
��������	
������	�����������		��������������	�������
������������	����	����

����������������
����!������
��"��	�
Department of Electronics and Computer Science, University of Southampton, UK

{ft,lc,nrs}@ecs.soton.ac.uk

������������������ �#�
School of Engineering Sciences, University of Southampton, UK

{gep,sjc}@soton.ac.uk

$"�	���	��Modern computational Problem Solving Environments (PSEs) become more
and more complex and knowledge intensive in terms of their integrated toolsets, in
particular for engineering design search and optimization. Whether these toolsets can
be assembled effectively to produce satisfactory results depends heavily on using the
best domain practice and following decisions made by skilled engineers in practical
situations. In this paper, a knowledge based approach is used to acquire this
knowledge from existing sources and model it in a maintainable fashion. Ontologies
are used to develop the conceptualization of a knowledge base. In order to reuse this
knowledge to provide guidance at knowledge intensive points, we propose a
knowledge based advisor, which can give a context-aware critique to guide users
through effective operations of building domain workflows. The concept of a state
panel is proposed to collect system state information, which is then reasoned about
together with various task models in the JESS (Java Expert System Shell)
environment. Two reasoning strategies are designed for different advising styles. A
multilayer and client-server style architecture is proposed to illustrate how this
advisor can be deployed to make available its knowledge advising service to a real
workflow construction PSE in a maintainable fashion. Throughout we use the
example of these knowledge services in the context of design optimization in
engineering.

��%��������Knowledge engineering, ontology, XML, knowledge base, JESS, production rules,
workflow planning.
 �	����%��SD I.2.5 (System tools and techniques, Expert [Artificial Intelligence])

&� '�	�����	����(�)����������

The UK initiative in e-Science [1] addresses scientific collaboration, data
management and process enactment on a global scale. Knowledge plays an important
role in delivering these domain specific operations in an effective way. Knowledge
can play a key role in the semantic grid [2] which adopts a service-oriented approach
to bridge the gap between grid computing and semantic web.

Journal of Universal Computer Science, vol. 9, no. 6 (2003), 551-562
submitted: 27/1/03, accepted: 17/3/03, appeared: 28/6/03 J.UCS

Knowledge services are important aspects of the GEODISE project [3]. This
project aims to make available a toolbox for grid-enabled engineering design search
& optimization (EDSO). A Problem Solving Environment (PSE) integrates this suite
of tools with various knowledge services and database services aiming to provide an
intuitive interface for engineering users.

Knowledge acquisition (KA) techniques [4] [5] have been used in [6] to elicit the
domain knowledge and best practices in engineering design search and optimization.
Based on this, various types of knowledge services [7] have been deployed in a
knowledge portal architecture. In this paper, we focus in detail on one of the
knowledge services in the knowledge portal: the advice service.

*� ��������+�����������"�����$�,�������%�	��

The goal of knowledge engineering is to exploit knowledge and demonstrate how
knowledge can be used in guiding users through a smooth operation of workflow
construction in the EDSO problem solving environment.

*-&� ��������+����	�	����������	����%�

After years of working with experts, researchers in knowledge engineering and design
domains have recognized the importance of the situation in which the expert acts, i.e.
expert experience only applies in the context of a real problem solving situation [8].
This context can be modeled as a State Panel (SP) representing the environment’s
working memory. It should contain most key factors from which experts make their
decisions. A state panel ontology is designed using Protégé [9] where each concept is
modeled as a class with slots that resemble its properties. Furthermore, some
constraints can be applied on the slot so that they can only be assigned pre-declared
values as shown in Figure 1.

The state panel ontology captures three factors:

1. The user’s skill level:
This indicates whether the user is highly skilled and infers the appropriate
level of advice to be given. In this paper, we set it as either “high” or “low”
where in the first case, advice is not necessary.

2. Available resources: This stores information indicating resources already
available for use. The type “Resource” is further sub-categorized into
GAMBIT1 resource type and workflow resource type, each of which will be
used in making decisions with the corresponding resource type involved.
Here we only make use of the workflow resources and tasks. The decision to
perform a certain task depends on whether available resources satisfy the
input of this task. For example, the “input” slot of the workflow task concept
takes an instance of the workflow resources.

1 GAMBIT is a preprocessing tool for fast geometry modeling and high quality meshing, both
of which are crucial to successful use of Computational Fluid Dynamics

552 Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

��������	�
�������������������������������

3. Finished tasks:

Similarly, a finished task property is designed in the state panel since work-
flow related decisions are based on the pre-condition that certain other tasks
have been finished. This is modeled as “depend_on” slot in the workflow
task concept. The slot value is the instance of a workflow task.

An ontology is a standard description of the concepts and relationships that are

being used or shared in a specific domain. It establishes the standard terminologies in
that domain and makes sure that concepts are always consistent for the purpose of
machine processing and reasoning. An ontology forms a conceptualization
foundation for knowledge sharing in many artificial intelligence applications [10].

The state panel ontology is visualized as shown in Figure 2 using the Protégé
Ontoviz plugin [11]. It can be noted that slots of the state panel related concepts
always take values from a pre-defined enumeration. For example, in the
“workflow_task” concept, the “task_name” is constrained to a single selection from a
list of symbols. The “available_resources” slot in the “State_panel” concept takes
only multiple instances of Resource type, where the resource name is again
constrained to an enumeration of declared symbols. This characteristic guarantees that
each symbol will be recognized and matched precisely in a reference engine, which
we will describe later.

553Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

��������	����������������������

-� .����"��������'�+��������������

While the state panel resembles a short-term memory (working memory) of the
current situation, a rule base contains the long term memory of accumulated
experience in form of “IF-THEN” rules [12]. The rules are formulated in the form of
the CLIPS [13] language which is then manipulated through a JESS [14] rule engine.
The basic elements of the rules are concepts and pre-defined knowledge models upon
which the forward chain reasoning can be applied to infer a solution. In certain
circumstances, advice can be actions that change the state panel so that forward
chaining happens. An inference engine can use a rule base to generate a prioritized list
of actions appropriate to the current situation based upon the condition of a state panel.

(����������� state_panel
 (�	��
���� finished_tasks)
 (���� user_skill_level)
 (�	��
���� available_resources)
 (���� expected_output))

(����������� workflow_task
 (���� name)
 (�	��
���� input)
 (���� output)
 (���� finished?)
 (���� constrains)
 (�	��
���� dependance))

(����������� request_resource_provider
(�	��
���� requested_resources))

�������	����������������������������������

/� ���	���	�����+�	
�������������%�

Jess is used in developing the advice system where the “working memory” is modeled
as a set of pre-defined templates which may or may not initially contain any data,
assertions or information. Three main templates are shown in Table 1 as they are
defined in Jess. These templates serve as a connecting point joining the facts asserted

554 Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

and the facts in the LHS of the rules. In other words, both of them must conform to
these templates.

When starting the knowledge-based system, a set of facts are asserted. Each of
them conforms to its corresponding template. This collectively forms an instance of
the “working memory”.

… …
f-6 (MAIN::resource (name "step_file") (location "d:/geodise/res/airFoilStepFile"))
f-7 (MAIN::resource (name "gambit_jou_file") (location "d:/geodise/res/gambit.jou"))
f-8 (MAIN::workflow_task (name "geometry") (input nil) (output "step_file") (relevant_commands nil) (finished?
nil) (constrains nil) (dependance))
f-9 (MAIN::workflow_task (name "mesh") (input "step_file" "gambit_jou_file") (output "mesh_file")
(relevant_commands nil) (finished? nil) (constrains nil) (dependance))
f-10 (MAIN::workflow_task (name "analysis") (input "mesh_file" "fluent_jou_file") (output nil)
(relevant_commands nil) (finished? nil) (constrains nil) (dependance))
f-11 (MAIN::workflow_task (name "optimisation") (input nil) (output "avs_file") (relevant_commands nil)
(finished? nil) (constrains "run time not very high")(dependance))
f-12 (MAIN::workflow_task (name "doe") (input "budget_time" "single_run_time") (output nil)
(relevant_commands nil) (finished? nil) (constrains nil) (dependance))
f-13 (MAIN::workflow_task (name "visulization") (input "avs_file" "others") (output "graph") (relevant_commands
nil) (finished? nil) (constrains nil) (dependance))
f-14 (MAIN::state_panel (finished_tasks "geometry") (user_skill_level "low") (available_resources
"fluent_jou_file") (expected_output nil))
… …

�������	������������������� �����!��"��������������

In Table 2, “geometry”, “mesh” and “analysis”, etc. are high level workflow tasks
in EDSO. Each of them takes different resources as input and some of them have
output and other properties defined. We demonstrate how input properties of the
workflow task can be used together with the state panel fact to reason against the rules
in order to provide workflow advice. To simplify the problem for illustration, the
workflow advice focuses on suggesting what next step can be carried out depending
on current resources availability as indicated in the state panel. Further advice can be
triggered to suggest the resources that need to be obtained in order to perform a
specific task.

0� �	��	�������+��������������	
������+������,�������%�	��

The system supports two types of reasoning strategies. Both of them aim to provide
state-driven advice to assist workflow planning.

0-&� 1�����	�����	��	��%�

This strategy designs and deploys rules in a way that allows one workflow task to be
retracted from working memory if any of its input resource does not exist in the
available resources specified in the state panel. After eliminating all tasks that cannot
be carried out, those remaining are tasks that satisfy the current system state. The
elimination strategy guarantees that any workflow task surviving has a full provision
of input resources indicated in the state panel.

555Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

… …
(defrule rule1
 (not (state_panel (available_resources $?x "step_file" $?y)))
 ?taskID<-(workflow_task(input $?a "step_file" $?b))
 =>
 (retract ?taskID)
 (printout t ?taskID " Retract this workflow task because it needs step_file as input, which
is not available according to the state panel. " crlf))
(defrule rule2
 (not (state_panel (available_resources $?x "gambit_jou_file" $?y)))
 ?taskID<-(workflow_task(input $?a "gambit_jou_file" $?b))
 =>
 (retract ?taskID)
 (printout t ?taskID " Retract this workflow task because it needs gambit_jou_file as input,
which is not available according to the state panel. " crlf))
… …
(defrule workflow-answer-1
 (declare (salience -10))
 (workflow_task (name ?n))
 =>
 (printout t "In term of the work flow, next step you can do: " ?n crlf))

������#	�$�������������� ������������������������

Table 3 lists part of the rules coded in CLIPS. These rules are loaded into the
JESS reasoning engine and their LHS are matched with the state panel and workflow
task facts. The logic is quite simple: firstly, all workflow tasks are asserted into the
working memory as possible candidates. Then for each available resource that is NOT
specified as available in the state panel fact, if there is a workflow task fact whose
input property includes that resource, then this rule is fired with the action of
retracting (eliminating) that workflow task from the working memory (“$?x
"step_file" $?y” expresses a pattern that matches to a list of literals that include
“step_file”, $?x is a JESS expression of multifields). The default salience of rules is 0
which makes sure that these rules are checked first before checking rule “workflow-
answer-1”, which has a lower salience of -10. After all the “retracting” rules have
been checked (some of them may be executed), the “answer_rule” simply prints out
all facts of workflow tasks that haven’t been retracted yet. In other words, these tasks
can be performed according to the current resource availability. Table 4 shows the
reasoning result when applying the fact list to the rule set in Table 3.

556 Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

������ ����	
�
���������

… …

(MAIN::workflow_task (name "mesh")
(input "step_file" "gambit_jou_file") (output
"mesh_file") (relevant_commands nil)
(finished? nil) (constrains nil))

(MAIN::workflow_task (name "analysis")
(input "mesh_file" "fluent_jou_file") (output
nil) (relevant_commands nil) (finished? nil)
(constrains nil))

(MAIN::state_panel (finished_tasks
"geometry")
 (user_skill_level "low")
 (available_resources "step_file"
"gambit_jou_file")
 (expected_output nil))

… …

Found state panel with user_skill_level
low in fact list. So Switching ON
Advisor...

<Fact-16> Retract this workflow task
because it needs mesh_file as input, which
is not available according to the state
panel.

In terms of the workflow, next step you
can do: mesh

������%	�$���

0-*� �����	��	��	��%���	
�+��������
����

The elimination strategy guarantees that any workflow task surviving has a full
provision of input resources indicated in the state panel, but this is sometime too strict,
for example, there might be some (not necessarily all) resources available for doing a
workflow task, which the user might intend to do. However, the elimination strategy
may rule out this possibility by retracting this task. The direct strategy is designed to
relax this restriction. It assumes that the user may need to perform a task if s/he
creates resources that match part of the task’s input space. Therefore, depending on
the situation, action is taken to suggest that this task can be carried out either straight
away or on the premise of some further resources ($?expected_input in Table 5) being
made available, where in the latter case, a new fact called
“request_resource_provider” (defined in Table 1) is asserted with its property filled
with this expected resource ($?expected_input multi-field variable).

A forward chain of potential rule activation happens at the assertion of the
“request_resource_provider” fact. This is defined in the “resource_to_task” rule in
Table 5. It tries to match the requested resources with the output property of every
workflow task in the working memory. In this way, the rule fires and outputs
suggestions of what workflow task should be preformed in order to obtain the
requested resources.

557Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

 (defrule task_input_against_resources
 (state_panel (available_resources $?resource))
 ?taskID<-(workflow_task(name ?n)(input $?inputs))
 (test (> (length$ (intersection$ $?resource $?inputs)) 0))
 =>
 (printout t $?resource " is now available. " crlf)
 (printout t "You may be able to do " ?n)
 (bind $?intersection (intersection$ $?resource $?inputs))
 (printout t " by using " $?intersection crlf)
 (bind $?expected_input (complement$ $?intersection $?inputs))
 (if (= (length$ $?expected_input) 0)
 then
 (printout t "without having to obtain any further resources" crlf crlf)
 else
 (printout t "but still need input:" $?expected_input crlf crlf)
 (assert (request_resource_provider (requested_resources $?expected_input)))))
(defrule resource_to_task
 (request_resource_provider (requested_resources $?requested_resources))
 (workflow_task (name ?n) (output ?outputs))
 (test (member$?outputs $?requested_resources))
 =>
 (printout t ?n " can produce the resource " ?outputs crlf crlf))�

������&	�'����������!�������������"��!� ��"�������������

Table 6 shows the result of reasoning by using this strategy. It is slightly modified
for the purpose of clearer illustration. Workflow task facts stay the same as shown in
Table 4. The two “request_resource_provider” facts are asserted in run time, which
trigger a forward chain response aiming to discover workflow tasks that output the
requested resoures. Text in the right column is the output from the JESS reasoning
engine.

(workflow task facts are same as in Table 4)

(MAIN::state_panel (finished_tasks
"geometry")
 (user_skill_level "low")
 (available_resources "step_file"
"gambit_jou_file"
"fluent_jou_file")
 (expected_output nil))
facts asserted in run time:

(MAIN::request_resource_provider
(requested_resources "mesh_file"))
(MAIN::request_resource_provider
(requested_resources "step_file"))

found state panel with user_skill_level low in
fact list. So Switching ON Advisor...

("��������	���
��" "���
���	���
��") is now
available.
You may be able to do �������� by using
("��������	���
��")
but still need input:("�����
��")

���	 can produce the resource �����
��

("��������	���
��" "���
���	���
��") is now
available.
You may be able to do ���	 by using
("���
���	���
��")
but still need input:("������
��")

������ can produce the resource ������
��

������(�$��������������������������������������"��!� ��"�����!����

558 Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

2� ����������+��%�����������������,�������������+����
����	���	������1�

We put all the pieces together to show an integrated framework capable of providing
dynamic knowledge advice in the work flow construction environment. The
framework is designed to be service-oriented and has a client-server architecture as
shown in Figure 3.

Receive current state
panel instance

LHS: fact logic
RHS: action

state
panel

Ont
olog

y La
yer

XM
L L

aye
r

Infe
ren

ce L
aye

r of
usin

g kn
owl

edg
e b

ase

Knowledge
service side Application SideInternet

Protégé
OilED

XML
Schema

Convert to

Fact List
in JESS

 Match
& Fire

Rules

LHS

RHS

Fire

Engineering
Design search
& Optimization

Problem
Solving

Environment

Work Flow
Construction
Environment

Convert to

State
Panel
Writer

XML Data

State
Panel

Reader
On requesting

advice

Collecting
state data

Transmit on
initialization

Convert
to XML

advice

�������#	�)��"�������������������������!���������

�
The knowledge advisor resides on the server side waiting for knowledge requests

fired from the client side where a state panel writer collects key state information and
passes it to the server side for processing and analysis. The state panel writer is
internally operated by the workflow construction PSE so that any new state
information, once available, is written to the state panel while users interact with the
PSE. The state panel is a template of concepts with relationships and constraints. This
template enumerates all possible factors that can potentially affect the advice.
Relationships are expressed in the form of a concept hierarchy and attribute reference.
Constraints make sure that factors can only take values as recognized concepts and
terms so that they match precisely when doing inference with the rule base reasoning
engine. Knowledge acquisition methods are used in designing the state panel template.
We use the Protégé 2000 ontology editor for the design and maintenance of the state
panel.

While this forms the ontology layer of the knowledge service, an XML layer
transmits state panel information over the internet. This layer also guarantees that the
template is translated to a format that is easy to interpret and process by machine. It is
in this layer that templates modeled in Protégé are converted to XML Schema using
the XML tab plug-in in Protégé. This XML schema of the state panel is transmitted to
the application side when it first initializes the knowledge advice service. A state

559Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

panel writer on the application side collects environment data and generates an XML
data file that conforms to the XML schema received. The XML data is then sent back
to the server side where a state panel reader parses it and converts it to a set of facts
used as input to the inference layer of the knowledge base.

3� �������������������������#�����

The knowledge based advising system has been integrated into a large research
prototype. This prototype aims to assemble a complete set of grid enabled
optimisation services that could be managed via a knowledge portal. The problem is
the design and optimisation of a NACA airfoil aiming to reduce the noise while
maximizing the lift subject to a particular air flow. A typical workflow of engineering
design search and optimisation usually starts from geometry design using standard
CAD software such as Pro-E, where geometry related parameters are defined. Pro-E
can produce a STEP file to represent the modelled geometry. In order to carry out
numerical analysis, in particular dynamic fluent analysis in this case, on various parts
of the geometry, mesh has to be done to provide more information about the surface
of the geometry. Gambit is used to do this job. It can take the STEP file as input and
output a mesh file. Gambit generates a piece of journal file logging every operation
executed in its interactive session. This journal file can also be pre-edited or modified
to support the batch operation of meshing, as well as some complex operations that
can not be possibly done in the interactive session. Since the Gambit journal file is
used to control the operation of meshing, it is often used as the second input
parameter in the meshing task. With these two parameters, the gambit can produce a
mesh file that describes the surface of the studied part of the geometry more in detail
so that fluent analysis can be applied. Similarly, by using the mesh file and a fluent
journal file as the input parameters to the Fluent software, objective function can be
evaluated once to obtain the length of the single run time. Depending on the number
of design parameters and the length of single run time, Design of Experiment (DOE)
can be carried out repetitively to find the optimum of the objective function. In this
case, we only focus on the workflow construction and the knowledge advising
involved in the first three steps.

Figure 4 shows a working example of the knowledge based advisor integrated
into the workflow construction environment. Various ontologies can be loaded and
used to construct workflows of different domain. While users are building the
workflow of engineering design search and optimization by selecting and configuring
task components from the task ontology, the state panel is filled and sent to the
reasoning engine of the knowledge base. The critiques that the knowledge base
produces are displayed in the knowledge-based advice panel to suggest possible
actions to be taken in the next step.

In the example, the workflow is related to the design of a NACA airfoil, a simple
design that can be defined by three parameters. Since the mesh operation makes
available the mesh file as its output, the advisor, after checking the best practice,
suggests that objective function analysis can be carried out using the mesh file as one
of its input parameters. Besides, it also suggests that other resources are necessary in
order to fulfil the suggested next step and how the user might be able to obtain the
requested resources.

560 Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

�������%	�*������!���� ��!����������"����������"��� ��"��������������
���

4� ���������������+�	���������

In this paper, we focus on the knowledge advising service aspect of the knowledge
portal architecture. We demonstrate a knowledge based advisor that can reason over
previously elicited domain knowledge and assist in building workflows by providing
advice according to the current state. We demonstrate that ontologies can be used in
constructing a maintainable conceptual foundation for the knowledge base. Two
reasoning strategies are designed and tested. Experiments show that they are capable
of deriving new knowledge, providing primary advice, best practice of the domain
and helping users in making decisions at knowledge intensive points.

The deployment of the knowledge based advisor in the workflow construction
PSE has been prototyped to assist engineering design search and optimisation. The
integration shows that knowledge advice can be generated from the knowledge base.
The advice is used to help users handle knowledge intensive operations in the PSE.

In the current demonstration, only a limited number of factors are taken into
account in the reasoning, and the styles of advice are rather limited. However, we
believe that more factors can be encoded in the reasoning process together with more
complicated reasoning strategies so as to provide more versatile advice.

$������������	��

This work is supported by the GEODISE e-Science pilot project (UK EPSRC
GR/R67705/01). The authors gratefully acknowledge many helpful discussions with
the GEODISE team. Thanks also go to K.O’Hara for syntax checking.

561Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

.�+��������
1. The UK e-Science programme and the Grid, http://www.escience-grid.org.uk/

2. Semantic Grid, http://www.semanticgrid.org/

3. GEODISE project homepage, http://www.geodise.org

4. N.Shadbolt, K.O’Hara, and L.Crow, "The Experimental Evaluation of Knowledge
Acquisition Techniques and Methods: History, Problems and New Directions,"
+���������������������� �,����-.���������������, Vol. 51, No. 4, 1999, pp. 729-755.

5. G.Schreiber, H.Akkermans, A.Anjewierden, R.D.Hoog, N.Shadbolt, Van de Velde, and
Wielinga,)��"����������������������/���������, The MIT Press, London, 2000.

6. L.Chen, S.J.Cox, C.Gobel, A.J.Keane, A.Roberts, N.R.Shadbolt, P.Smart, and F.Tao,
"������������)��"������ ���������������0����*�����������" EuroWeb2002 - The Web
and the GRID: from e-science to e-business, Oxford, UK, 2002, pp. 12-25.
http://www1.bcs.org.uk/DocsRepository/03700/3775/chen.pdf

7. L.Chen, S.J.Cox, C.Gobel, A.J.Keane, A.Roberts, N.R.Shadbolt, P.Smart, and F.Tao,
"������������)��"������ ���������������0����*�����������" EuroWeb2002 - The Web
and the GRID: from e-science to e-business, Oxford, UK, 2002, pp. 12-25,
http://www1.bcs.org.uk/DocsRepository/03700/3775/chen.pdf

8. W.J.Clancey, ��������� .��������	� ��� ,�����)��"������ ���� .�������� $��������������,
Cambridge University Press, Cambridge, 1997.

9. Protege homepage, http://protege.stanford.edu/index.html

10. T.R.Gruber, "A translation approach to portable ontologies,")��"������*�1��������, Vol.
5, No. 2, 1993, pp. 199-220.

11. The OntoViz Tab - Visualizing Protégé-2000 Ontologies,
 http://protege.stanford.edu/plugins/ontoviz/ontoviz.html

12. B.G.Buchanan and R.G.Smith, "Fundamentals of expert systems," �!�� ,�������� � �
*��� ������+�����������, No. 4, 2002, pp. 149-192.

13. CLIP, http://www.ghg.net/clips/WhatIsCLIPS.html

14. Jess, the rule engine for the Java platform, http://herzberg.ca.sandia.gov/jess/

562 Tao F., Chen L., Shadbolt N., Pound G., Cox S.: Towards the Semantic Grid ...

