-ontology

name
relation

is_a relation

name

Legend

concept

has_a relation

651Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

5.1 Quality Assessment

To validate the quality of the ontology we considered the six following desirable
criteria (see for example [Gruber 1995] and [Gómez-Pérez 1995]): (a) consistency,
refering to the absence (or not) of contraditory information in the ontology; (b)
completeness, refering to how well the ontology covers the real world (software
maintenance for us); (c) conciseness, refering to the absence (or not) of needless
information or details; (d) clarity, referring to how effectively the intended meaning is
communicated; (e) generality, refering to the possibility of using the ontology for
various purposes inside the domain fixed (software maintenance); and (f) robustness,
referring to the ability of the ontology to support changes.

To evaluate these criteria, we asked four experts to study the ontology and fill a
quality assessment report composed of several questions for each criterion. These
people were chosen for their large experience in software maintenance or for their
academic background. The evaluations were good, as may be seen in Figure 7, on a
scale of 0 to 4 no criterion has an average below 3.

This evaluation was useful in pointing out specific problems. For example, we
had not included a relation to specify that software systems may interact between
themselves, the CASE taxonomy (Skills sub-ontology) did not contemplate utility
tools for execution, some definitions were not clear (this is the main reason behind the
lower score of the Modification sub-ontology), or some restrictions were not
expressed.

Besides the expert assessments experiment, we also checked the completeness
and conciseness of the ontology by instantiating the concepts from the documentation
of a real software system to. This documentation came from the development of the
system as well as from past maintenances. Table 1 shows the number of concepts that
were instantiated for each sub-ontology.

One may observe that 26 concepts from the ontology were not instantiated. There
are various explanations for this:

0

0,5

1

1,5

2

2,5

3

3,5

4

E
va

lu
at

io
n

Clear Consist. General Complete Concise Robust

System Skills

Modification Aplication Domain

O rganizational structure

Figure 7: Result of the ontology’s quality assessment

652 Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

• Two concepts from the Application Domain sub-ontology were not
instantiated because they were not identified when we did the experiment.
They were added after the first quality assessment. However, a later rapid
survey of the same documentation allowed us to locate instances of these
concepts.

• Five concepts from the Skills sub-ontology were not instantiated because the
organization does not have the technical competencies to perform them (e.g.:
reverse engineering technique). One concept (modelling language) was not
instantiated because the maintenance activities were specified in (structured)
natural language and, although this is a debatable question, we decided at the
moment, not to consider this as a modelling language. Two more concepts
(method and guidelines) were not instantiated because the organization
ceased to use any maintenance process after a change in the management.
The concept: CASE for modelling, was not instantiated because the
organization does not have the necessary resources to invest in this type of
tool. Finally a tenth concept (utility) was not present in the ontology when
we did the test. As for the other cases, we have proofs of their existence in
the organization studied.

• Three concepts from the Modification ontology were not instantiated for lack
of enough examples. There were only examples of perfective maintenance
and no corrective, preventive or adaptative maintenance. For the same lack
of example, three possible causes for a maintenance operation were not
found: security, architectural design and on-line documentation.

• In the System sub-ontology, one concept was not instantiated for the same
reason: The maintenance examples we studied did not include any reference
to the product specifications. The system studied was produced internally,
thus having no reference to an external provider. Another concept, hardware
manual, is handled by a different unit of the organization. And finally, four
concepts (development, configuration plan, quality plans, maintenance
manual) were not instantiated after the organization ceased to use any
maintenance process, as already mentioned earlier.

Table 1: Number of concepts instantiated from the study
of the documentation of one system

instantiated concepts Sub-Ontology # concepts
in ontology # %

Skill 38 28 74%
Application
domain

 4 2 50%

Modification 30 24 80%
System 23 16 70%
Organizational
Structure

 3 3 100%

Total 98 73 74%

653Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

It must be noted that the fact that a concept was instantiated here does not say
whether it is useful for maintenance or not, but only that it was found in the
documentation.

5.2 Usefulness Assessment

One of the main objectives of the ontology was to represent the knowledge useful to
maintenance. The preceding section presents results from the assessment of the
quality of the ontology in representing knowledge. In this section we present a
validation of the usefulness of the concepts represented for maintenance. To do so, we
realized two types of experiment: observing maintainers while they were maintaining
a system, and presenting the instantiated knowledge to the software engineers and
asking them what concepts they used.

For the first experiment we used a protocol called think-aloud [Lethbridge et al.
1996] where the maintainers were asked to say everything they did and why they did
it. These sessions were recorded and later transcribed on paper to be analyzed. During
the analysis, we tried to identify the kind of knowledge that the software engineers
were using at each moment based on the defined ontology. Two maintainers
participated in this experiment, doing five sessions for a total of 132 minutes (26
minutes per session on average).

In the second experiment, the ontology was presented and explained to the
software maintainers and they were asked to fill in, every day, a questionnaire on the
concepts they used. This form consisted of all the concepts we had instantiated
previously [section 5.1] and the list of their instances (as we identified them). The
maintainers were simply asked to tick the instances they had used during the day.
They could not add new instances. The experiment was done with three maintainers
and one manager. They filled 17 forms in 11 different days over a period of 10
weeks.

The results of these two experiments are given in Table 2. One may observe that
there are a lot less concepts used in the first one than in the second. One reason for
this is that there were fewer sessions in the first experiment and they were mostly
short punctual maintenance.

 All uses of concepts detected in the first experiment were also found in the
second one, it did not bring in any new instances. From this and the results in Table
2, one can deduce that only six concepts instantiated in the previous section (5.1)

Table 2: Number of concepts used in two experiments

 Ontology Think-aloud Questionnaire
 # # % # %

Skill 38 15 39% 26 68%

Application
domain 4 1 25% 2 50%

Modification 30 16 53% 23 77%
System 23 9 39% 13 57%
Organization
al Structure

3 2 67% 3 100%

Total 98 43 44% 67 68%

654 Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

were not found here:
• Analysis technique and requirement specification technique (Skills sub-

ontology) were not used because the maintenance operations were relatively
simple and restricted to small modifications to the source code. Therefore, no
high level analysis was required.

• For the same reason, the requirement specifications (System sub-ontology)
was neither studied nor modified.

• The creation, modification and distribution of all support documentation
(including user manual and operation manual, the three of them being in the
System sub-ontology) falls under the responsibility of another organizational
unit, therefore the software engineers we studied need not know about them
or use them.

6 Related Work

As seen in section 3, our investigation of the knowledge necessary to perform
maintenance included the definition of an ontology for maintenance. Before
developing it, we studied the literature on knowledge-based approaches to software
maintenance. The following publications were found to be relevant to our research
and greatly helped in the definition of the ontology although they did not solve
completely our problem.

There are various propositions of mental models to describe how software
engineers go about doing maintenance [Rugaber and Tisdale 1992], [von Mayrhauser
and Vans 1994]. They offer little interest since they concentrate on the process of
doing maintenance rather than on the knowledge used.

In [Ramal et al. 2002], one of us started to study the knowledge used during
software maintenance. This earlier work contained a very crude identification of
various knowledge domains connected with this activity. The domains identified
were: Computer Science Domain, Application Domain and General Domain
(common sense knowledge). The current research is a follow-up on the preceding
paper and describes the result of our efforts to formally and completely identify the
knowledge useful during software maintenance.

In [Clayton et al. 1998], the authors studied "the knowledge required to
understand a program". Knowledge is classified in 3 domains: Domain knowledge
(numerical analysis in this case), Fortran knowledge and programming knowledge.
The first one corresponds to our Application Domain sub-ontology, and the two
others fall into our Skills sub-ontology. The problem of this study is that it
concentrates specifically on program comprehension which is just one of the many
tasks performed when maintaining a system. Also, it is based on a toy program (102
lines of Fortran) in conditions that do not resemble real world maintenance
environment.

Briand and his coleagues [Briand et al. 1994] identified factors that could
influence the quality and productivity of software maintenance. The work is
interesting because it includes various taxonomies of important concepts as:
maintenance methods and tools, maintenance documentation, human mistakes,
process failures, and maintenance teams. Although the focus of this work was not on
knowledge it offers valuable insights on concepts that are important to maintenance

655Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

(e.g.: methods and tools taxonomy, documentation taxonomy) as well as explicit
classification of these concepts. We reused several of their taxonomies in our
ontology.

Deridder, [Deridder 2002], proposes to help maintenance using a tool that would
keep explicit knowledge about the application domain (in the form of concepts and
relations between them) and would keep links between these concepts and their
implementation. He follows a trend of thought very similar to ours, but concentrates
exclusively on application domain knowledge whereas we identified four other sub-
ontologies that had useful concepts in them. Also, he concentrates on how to acquire
and use this knowledge rather than extensively identify it (which would actually
depend on every single application domain).

Finally, Kitchenham et al. in [Kitchenham et al. 1999] designed an ontology of
software maintenance. In this ontology, they identified all the concepts relevant to the
classification of empirical studies in software maintenance, these concepts are
classified along four main axes: the People, the Process, the Product, and the
Organization. These four axes correspond respectively to our Skills, Modification,
System, and Organizational Structure sub-ontologies. This was one of the most
inspiring work for us and we reused many of its concepts, however due to the
particular focus they had when identifying these concepts (providing a framework to
help categorize empirical studies on software maintenance), we felt that many
concepts were either over or under detailed. The most striking evidence of this is the
idea of application domain which we developed as a sub-ontology, whereas it is only
included in Kitchenham’s work as an attribute of the software system.

7 Conclusion

In this article, we presented some results from our research on the knowledge useful
to software maintenance. Following a recent trend in software engineering, we believe
that a knowledge based approach could help solve the difficult problems faced by
software maintenance: poor documentation, lack of knowledge about the system
maintained from the maintenance teams, poor quality of the code after numerous
modification. We defined an ontology of the knowledge used in software
maintenance.

This ontology would be useful as a framework to guide future research trying to
improve software maintenance using knowledge engineering techniques. It could be
the base of studies to answer questions as: What knowledge should be taken into
account when considering software maintenance? What kind of knowledge is most
important? etc. Our ontology was based both on expert experience and a study of the
relevant literature.

This research is intended to be the base of a long-term project aiming at building
a knowledge-based environment to help software maintenance. Future work includes:

• Better evaluation of the usefulness of the concepts contained in the ontology
(we are conducting futher validation experiment).

• Investigating the possibility of designing manual procedures (process) to
populate the ontology.

• Investigating the possibility of creating (semi-)automated tools to assist in
populating the ontology from existing systems.

656 Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

• Build a maintenance assistant tool, which would help managers and
maintainers, perform their task and look for needed knowledge. This tool
would use the ontology as a framework to define the knowledge base.

Acknowledgments

We acknowledge CNPq – Brazilian Research Council for the financial support to this
project.

References
[Booch et al. 1997] Booch, G., Rumbaugh, J., Jacobson, I.: “The Unified Modeling Language –
User Guide”; Addison-Wesley, 1997.

[Briand et al. 1994] Briand, L. C., Basili, V., Kim, Y., Squier, D. R.: “A Change Analysis
Process to Characterize Software Maintenance Projects”; Proc. The International Conference
on Software Maintenance, 1994.

[Chandra and Ramamoorthy 1996] Chandra, C., Ramamoorthy, C. V.: “An Evaluation of
Knowledge Engineering Approaches to the Maintenance of Evolutionary Software”; Proc. 8th
Software Engineering An Knowledge Engineering Conference, Nevada, USA, p.181-188, Jun .
1996.

[Clayton et al. 1998] Clayton R., Rugaber S., Wills L: “On the Knowledge Required to
Understand a Program”; Proc. Working Conference on Reverse Engineering, p. 69–78, Oct.
1998.

[Deridder 2002] Deridder, D.: “Facilitating Software Maintenance and Reuse Activities with a
Concept-oriented Approach”; Programming Technology Lab, Vrije Universiteit Brussel,
Brussels, Belgium, 2002.

[Domingue 1998] Domingue, J.: “Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on the Web”; 11th Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Canada, Apr. 1998.

[Fox et al. 1996] Fox, M. S., Barbuceanu, M., Gruninger, M.: “An Organization Ontology for
Enterprise Modeling: Preliminary Concepts for Linking Structure and Behaviour”; Computers
in Industry, v. 29, p.123-134, 1996.

[Gómez-Pérez 1995] Gómez-Pérez, A: “Some Ideas and Examples to Evaluate Ontologies”.
11th Conference on Artificial Intelligence for Applications, p.299-305, 1995

[Grosso et al. 1999] Grosso, W.E., Eriksson, H., Fergerson, R.W., Gennari, J.H., Tu, S.W.,
Musen, M.A.: “Knowledge modeling at the millennium (the design and evolution of Protégé-
2000)”; 12th Banff Workshop on Knowledge Acquisition, Modeling, and Management, Banff,
Alberta, 1999.

[Gruber 1995] Gruber, T. R.: “Toward Principles for the Design of Ontologies Used for
Knowledge Sharing”. Int. J. Hum. Comput. Stud., 43(5/6): 907-928, 1995.

[Grüninger and Fox 1995] Grüninger, M., Fox, M. S.: “Methodology for the Design and
Evaluation of Ontologies”; Technical Report, University of Toronto, Toronto, Canada, 1995.

[IEEE-12119 1998] IEEE-1219: “IEEE Standard for Software Maintenance”. Los Alamitos,
CA: IEEE Computer Society Press, 1998.

657Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

[Kitchenham et al. 1999] Kitchenham, B. A., Travassos, G. H., Mayrhauser, A. et al.: “Toward
an Ontology of Software Maintenance”; Journal of Software Maintenance: Research and
Practice 11(6):365-389, May 1999.

[Leffingwell and Widrig 2000] Leffingwell, D., Widrig, D.: “Managing Software
Requirements: A Unified Approach”, Addison-Wesley, 2000.

[Lehman 1980] Lehman, M.: “On understanding Laws, evolution and conversation in the large
program lifecycle”; Journal of Software & Systems, vol. 1, p.213 – 221, 1980.

[Lethbridge et al. 1996] Lethbridge, T. C., Sim, S. E., Singer, J.: “Software Anthropology:
Performing Field Studies in Software Companies”; Consortium for Software Engineering
Research (CSER), 1996.

[Oliveira et al. 1999] Oliveira, K., Rocha, A., Travassos, G. H., Menezes, C: “Using Domain-
Knowledge in Software Development Environments”; Proc. Software Engineering and
Knowledge Engineering, p. 180-187, Kaiserlautern, Germany, Jun. 1999.

[Pfleeger 2001] Pfleeger, S. L.: “Software Engineering: Theory and Practice”; 2nd Edition.
New- Jersey, Prentice Hall, 2001.

[Pigoski 1996] Pigoski, T. M.: “Practical software maintenance: best practices for managing
your software investment”; John Wiley & Sons. P.87-102, Dec. 1996.

[Pigoski 2001] Pigoski, T. M.: “Software maintenance”; In: Guide To The Software
Engineering Body Of Knowledge; Los Alamitos, CA: IEEE Computer Society Press. Trial
Version 1.00, May, 2001.

[Pressman 2001] Pressman, R. S.: “Software Engenieering”; 5th Edition, p.225-241, McGraw
Hill, 2001.

[Ramal et al. 2002] Ramal, M. F., Meneses, R., Anquetil, N.: “A Disturbing Result on the
Knowledge Used During Software Maintenance”; Proc. Working Conference on Reverse
Engineering, Richmond, p. 277-287, Oct-Nov. 2002.

[Rugaber and Tisdale 1992] Rugaber, S., Tisdale, V. G.: “Software Psychology Requirements
for Software Maintenance Activities”; Software Engineering Research Center, Georgia Institute
of Technology, 1992.

[Rus and Lindvall, 2002] Rus, I., Lindvall, M.: “Knowledge Management in Software
Engineering”; IEEE Software, v. 19, n. 3, p.26-38, May/Jun 2002.

[Staab et al. 2000] Staab, S., Erdmann, M., Maedche, A., Decker, S.: “An Extensible Approach
for Modeling Ontologies in RDF(S)”; ECDL 2000 Workshop on the Semantic Web, 2000.

[Uschold et al. 1995] Uschold, M., King, M., Moralee, S. et al.: “The Enterprise Ontology”;
The Knowledge Engineering Review, v.13, 1995.

[von Mayrhauser and Vans 1994] Von Mayrhauser A., Vans A.: “Dynamic Code Cognition
Behaviors For Large Scale Code”, Proc. Workshop on Program Comprehension, p. 74–81,
IEEE Comp. Soc. Press, Nov. 1994.

658 Dias M.G.B., Anquetil N., de Oliveira M. K.: Organizing the Knowledge ...

