
VOC: A Methodology for the Translation Validation of

Optimizing Compilers

Lenore Zuck
New York University, United States

zuck@cs.nyu.edu

Amir Pnueli
Weizmann Institute of Science, Israel and New York University, United States

amir@cs.nyu.edu

Yi Fang
New York University, United States

yifang@cs.nyu.edu

Benjamin Goldberg
New York University, United States

goldberg@cs.nyu.edu

Abstract: There is a growing awareness, both in industry and academia, of the crucial
role of formally verifying the translation from high-level source-code into low-level ob-
ject code that is typically performed by an optimizing compiler. Formally verifying an
optimizing compiler, as one would verify any other large program, is not feasible due to
its size, ongoing evolution and modification, and, possibly, proprietary considerations.
Translation validation is a novel approach that offers an alternative to the verification
of translators in general and compilers in particular: Rather than verifying the compiler
itself, one constructs a validation tool which, after every run of the compiler, formally
confirms that the target code produced in the run is a correct translation of the source
program. The paper presents voc, a methodology for the translation validation of
optimizing compilers. We distinguish between structure preserving optimizations, for
which we establish a simulation relation between the source and target code based on
computational induction, and structure modifying optimizations, for which we develop
specialized “permutation rules”. The paper also describes voc-64—a prototype trans-
lation validator tool that automatically produces verification conditions for the global
optimizations of the SGI Pro-64 compiler.

Key Words: translation validation, optimizing compilers, SGI Pro-64, voc-64, global
optimizations, verification conditions, permutation rules

Category: D2.4, D3.4, I6.4

1 Introduction

There is a growing awareness, both in industry and academia, of the crucial
role of formally proving the correctness of safety-critical portions of systems.
Most verification methods focus on verification of specification with respect to
requirements, and high-level code with respect to specification. However, if one

Journal of Universal Computer Science, vol. 9, no. 3 (2003), 223-247
submitted: 26/6/02, accepted: 13/3/03, appeared: 28/3/03 © J.UCS

is to prove that the high-level specification is correctly implemented in low-
level code, one needs to verify the compiler which performs the translations.
Verifying the correctness of modern optimizing compilers is challenging because
of the complexity and reconfigurability of the target architectures, as well as the
sophisticated analysis and optimization algorithms used in the compilers.

Formally verifying a full-fledged optimizing compiler, as one would verify
any other large program, is not feasible, due to its size, evolution over time, and,
possibly, proprietary considerations. Translation Validation is a novel approach
that offers an alternative to the verification of translators in general and of
compilers in particular. Using the translation validation approach, rather than
verify the compiler itself one constructs a validating tool which, after every run
of the compiler, formally confirms that the target code produced is a correct
translation of the source program.

The introduction of new families of microprocessor architectures, such as
the EPIC family exemplified by the Intel IA-64 architecture, places an even
heavier responsibility on optimizing compilers. Compile-time dependence analy-
sis and instruction scheduling is required to exploit instruction-level parallelism
in order to compete with other architectures, such as the super-scalar class of
machines where the hardware determines dependences and reorders instructions
at run-time. As a result, a new family of sophisticated optimizations have been
developed and incorporated into compilers targeted at EPIC architectures.

Prior work ([PSS98a]) developed a tool for translation validation, CVT, that
succeeded in automatically verifying translations involving approximately 10,000
lines of source code in about 10 minutes. The success of CVT critically depends
on some simplifying assumptions that restrict the source and target to programs
with a single external loop, and assume a very limited set of optimizations.

Other approaches [Nec00, RM00] considered translation validation for less
restrictive languages allowing, for example, nested loops. They also considered a
more extensive set of optimizations. However, the methods proposed there were
restricted to structure preserving optimizations, and could not directly deal with
more aggressive optimizations such as loop distribution and loop tiling that are
often used in more advanced optimizing compilers.

Our ultimate goal is to develop a methodology for the translation validation
of advanced optimizing compilers, with an emphasis on EPIC-targeted compilers
and the aggressive optimizations characteristic to such compilers. Our methods
will handle an extensive set of optimizations and can be used to implement fully
automatic certifiers for a wide range of compilers, ensuring an extremely high
level of confidence in the compiler in areas, such as safety-critical systems and
compilation into silicon, where correctness is of paramount concern.

224 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

1.1 Overview

In this paper, we describe the initial steps towards our goal:

– the development of the theory of a Correct translation;

– a general proof rule for translation validation of structure preserving opti-
mizations;

– voc-64, a tool that implements the proof rule for the IR (Intermediate
Representation) to IR translation of an EPIC compiler (the SGI Pro-64);

– a proof rule for dealing with many structure modifying transformations;

Section 2 describes our formal model and theory of correct translation. In
general terms, we first give common semantics to the source and target lan-
guages using the formalism of Transition Systems (TS’s). The notion of a target
code T being a correct implementation of a source code S is then defined in
terms of refinement , stating that every computation of T corresponds to some
computation of S with matching values of the corresponding variables. In Figure
1 we present the process of refinement as completion of a mapping diagram.

Compiler
Semantics

Mapping

Mapping

Refinement
Optimizing

SemanticS: Source Sem(S)

Sem(T)T : Target

Figure 1: Refinement Completes the Picture

We distinguish between structure preserving optimizations, which admit a
clear mapping of control points in the target program to corresponding control
points in the source program, and structure modifying optimizations that admit
no such mapping.

Structure Preserving optimizations, which cover most high-level optimiza-
tions, are the focus of Section 3. Our general approach for dealing with these
optimizations is to establish a correspondence between the target and source
code, based on refinement , and to prove it by simulation. According to this ap-
proach, we establish a refinement mapping indicating how the relevant source
variables correspond to the target variables or expressions. The proof is then

225Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

broken into a set of verification conditions (also called proof obligations), each
claiming that a segment of target execution corresponds to a segment of source
execution. In some of the cases, the proof obligations are not valid by themselves,
and thus it is necessary to introduce auxiliary invariants which provably hold
at selected points in the program. The proof obligations are then shown to be
valid under the assumption of the auxiliary invariants.

For some optimizations the validating tool needs additional information that
specifies which optimizing transformations have been applied in the current
translation. This additional information can either be provided by the com-
piler or inferred by a set of heuristics and analysis techniques (some described
in Section 4.) The refinement proof rule we present in Section 3 uses invariant
assertions, which the validation tool generates at selected control points using
a set of heuristics. The verification conditions are then be augmented by these
invariants.

In Section 4 we describe voc-64, our prototype tool that generates, fully
automatically, the verification conditions for all global optimizations of the SGI
Pro-64 compiler. voc-64 builds on the theory developed in Section 3, while
using heuristics to generate the correct program annotations that allow for the
construction of the auxiliary invariants. The verification conditions produced by
voc-64 can be sent to CVT [PSS98a] to be verified.

A more challenging category of optimizations that is not covered in Section 3
is that of structure modifying optimizations and includes, e.g., loop distribution
and fusion, loop tiling, and loop interchange. For this class, it is often impossible
to apply the refinement-based rule since there are often no control points where
the states of the source and target programs can be compared. We identify a
large class of these optimizations, namely the reordering transformations , and
present in Section 5 permutation rules that allow for their effective translation
validation. We then show in Section 6 that, while loop unrolling falls naturally
into the category of reordering transformation and can be dealt with by the per-
mutation rule, it can also be dealt with by the structure preserving methodology
of Section 3.

One of the side-products we anticipate from this work is the formulation of
validation-oriented instrumentation, which will instruct writers of future com-
pilers how to incorporate into the optimization modules appropriate additional
outputs which will facilitate validation. This will lead to a theory of construction
of self-certifying compilers.

1.2 Related Work

The work here is an extension of the work in [PSS98a]. The work in [Nec00]
covers some important aspects of our work. For one, it extends the source pro-
grams considered from single-loop programs to programs with arbitrarily nested

226 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

loop structure. An additional important feature is that the method requires no
compiler instrumentation at all, and applies various heuristics to recover and
identify the optimizations performed and the associated refinement mappings.
The main limitation apparent in [Nec00] is that, as is implied by the single proof
method described in the report, it can only be applied to structure-preserving
optimizations. In contrast, our work can also be applied to structure-modifying
optimizations, such as the ones associated with aggressive loop optimizations,
which are a major component of optimizations for modern architectures.

The notion of correct translation that appears in [GS99] is similar to ours;
however, the work there does not deal with optimizations.

Another related work is [RM00] which proposes a comparable approach to
translation validation, where an important contribution is the ability to handle
pointers in the source program. However, the method proposed there assumes
full instrumentation of the compiler, which is not assumed here or in [Nec00].

More weakly related are the works reported in [Nec97] and [NL98], which
do not purport to establish full correctness of a translation but are only inter-
ested in certain “safety” properties. However, the techniques of program analysis
described there are very relevant to the automatic generation of refinement map-
pings and auxiliary invariants. Rival [Riv03] presents a methodology based on
abstract-interpretation for certification of assembly code that uses the analysis
of the source code and the debugging information.

The work in [Fre02] presents a framework for describing global optimizations
by rewrite rules with CTL formulae as side conditions, which allow for gener-
ation of correct optimizations, but not for verification of (possibly incorrect)
optimizations. The work in [GGB02] proposes a method for deploying optimiz-
ing code generation while correct translation between input program and code.
They focus on code selection and instruction scheduling for SIMD machines.

Somewhat similar to our approach, in the treatment of structure modifying
transformation, is the work in [SBCJ02]. There, static analysis is used to ex-
tract geometric model, on which loop data reuse transformations are checked to
preserve semantics. preserving equivalence conditions can be checked that . How-
ever, this work focuses on source-to-source transformations that are manually
applied in embedded system design, while the focus of our work is optimizations
that are automatically generated by compilers.

2 The Model

The compiler receives a source program written in some high-level language,
translates it into an Intermediate Representation (IR), and then applies a series
of optimizations to the program – starting with classical architecture-independent
global optimizations, and then architecture-dependent ones such as register allo-
cation and instruction scheduling. Typically, these optimizations are performed

227Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

in several passes (up to 15 in some compilers), where each pass applies a certain
type of optimization. In this section we briefly describe the intermediate code,
which we assume to be the input and output language of the optimization phase
of the compiler, and the transition system model which is our formal model.

2.1 Intermediate Code

The intermediate code is a three-address code. It is described by a flow graph,
which is a graph representation of the three-address code. Each node in the flow
graph represents a basic block , that is, a sequence of statements that is executed
in its entirety and contains no branches. The edges of the graph represent the
flow of control.

Example 1 Fig. 2 shows some C code, its translation by the SGI Pro-64 into
intermediate code, and the corresponding flow graph. The code computes the
integer square root of n.

int n, y, w;

n = 500;

y = 0;

w = 1;

while (w <= n)

{
w = w+2*y+3;

y = y+1;

}

B0 n <- 500

y <- 0

w <- 1

B1 WHILE (w <= n)

B2 BLOCK

w <- w+2*y+3

y <- y + 1

END BLOCK

B4

(terminal) (initial)
B0

B1

B4

B2

(a) Source Code (b) Intermediate Representation (c) Flowgraph

Figure 2: Source Code, IR, and Flow Graph

2.2 Transition Systems

In order to present the formal semantics of source and intermediate code we in-
troduce transition systems, TS’s, a variant of the transition systems of [PSS98b].
A Transition System S = 〈V,O, Θ, ρ〉 is a state machine consisting of:

– V a set of state variables ,

– O ⊆ V a set of observable variables,

228 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

– Θ an initial condition characterizing the initial states of the system, and

– ρ a transition relation, relating a state to its possible successors.

The variables are typed, and a state of a TS is a type-consistent interpretation
of the variables. For a state s and a variable x ∈ V , we denote by s[x] the value
that s assigns to x. The transition relation refers to both unprimed and primed
versions of the variables, where the primed versions refer to the values of the
variables in the successor states, while unprimed versions of variables refer to
their value in the pre-transition state. Thus, e.g., the transition relation may
include “y′ = y + 1” to denote that the value of the variable y in the successor
state is greater by one than its value in the old (pre-transition) state.

The observable variables are the variables we care about, where we treat each
I/O device as a variable, and each I/O operation removes/appends elements to
the corresponding variable. If desired, we can also include among the observables
the history of external procedure calls for a selected set of procedures. When
comparing two systems, we will require that the observable variables in the two
systems match.

A computation of a TS is a maximal finite or infinite sequence of states
σ : s0, s1, . . . , starting with a state that satisfies the initial condition such that
every two consecutive states are related by the transition relation. I.e., s0 |= Θ

and 〈si, si+1〉 |= ρ for every i, 0 ≤ i + 1 < |σ|1.

Example 2 We translate the intermediate code in Fig. 2 into a TS. The set of
state variables V includes the observables n and y, and the local variable w. We
also include in V the control variable (program counter) π that points to the
next statement to be executed. The range of π is {B0, B1, B2, B4}. The initial
condition, given by Θ : π = B0, states that the program starts at location (i.e.
block) B0. As observables, we take O = {n, y}.

The transition relation ρ can be presented as the disjunction of four disjuncts
ρ = ρ01 ∨ ρ12 ∨ ρ21 ∨ ρ14, where ρij describes all possible moves from
Bi to Bj without passing through intermediate blocks.

For example, ρ21 is:
(π = 2) ∧ (w′ = w + 2 ∗ y + 3) ∧ (y′ = y + 1) ∧ (π′ = 1)

When describing a transition relation, we mention only variables whose values
are changed. Thus, we omit from ρ21 the clause n′ = n since n is not changed in
the transition.

A computation of the program starts with B0, continues to B1, then cycles to
B2 and back to B1 several times, and finally terminates at B4. The state reached
at each block is described by the values assigned to the variables.
1 |σ|, the length of σ, is the number of states in σ. When σ is infinite, its length is ω.

229Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

A transition system T is called deterministic if the observable part of the initial
condition uniquely determines the rest of the computation. That is, if T has two
computations s0, s1, . . . and t0, t1, . . . such that the observable part (values of the
observable variables) of s0 agrees with the observable part of t0, then the two
computations are identical. We restrict our attention to deterministic transition
systems and the programs which generate such systems. Thus, to simplify the
presentation, we do not consider here programs whose behavior may depend on
additional inputs which the program reads throughout the computation. It is
straightforward to extend the theory and methods to such intermediate input-
driven programs.

The translation of an intermediate code into a TS is straightforward; we
therefore assume that all code we are dealing with here is described by a TS.

2.3 Comparison and Refinement between TSs

Let P
S

= 〈V
S
,O

S
, Θ

S
, ρ

S
〉 and P

T
= 〈V

T
,O

T
, Θ

T
, ρ

T
〉 be two TS’s, to which we

refer as the source and target TS’s, respectively. Such two systems are called
comparable if there exists a one-to-one correspondence between the observables
of P

S
and those of P

T
. To simplify the notation, we denote by X ∈ O

S
and

x ∈ O
T

the corresponding observables in the two systems. A source state s

is defined to be compatible with the target state t, if s and t agree on their
observable parts. That is, s[X] = t[x] for every x ∈ OT . We say that PT is
a correct translation (refinement) of P

S
if they are comparable and, for every

σ
T

: t0, t1, . . . a computation of P
T

and every σ
S

: s0, s1, . . . a computation of P
S

such that s0 is compatible with t0, σ
T

is terminating (finite) iff σ
S

is and, in the
case of termination, their final states are compatible.

Our goal is to provide an automated method that will establish (or refute)
that a given target code correctly implements a given source code, where both
are expressed as TSs.

3 VOC: Structure-Preserving Transformations

We use the term “structure preserving” transformation without giving it a rigor-
ous definition. Roughly speaking, we use to the term to cover all transformations
that can be dealt with by Floyd-like methodologies, i.e., structure preserving
transformation allow the assignment of control points where the values of ob-
servable variables can be matched, such that each loop includes at least one
control point. These transformation cover most of the global optimizations (in-
cluding loop-invariant code motion) and do not cover loop transformation such
as interchange, reversal, and tiling.

Let P
S

= 〈V
S
,O

S
, Θ

S
, ρ

S
〉 and P

T
= 〈V

T
,O

T
, Θ

T
, ρ

T
〉 be comparable TSs,

where P
S

is the source and P
T

is the target . In order to establish that P
T

is a

230 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

correct translation of P
S

for the cases that P
T

is derived from P
S

by structure
preserving transformations, we introduce a proof rule, Validate. The rule is in-
spired by the computational induction approach ([Flo67]), originally introduced
for proving properties of a single program. Rule Validate provides a proof
methodology by which one can prove that one program refines another. This
is achieved by establishing a control mapping from target to source locations, a
data abstraction mapping from source to target variables, and proving that these
abstractions are maintained along basic execution paths of the target program.

The proof rule is presented in Fig. 3. There, each TS is assumed to have a cut-
point set CP. This is a set of blocks that includes the initial and terminal block,
as well as at least one block from each of the cycles in the programs’ control flow
graph. A simple path is a path connecting two cut-points, and containing no
other cut-point as an intermediate node. For each simple path leading from Bi

and Bj, ρij describes the transition relation between blocks Bi and Bj. Typically,
such a transition relation contains the condition which enables this path to be
traversed, and the data transformation effected by the path. Note that, when
the path from Bi to Bj passes through blocks that are not in the cut-point set,
ρij is a compressed transition relation that can be computed by the composition
of the intermediate transition relation on the path from Bi to Bj.

The invariants ϕi in part (2) are program annotations that are expected to
hold whenever execution visits block Bi. They often can be derived from the data
flow analysis carried out by an optimizing compiler. Intuitively, their role is to
carry information in between basic blocks. Note that we allow the data abstrac-
tion α in part (3) to be partial, and to include guards (the pis.) The motivation
for allowing α to be partial is to accommodate situations which occur, for ex-
ample, in dead code elimination, where source variables have no corresponding
target variables. The motivation for allowing α to contain guards is to accom-
modate situations occurring, for example, in loop invariant code motion where,
at some points of the execution, source variables have no correspondence in the
target while at other points they do. The guards, thus, describe the conditions
under which the source variables can be defined using target variables.

The verification conditions assert that at each (target) transition from Bi

to Bj2, if the assertion ϕi and the data abstraction hold before the transition,
and the transition takes place, then after the transition there exist new source
variables that reflect the corresponding transition in the source, and the data
abstraction and the assertion ϕj hold in the new state. Hence, ϕi is used as a
hypothesis at the antecedent of the implication Cij . In return, the validator also
has to establish that ϕj holds after the transition. Thus, as part of the verification
effort, we confirm that the proposed assertions are indeed inductive and hold
whenever the corresponding block is visited. Since the assertion mentions only
2 Recall that we assume that a path described by the transition is simple.

231Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

1. Establish a control abstraction κ : CPT → CPS that maps initial and
terminal blocks of the target into the initial and terminal blocks of
the source.

2. For each basic block Bi in CPT , form an invariant ϕi that may refer
only to concrete (target) variables.

3. Establish a data abstraction

α : (p1 → V1 = e1) ∧ · · · ∧ (pn → Vn = en)

assigning to some non-control source state variables Vi ∈ VS an
expression ei over the target state variables, conditional on the (tar-
get) boolean expression pi. Note that α may contain more than one
clause for the same variable. It is required that, for every observable
source variable V ∈ OS (whose target counterpart is v) and every
terminal target block B, α implies that V = v at B.

4. For each pair of basic blocks Bi and Bj such that there is a simple
path from Bi to Bj in the control graph of PT , let Paths(κ(i), κ(j))
be the set of simple source paths connecting block Bκ(i) to Bκ(j).
We form the verification condition

Cij : ϕi ∧ α ∧ ρ
T

ij → ∃VS

′ : (
_

π∈Paths(κ(i),κ(j))

ρ
S

π) ∧ α′ ∧ ϕ′
j ,

where ρ
S

π is the transition relation for the simple source path π.
5. Establish the validity of all the generated verification conditions.

Figure 3: The Proof Rule Validate

target variables, their validity should depend solely on the target code.
In most cases, the primed source variables can be easily determined from

the code, and the existential quantification in verification condition (4) can be
eliminated. This is because, in the case that E contains no free occurrences of
the variable x′, the implication q → ∃x′ : (x′ = E ∧ r) is validity-equivalent to
the implication q ∧ (x′ = E) → r. However, this may not always be the case. In
some transformations there is no bijection between the different paths connecting
two control points in the source and the paths connecting the corresponding (via
κ−1) control points in the target. Another case where the identification of the
primed source variables is not easily determined from the code is when the data
abstraction α is partial. We present below an example for such cases. We are
therefore forced to leave the existential quantifier in (4).

In Appendix A we prove the soundness of the rule. In Section 4 we describe
voc-64 – a tool, currently being developed at NYU, to automatically generate
verification conditions (VCs) for programs being compiled by the SGI Pro-64
compiler. Verification of the VCs that are generated by voc-64 can be performed
by CVT, which was developed for the Sacres project [PRSS99]. The parts that

232 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

cannot be handled by CVT can be handled by other theorem provers. We have
been using STeP [MAB+94] and are exploring other packages that can provide
similar capabilities.

Before we describe voc-64 and its capabilities, we give an example of an
application of Validate as generated by voc. For readability, the output here
is slightly edited, but is essentially as produced by the tool. In the next section,
we describe the tool in more detail.

Examples of the Application of Validate

Our first example is derived using voc-64 which is described in Section 4. Here
we sketch some of the relevant outputs. Consider the program of Fig. 2 after a
series of optimizations: Constant folding, copy propagation, dead code elimina-
tion, control flow graph optimization (loop inversion), and strength reduction.
A simplified version of the resulting code, where we renamed some variables, is
in Fig. 4. The annotation (ϕ1, denoted phi1) is supplied by the compiler (see
Section 4).

B0 N <- 500

Y <- 0

W <- 1

B1 WHILE (W <= N)

B2 BLOCK

W <- W + 2 * Y + 3

Y <- Y + 1

END BLOCK

B4

(a) Input Program

B0 .t264 <- 0

y <- 0

w <- 1

B1 {phi1: .t264 = 2 * y}
w <- .t264 + w + 3

y <- y + 1

.t264 <- .t264 + 2

IF (w <= 500) GOTO B1

B2

(b) Optimized Code

Figure 4: Example 1: Source and Annotated Target Programs

To validate the program, we use the control mapping κ = {0
→ 0, 1
→ 2, 2
→ 4},
and the data abstraction

α :
(

(PC = κ(pc)) ∧ (pc �= 0 → Y = y) ∧
(pc �= 0 → W = w) ∧ (pc �= 0 → N = 500)

)

where variable names in upper case denote source (abstract) variables, and lower
case letters denote their target (concrete) counterparts. Note that we always
include in α the control mapping PC = κ(pc).

233Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

The verification condition C01 obtained for the simple path from B0 to B1,
after simplification (including the removal of the existential quantifier), is:

C01 : α ∧ ρ
T

01 ∧ α′ → ρ
S

02 ∧ ϕ′
1

where ρ
T

01 is defined by:(
(pc = 0) ∧ (.t264′ = 0) ∧ (y′ = 0) ∧ (w′ = 1) ∧ (pc′ = 1)

)
and ρ

S

02 is defined by:(
(PC = 0) ∧ (Y′ = 0) ∧ (W′ = 1) ∧ (N′ = 500) ∧ (N′ ≥ W′) ∧ (PC′ = 2)

)
We also have:

α′ :
(
(PC′ = κ(pc′)) ∧ (Y′ = y′) ∧ (W′ = w′) ∧ (N′ = 500)

)
and ϕ′

1 : (.t264′ = 2 ∗ y′). The other verification conditions are constructed sim-
ilarly. They are all trivial to verify.

Our second example demonstrates the need for the existential quantifier in
the VC. Consider the following source and target programs:

B0 I <- 0

B1 X <- A + B

IF !(I=0) GOTO B3

B2 I <- X

GOTO B4

B3 I <- I + X

B4 Y <- A + I

IF (I<100) GOTO B1

B5

(a) Input Program

B0 i <- 0

x <- a + b

B1 {phi: x = a + b}
i <- i + x

if (i < 100) goto B1

B2 y <- a + i

B3

(b) Optimized Code

Figure 5: Example 2: Source and Annotated Target Programs

To validate this transformation using Validate, we use the control mapping
κ = {0
→ 0, 1
→ 1, 3
→ 5}, and the data abstraction

α : (PC = κ(pc)) ∧ I = i ∧ A = a ∧ B = b ∧ (pc �= 1 → X = x ∧ Y = y)

The verification condition C11 obtained for the simple path from B1 to B1

requires computing ρ
S

11, which is a disjunction of the transition relations of the

234 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

path B1 → B3 → B4 → B1 and the path B1 → B2 → B4 → B1. Consequently, we
obtain

ρ
S

11 = PC = 1 ∧ PC′ = 1 ∧⎛
⎜⎜⎝

(I = 0 ∧ A + B < 100 ∧ I ′ = A + B ∧ X ′ = A + B ∧
Y ′ = 2A + B ∧ A′ = A ∧ B′ = B) ∨
(I �= 0 ∧ I + A + B < 100 ∧ I ′ = I + A + B ∧ X ′ = A + B ∧
Y ′ = I + 2A + B ∧ A′ = A ∧ B′ = B)

⎞
⎟⎟⎠

While for ρ
T

11 we have:

ρ
T

11 = (i + x < 100 ∧ i′ = i + x ∧ x′ = x ∧ y′ = y ∧ a′ = a ∧ b′ = b)

Thus, the verification condition C11 is ϕ1 ∧ α ∧ ρ
T

11 → ∃I ′, X ′, Y ′, A′, B′ :
ϕ′

1 ∧ α′ ∧ ρ
S

11. Here, the existential quantifier cannot be immediately removed,
since there are two possible paths in the source, both implying different values
for the primed source variables. (This, of course, assumes the validator cannot
attempt to reconcile the two branches on its own without a theorem provers)

4 VOC-64: A translation Validator for the SGI Pro-64
Compiler

This section presents an overview of the components of voc-64 : the parser and
the generators of cut-point sets, simple paths, transition relations, invariants,
data abstraction, control mapping, and verification conditions. Thus, voc-64

performs its own control- and data-flow analyses, providing a cross-check of the
analyses of the compiler. The description of the components includes exam-
ples of the tool’s output using the source program of Fig. 2 and its target of
Fig. 4. The documentation for voc-64 and examples of complete runs are in
http://www.cs.nyu.edu/validation/tvoc.

Parser (wh.cxx and wh.h). The intermediate language of the SGI Pro-64 com-
piler is WHIRL. After each round of optimization, the compiler outputs ASCII
formatted WHIRL code, which can be read by a parser and translated back into
a graphic representation.

Cut-Point Set(ts more.cxx). voc-64 computes cut-point sets, CP SET, for both
source and target as follows. The cut-point sets include initial and terminal
blocks. For each loop, the first block loop’s body will be chosen as cut-point.

For the example of the previous section, voc-64 computes the cut-point set
{0, 2, 4} for the source, and {0, 1, 2} for the target.

Control Mapping (ts more.cxx) voc-64 maps each initial and terminal loca-
tion of the target to initial and terminal locations of the source.

235Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

Since we are dealing with structure preserving optimization, it is not hard
to establish one-to-one correspondence between loops in the target and loops in
the source. Thus each cut-point of a target loop is mapped to the cut-point of
the corresponding source loop.

For our example, voc-64 produces {0 -> 0, 1 -> 2, 2 -> 4}.

Paths (ts more.cxx). voc-64 computes sets CP PATHS of paths for each source
and target. The set includes all simple paths (and cycles) between two points
in the appropriate CP SET, i.e., paths that do not contain as intermediate points
any other point in CP SET.

For our example, voc-64 computes (for the source)
CP PATHS = {B0 → B1 → B2, B2 → B1 → B2, B0 → B1 → B4, B2 → B1 → B4}

Transition Relation For each path Bi → Bj in CP PATHS, voc-64 computes
the τij , which is ρij without the control information (which is implicit) The
output is Ps(i,j) for source, and Pt(i,j) for target, which consists of a set of
equalities over the appropriate variables and the branch conditions. Thus, ρx

ij is
a conjunct of the terms in Px(i,j), together with π = i ∧ π′ = j. For example,
for Ps(0,2) voc-64 produces

(N = 500) & (Y = 0) & (W = 1) & (1 <= 500)

Invariants (ts.cxx). voc-64 computes two types of invariant assertions for each
basic block. One type is derived from the reachable definitions (obtained by
data flow analysis). These invariants help voc-64 handle optimizations as copy
propagation and code motion. The other type is derived from loop induction
variables. These invariants help voc-64 handle optimizations such as strength
reduction.

In Appendix B we describe how voc-64 computes invariants of the first type.
However, we observed that the invariants so derived cannot handle strength
reduction, which led us to generate invariants that build on the loop induction
variables. This is accomplished by computing, for loop induction variables i and
j whose initial values are i0 and j0 respectively, and that get incremented in each
iteration by c1 and c2 respectively, the invariant j = c2/c1 ∗ i + (j0 − i0 ∗ c2/c1).

Data Abstraction (ts more.cxx). The data abstraction that voc-64 computes
is a set (conjunction) of implications of the form pc = i → (v = V)). These
implications are computed for each basic block Bi. That is, voc-64 computes,
for each target block B(i), equalities of the type v = V . Let alpha(i) denote
the equalities for target block Bi. For each target block Bj that leads into Bi,
voc-64 computes the set of such equalities that are preserved in the path from
Bj into Bi, so that alpha(i) is the intersection of all such sets from all incoming
paths. The computation of alpha(i) is described in Fig. 6.

236 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

repeat for every path from Bj to Bi
beta (j,i) := {(v = V) s.t.

ϕi ∧ α ∧ ρ
T

ji ∧ ρ
S

κ(j)κ(i) → (v = V)}

alpha(i) := intersection beta (j,i)
for all paths from Bj to Bi

until sets stabilize

Figure 6: Computation of alpha(i)

The computation is successful when each target path has a unique source
path that maps to it. Currently, voc-64 does not handle data abstraction for
cases when a single target path maps into multiple source paths.

In our example, we obtain in the data abstraction, both (pc = 1) → (y = y)
and (pc = 2) → (y = y).

Generation of Verification Conditions The construction of the VCs is usu-
ally straightforward. An interesting case is, however, when there are multiple
paths connecting two cut-points in both source and target. Assume that the
cut-point set includes Bi and Bj. Assume further that there are m different
paths from Bi to Bj, each contributing a disjunct Pk to ρT

i,j , and that there
are n different paths from Bκ(i) to Bκ(j), each contributing a disjunct Q� to
ρS

κ(i),κ(j). Then voc-64 generates m VCs Ck
ij , k = 1, . . . , m, each of the form

ϕi ∧ α ∧ Pk → ∃V
S

′ :
∨n

�=1 Q� ∧ α′ ∧ ϕ′
j .

5 Validating Loop Reordering Transformations

A reordering transformation is any program transformation that merely changes
the order of execution of the code, without adding or deleting any executions
of any statement [AK02]. It preserves a dependence if it preserves the relative
execution order of the source and target of that dependence, and thus preserves
the meaning of the program. Reordering transformations cover many of the loop
transformations, including fusion, distribution, interchange, tiling, unrolling, and
reordering of statements within a loop body.

In this section we review the reordering loop transformations and propose
“permutation rules” that the validator may use to deal with these transforma-
tions.

5.1 Overview of Reordering Loop Transformations

Consider a loop of the form described in Fig. 7. Schematically, we can describe

237Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

for i1 = L1 to H1 do
. . .

for im = Lm to Hm do
B(i1, . . . , im)

end
. . .

end

Figure 7: A General Loop

such a loop in the form

for i ∈ I by ≺I do B(i)

where i = (i1, . . . , im) is the list of nested loop indices, and I is the set of the
values assumed by i through the different iterations of the loop. The set I can be
characterized by a set of linear inequalities. For example, for the loop of Fig. 7,
I is

I = {(i1, . . . , im) | L1 ≤ i1 ≤ H1 ∧ · · · ∧ Lm ≤ im ≤ Hm}

The relation ≺I is the ordering by which the various points of I are traversed.
For example, for the loop of Fig. 7, this ordering is the lexicographic order on I.

In general, a loop transformation has the following form:

for i ∈ I by ≺I do B(i) =⇒ for j ∈ J by ≺J do B(F (j)) (1)

In such a transformation, we may possibly change the domain of the loop indices
from I to J , the names of loop indices from i to j, and possibly introduce an
additional linear transformation in the loop’s body, changing it from the source
B(i) to the target body B(F (j)).
An example of such transformation is loop reversal which can be described as

for i = 1 to N do B(i) =⇒ for j = N to 1 do B(j)

For this example, I = J = [1..N], the transformation F is the identity, and the
two orders are given by i1 ≺I i2 ⇐⇒ i1 < i2 and j1 ≺J j2 ⇐⇒ j1 > j2,
respectively.

Since we expect the source and target programs to execute the same instances
of the loop’s body (possibly in a different order), we should guarantee that the
mapping F : J
→ I is a bijection from J to I, i.e. a 1-1 onto mapping. Often,

238 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

this guarantee can be ensured by displaying the inverse mapping F−1 : I
→ J ,
which for every value of i ∈ I provides a unique value of F−1(i) ∈ J .

Some common examples of transformations which fall into the class consid-
ered here are presented in Fig. 8 and Fig. 9. For each transformation, we describe
the source loop, target loop, set of loop control variables for source (I) and tar-
get (J), their ordering (≺I and ≺J), and the bijection F : J
→ I. For tiling we
assume that c divides n and d divides m.

Interchange skewing

Source
for i1 = 1, n do

for i2 = 1, m do
B(i1, i2)

for i1 = 1, n do
for i2 = 1, n do

B(i1, i2)

Target
for j1 = 1, m do

for j2 = 1, n do
B(j2, j1)

for j1 = 1, n do
for j2 = j1 + 1, j1 + n do

B(j2, j2 − j1)
I {1, . . . , n} × {1, . . . , m} {1, . . . , n} × {1, . . . , n}
J {1, . . . , m} × {1, . . . , n} {(j1, j2) : 1 ≤ j1 ≤ n ∧ j1 + 1 ≤ j2 ≤ j1 + n}

i < i′ i <lex i′ i <lex i′

j > j′ j <lex j′ j <lex j′

F (j) (j2, j1) (j1, j2 − j1)

F−1(i) (i2, i1) (i1, i1 + i2)

Figure 8: Some Loop Transformations

Reversal Tiling

Source
for i = 1, n do

B(i)

for i1 = 1, n do
for i2 = 1, m do

B(i1, i2)

Target
for j = n, 1 do

B(j)

for j1 = 1, n by c
for j2 = 1, m by d

for j3 = j1, j1 + c − 1
for j4 = j2, j2 + d − 1

B(j3, j4)
I {1, . . . , n} {1, . . . , n} × {1, . . . , m}

J {1, . . . , n} {(j1, j2, j3, j3) : 1 ≤ j1 ≤ n j1 ≡ 1 mod c ∧ j1 ≤ j3 < j1 + c ∧
1 ≤ j2 ≤ m j2 ≡ 1 mod d ∧ j2 ≤ j4 < j2 + d}

i ≺I i′ i < i′ i <lex i′

j ≺J j′ j > j′ j <lex j′

F (j) j (j3, j4)

F−1(i) i (c� i1−1
c � + 1, d� i2−1

d � + 1, i1, i2)

Figure 9: Some Loop Transformations

239Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

5.2 Permutation Rules

The simulation-based proof method discussed in previous sections assumes that
the source and target have similar structures and that the order between compu-
tation segments is essentially preserved in the translation. Since the transforma-
tions considered here may radically reorder the order between computations, we
can no longer use rule Validate for their validation. Therefore, we develop in
this section a rule called the “permutation rule” for validating reordering trans-
formations. The soundness of the permutation rule is established separately.
Usually, structure-modifying optimizations are applied to small localized sec-
tions of the source program, while the rest of the program is only optimized
by structure-preserving transformations. Therefore, the general validation of a
translation will combine these two techniques.

There are two requirements we wish to establish in order to justify the trans-
formation described in (1).

1. The mapping F is a bijection from J onto I. That is, F establishes a 1-1
correspondence between elements of J and the elements of I.

2. For every i1 ≺I i2 such that F−1(i1) �J F−1(i2), B(i1); B(i2) ∼ B(i2); B(i1).
This requirement is based on the observation that in the source computation,
B(i1) is executed before B(i2) while the corresponding B(i1) is executed after
B(i2) in the target computation. The overall results will be the same if all of
these permutation relations hold between pairs of iterations whose order of
execution is reversed between source and target.

These requirements are summarized in rule permute, presented in Fig. 10.

R1. ∀i ∈ I : ∃j ∈ J : i = F (j)
R2. ∀j1 �= j2 ∈ J : F (j1) �= F (j2)
R3. ∀i1, i2 ∈ I : i1 ≺I i2 ∧ F−1(i1) �J F−1(i2) =⇒

B(i1); B(i2) ∼ B(i2); B(i1)

for i ∈ I by ≺I do B(i) ∼ for j ∈ J by ≺J do B(F (j))

Figure 10: Permutation Rule permute for reordering transformations

In order to apply rule permute to a given case, it is necessary to identify the
function F (and F−1) and validate premises R1-R3. The identification of F can
be provided to us by the compiler, once it determines which of the relevant loop
optimizations it chooses to apply. Of course, the validator will need to verify that

240 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

F is a bijection and that the source and target bodies relate to each other as
prescribed by the rule. Alternately, we can develop heuristics which can attempt
to identify these functions based on a comparison of the source and target codes.

In most of the applications, the functions F and F−1 are based on linear
expressions. For these cases, premises R1-R3 can be automatically validated
using any implementation of linear integer arithmetic decision procedures, such
as the ones contained in ICS, CVC or PVS.

The techniques presented here only dealt with transformations which reorder
the execution of the entire loop’s body. They can be easily generalized to deal
with cases where the loop’s body is partitioned into several segments, and each
of the segments is moved to a different iteration. Such transformations occur in
the case of loop fusion and distribution as well as loop pipelining.

6 A Note on Loop Unrolling

A schematic loop unrolling is in Fig. 11 (where we assume c > 1.) There are

L1: i = 1

L2: B(i); i=i+1;

if (i<=n) goto L2

L3:

L1: B(1); ...; B(n mod c)

if (n < c) goto L5

L3: i = (n mod c) + 1;

L4: B(i); B(i+1); ... ; B(i+c-1);

i=i+c; if (i < n) goto L4

L5:

(1) Source Program (b) Target Program

Figure 11: Loop Unrolling

several strategies for dealing with loop unrolling. One is to design a premutaion-
like rule that deals with it directly. Another is to consider loop unrolling as a
special case of tiling an n × 1 array with tiles of size c, and then unrolling the
innermost loop. A third approach, which we pursue here, is to consider loop
unrolling as a structure-preserving transformation and apply Validate to it.

The formal treatment of the loop unrolling optimization was considered first
by Raya Leviathan, who has suggested the application of rule Validate to the
problem. As reported in [PZL01], she used the verification system STeP in order
to conduct a deductive verification of the example we bring below. The reason
we repeat this example here is in order to show how voc can complete this
validation task in a fully automatic manner.

For a simple path between two cut-points in the target, voc finds its cor-
responding execution in the source and checks whether the branch conditions

241Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

of the two paths are logically equivalent. To this end, we allow that the source
paths used in Validate include non-simple paths, bounding the number of sim-
ple paths composed to derive each non-simple path to c, where c is the unrolling
constant. We demonstrate the approach on the C-code and its translation de-
scribed in Fig. 12.

C Code

long a[100];
void unroll(int n)
{
int i;
for(i=0; i<n; i++)

a[i] = i;
}

Source Code (IR)

B0 i <- 0
B1 WHILE (i < n)
B2 [&a + i * 8] <- i

i <- i + 1
B3 RETURN

Target

B0 IF !(0 < n) GOTO B6
B1 i <- 0

t1 <- &a
t2 <- n MOD 3
IF (t2 = 0) GOTO B4

B2 [t1] <- i
t1 <- t1 + 8
i <- i + 1
IF (t2 = 1) GOTO B4

B3 [t1] <- i
t1 <- t1 + 8
i <- i + 1

B4 IF !(i < n) GOTO B6

B5 t10 <- t1
t11 <- t1 + 8
t12 <- t1 + 16
t20 <- i
t21 <- i + 1
t22 <- i + 2
[t10] <- t20
[t11] <- t21
[t12] <- t22
t1 <- t1 + 24
i <- i + 3
IF (i < n)

GOTO B5
B6 RETURN

Figure 12: A Loop Unrolling Example

voc-64 generated the control mapping {0
→ 0, 5
→ 2, 6
→ 3}, the data abstrac-
tion N = n ∧ (π > 1 → (I = i)) and the invariants

ϕ0 : t

ϕ5 : (t1 = 8 · i + &a) ∧ (i < n) ∧ ((n − i) mod 3 = 0)
ϕ6 : (t1 = 8 · i + &a) ∧ ((n − i) mod 3 = 0)

For example, for C56 = ϕ5 ∧ α ∧ ρ
T

56 → ∃V ′
S

: ρ
S

23 ∧ α′ ∧ ϕ′
6, where ρ

S

23

is the non-simple path B2 → B2 → B2 → B3 which visits four cut-points (two of
which are intermediate). voc-64 generated for ρ

T

56:(
(π = 5) ∧ (π′ = 6) ∧ i′ = i + 3) ∧ (t1′ = t1 + 24) ∧ ([t1]′ = i)
∧ ([t1 + 8]′ = i + 1) ∧ ([t1 + 16]′ = i + 2) ∧ (i + 3 ≥ n)

)

and for (non-simple) ρ
S

23:⎛
⎝ [8 · I + &A]′ = I) ∧ ([8 · (I + 2) + &A]′ = I + 2) ∧

([8 · (I + 1) + &A]′ = I + 1) ∧ (Π = 2) ∧ (I ′ = I + 3) ∧
(I + 1 < N) ∧ (I + 2 < N) ∧ (I + 3 ≥ N) ∧ (Π ′ = 3)

⎞
⎠

The paper [PZL01] presents a compilation of the Trimaran compiler that involves
this example of loop unrolling, and verifies it using rule Validate. In fact, in

242 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

one case the validation failed, showing that Trimaran generated target code that
could possibly cause a segmentation fault, although the source code would not
have.

7 Summary and Future Work

This paper presented voc, the theoretical framework for translation validation of
optimizing compilers. We described voc-64, a tool we are developing to perform
automatic translation validation for the SGI Pro-64 compiler, and gave examples
of the VCs it generates. voc-64 currently generates verification conditions for all
the classical global optimizations of the SGI Pro-64, as well as for loop unrolling.

We also presented permutation rules for dealing with reordering loop trans-
formations. We are currently working on extending voc to accommodate the
permutation rules.

We have recently connected voc-64 to the theorem prover ICS [FORS01],
that verifies the verification condition generated by voc-64 . We are working on
extensions to the theorem prover CVC [SBD02] so that it can provide automatic
proofs to the permutation rules used for loop optimizations.

Our approach has a few weaknesses. It does not check for exceptions (over-
and under-flow, zero-divide, out of bound array references, etc.) These may cause
both false negative and false positive validation results. Similarly, the approach
does not check for exceptions that are introduced, or eliminated, during the
compilation. These may only cause false negatives. Finally, the ability of our
approach to check correctness of algebraic simplifications is limited by the power
of the decision procedure employed by the theorem prover we use.

The work presented here does not deal with pointers, aliasing, and procedure
calls. We intend to remedy this soon. We have also embarked on developing
the theory for dealing with instruction scheduling and other machine-dependent
optimizations, as well as on developing techniques for run-time validation of
aggressive optimizations that cannot be validated by static tools.

Acknowledgements

We would like to thank Clark Barrett for many helpful discussions and com-
ments. We would also like to thank the referees for their diligent comments on
this paper.

This research was supported in part by NSF grant CCR-0098299, ONR grant
N00014-99-1-0131, and the John von Neumann Minerva Center for Verification
of Reactive Systems.

243Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

References

[AK02] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Archi-
tectures. Morgan Kaufmann, 2002.

[ASU88] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers Principles, Techniques,
and Tools. Addison Wesley, 1988.

[Flo67] R.W. Floyd. Assigning meanings to programs. Proc. Symposia in Applied
Mathematics, 19:19–32, 1967.

[FORS01] J.C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated canonizer

and solver. In Proc. 13rd Intl. Conference on Computer Aided Verification
(CAV’01), volume 2102 ofLect. Notes in Comp. Sci., Springer-Verlag, 2001.

[Fre02] C.C. Frederiksen. Correctness of Classical Compiler Optimizations us-
ing CTL. In Proc. of Compiler Optimization meets Compiler Verificaiton
(COCV) 2002, Electronic Notes in Theoretical Computer Science (ENTCS),
volume 65, issue 2.

[GGB02] S. Glesner, R. Geiß and B. Boesler. Verified Code Generation for Embedded
Systems. In Proc. of Compiler Optimization meets Compiler Verificaiton
(COCV) 2002, Electronic Notes in Theoretical Computer Science (ENTCS),
volume 65, issue 2.

[GS99] G. Goos and W. Zimmermann. Verification of Compilers. In Correct Sys-
tem Design, volume 1710 of Lect. Notes in Comp. Sci., Springer-Verlag,
pages 201–230, 1999.

[MAB+94] Z. Manna, A. Anuchitanukul, N. Bjørner, A. Browne, E. Chang, M. Colón,
L. De Alfaro, H. Devarajan, H. Sipma, and T.E. Uribe. STeP: The Stanford
Temporal Prover. Technical Report STAN-CS-TR-94-1518, Dept. of Comp.
Sci., Stanford University, Stanford, California, 1994.

[Muc97] S. S. Muchnick. Advanced Compiler Design & Implementation. Morgan
Kaufmann, 1997.

[Nec97] G.C. Necula. Proof-carrying code. In Proc. 24th ACM Symp. Princ. of
Prog. Lang., pages 106–119, 1997.

[Nec00] G. Necula. Translation validation of an optimizing compiler. In Proceedings
of the ACM SIGPLAN Conference on Principles of Programming Languages
Design and Implementation (PLDI) 2000, pages 83–95, 2000.

[NL98] G.C. Necula and P. Lee. The design and implementation of a certifying
compilers. In Proceedings of the ACM SIGPLAN Conference on Principles
of Programming Languages Design and Implementation (PLDI) 1998, pages
333–344, 1998.

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equal-
ity formulas by small-domains instantiations. In In N. Halbwachs and
D. Peled, editors, Proc. 11st Intl. Conference on Computer Aided Verifica-
tion (CAV’99), volume 1633 of Lect. Notes in Comp. Sci., Springer-Verlag,
pages 455–469, 1999.

[PSS98a] A. Pnueli, M. Siegel, and O. Shtrichman. The code validation tool (CVT)-
automatic verification of a compilation process. Software Tools for Tech-
nology Transfer, 2(2):192–201, 1998.

[PSS98b] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In In B.
Steffen, editor, Proc. 4th Intl. Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’98), volume 1384 of Lect.
Notes in Comp. Sci., Springer-Verlag, pages 151–166, 1998.

[PZP00] A. Pnueli, L. Zuck, and P. Pandya. Translation validation of optimizing
compilers by computational induction. Technical report, Courant Institute
of Mathematical Sciences, New York University, 2000.

[PZL01] A. Pnueli, L. Zuck, and R. Leviathan. Validation of Optimizing
Compilers. Technical report, Computer Science Department, NYU

244 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

(CIMS/CS/NYU.) Available in www.cs.nyu.edu/validator/pubs.html
http://www.cs.nyu.edu/validator/pubs.html

[Riv03] X. Rival. Abstract Interpretation-Based Certification of Assembly Code.
In Proc. 4th Intl. Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI’03), volume 2575 of Lect. Notes in Comp.
Sci., Springer-Verlag, pages 41–55, 2003.

[RM00] M. Rinard and D. Marinov. Credible compilation with pointers. In Pro-
ceedings of the Run-Time Result Verification Workshop, Trento, July 2000.

[SBD02] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating
Validity Checker. In Proc. 14th Intl. Conference on Computer Aided Verifi-
cation (CAV’02), volume 2404 of Lect. Notes in Comp. Sci. Springer-Verlag,
pages 500–504, 2002.

[SBCJ02] K.C. Shashidhar, M. Bruynooghe, F. Catthoor and G. Janssens. Geomet-
ric Model Checking: An Automatic Verification Technique for Loop and
Data Reuse Transformations. In Proc. of Compiler Optimization meets
Compiler Verificaiton (COCV) 2002, Electronic Notes in Theoretical Com-
puter Science (ENTCS), volume 65, issue 2.

[SOR93] N. Shankar, S. Owre, and J.M. Rushby. The PVS proof checker: A reference
manual (draft). Technical report, Comp. Sci. Laboratory, SRI International,
Menlo Park, CA, 1993.

[Wol99] S. Wolfram. The Mathematica Book. Cambridge University Press, 1999.
[ZC91] H. Zima and B. Chapman. Supercompiler for Parallel and Vector Comput-

ers. Addison-Wesley. 1991.
[ZPG00] L. Zuck, A. Pnueli, and B. Goldberg. Translation Validation of

Loop Optimizations in Optimizing Compilers. Technical report,
CIMS/CS/NYU. Available in www.cs.nyu.edu/validator/pubs.html
http://www.cs.nyu.edu/validator/pubs.html

[ZPL00] L. Zuck, A. Pnueli, and R. Leviathan. Validations of optimizing compliers.
Technical report, Weizmann Institute of Science, 2000.

A Soundness of Validate

Let P
S

= 〈V
S
,O

S
, Θ

S
, ρ

S
〉 and P

T
= 〈V

T
,O

T
, Θ

T
, ρ

T
〉 be two comparable de-

terministic TSs. Let CP
S

and CP
T

be the sets of cut-points of P
S

and P
T

re-
spectively. Assume that the control mapping κ, the data abstraction α, and the
invariants ϕis are all defined. Assume further that all verification conditions Cij

(for every i and j such that there is a simple path in PT leading from Bi to Bj)
have been established. We proceed to show that P

T
is a correct translation of

P
S
.
Let

σ
T

: s1, s2, . . .

be a finite or infinite computation of P
T
, which visits blocks Bi1, Bi2, . . ., respec-

tively. Obviously Bi1 is in CP
T

and if the computation is finite (terminating)
then its last block is also in CPT . According to an observation made in [Flo67],

245Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

σ
T

can be decomposed into a fusion3 of simple paths

β
T

: (Bj1, . . . , Bj2)︸ ︷︷ ︸
π

T
1

◦ (Bj2, . . . , Bj3)︸ ︷︷ ︸
π

T
2

◦ · · ·

such that Bj1 = Bi1, every Bjk is in the cut-point set CP
T

, and the path π
T

m =
Bjm, . . . , Bjm+1 is simple. Since all VCs are assumed to hold, we have that

Cjkjk+1 : ϕjk
∧ α ∧ ρ

T

jkjk+1
→ ∃V

S

′ : (
∨

Π∈Paths(κ(jk),κ(jk+1))

ρ
S

Π) ∧ α′ ∧ ϕ′
jk+1

holds for every k = 1, 2,
We can show that there exists a computation of P

S
:

σ
S

: S1, . . . , S2, . . . ,

such that S1 visits cut-point Bκ(j1), S2 visits cut-point Bκ(j2), and so on, and
such that the source state visiting cut-point Bκ(jr) is compatible with the target
state visiting cut-point Bjr, for every r = 0, 1,

Consider now the case that the target computation is terminating. In this
case, the last state sr of σ

T

visits some terminal cut-point Bjr. It follows that
the computation σ

S

is also finite, and its last state Sm (σ
T

and σ
S

are often
of different lengths) visits cut-point B(κ(jr)) and is compatible with sr. Thus,
every terminating target computation corresponds to a terminating source com-
putation with compatible final states.

In the other direction, let σ
S

: S0, . . . , Sn be a terminating source computa-
tion. Let σ

T

: s0, s1, . . . be the unique (due to determinism) target computation
evolving from the initial state s0 which is compatible with S0. If σ

T

is terminat-
ing then, by the previous line of arguments, its final state must be compatible
with the last state of σ

S

. If σ
T

is infinite, we can follow the previously sketched
construction and obtain another source computation σ̃

S

: S̃0, S̃1, . . . which is in-
finite and compatible with σ

S

. Since both S0 and S̃0 are compatible with s0 they
have an identical observable part. This contradicts the assumption that P

S

is
deterministic and can have at most a single computation with a given observable
part of its initial state.

It follows that every terminating source computation has a compatible ter-
minating target computation.

B Generating Invariants from Data Flow Analysis

Invariants that are generated by data flow analysis are of definitions that are car-
ried out into a basic blocks by all its predecessors. We outline here the procedure
that generates these invariants.
3 concatenation which does not duplicate the node which appears at the end of the

first path and the beginning of the second path

246 Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

For a basic block B, define:

kill(B) : set of B’s assignments y = e(x̄)
some of whose terms are redefined later in B

gen(B) : set of B’s assignments y = e(x̄)
none of whose terms are redefined later in B

Both kill(B) and gen(B) are easy to construct. voc-64 constructs two other
sets, in(B), that is the set of invariants upon entry to B, and out(B), that is the
set of invariants upon exit from B. These two sets are computed by the procedure
described in Fig. 13, where pred(B) is the set of all blocks leading into B.

For every block B
in(B) init {if BB is initial

then set of u = u0 for every variable u
else emptyset }

out(B) init emptyset

repeat for every block B
out(B) := (in(B) \ kill(B)) ∪ gen(B)
in(B) :=

T

p∈predB out(p)

until all sets stabilize

Figure 13: Procedure to Compute Invariants

Set operations and comparisons are performed syntactically. An obvious en-
hancement to our tool is perform those operations semantically. Another possible
enhancement is to add inequalities to the computed invariants, which are readily
available from the data flow analysis.

voc-64 computed invariants for both source and target. In optimizations
such as code sinking, or even for constant folding together combined with dead
code elimination, these invariants are used, though theoretically not necessary.

247Zuck L., Pnueli A., Fang Y., Goldberg B.: VOC: A Methodology ...

