
Using Program Checking to Ensure the

Correctness of Compiler Implementations

Sabine Glesner
(Institute for Program Structures and Data Organization

University of Karlsruhe, 76128 Karlsruhe, Germany
glesner@ipd.info.uni-karlsruhe.de)

Abstract: We evaluate the use of program checking to ensure the correctness of com-
piler implementations. Our contributions in this paper are threefold: Firstly, we extend
the classical notion of black-box program checking to program checking with certifi-
cates. Our checking approach with certificates relies on the observation that the correct-
ness of solutions of NP-complete problems can be checked in polynomial time whereas
their computation itself is believed to be much harder. Our second contribution is the
application of program checking with certificates to optimizing compiler backends, in
particular code generators, thus answering the open question of how program check-
ing for such compiler backends can be achieved. In particular, we state a checking
algorithm for code generation based on bottom-up rewrite systems from static single
assignment representations. We have implemented this algorithm in a checker for a
code generator used in an industrial project. Our last contribution in this paper is an
integrated view on all compiler passes, in particular a comparison between frontend
and backend phases, with respect to the applicable methods of program checking.

Key Words: compiler, implementation correctness, program checking, certificates,
compiler architecture, compiler generators, code generation

Category: D.3.4, D.2.4, F.3.1, F.4.2

1 Introduction

Compiler correctness is a necessary prerequisite to ensure software correctness
and reliability as most modern software is written in higher programming lan-
guages and needs to be translated into native machine code. In this paper, we ad-
dress the problem of implementing compilers correctly. Recently, program check-
ing has been proposed as a method to achieve this goal. Program checking has
been successfully applied to compiler frontends while its application to compiler
backends has remained as an open problem. We close this gap. Therefore we pro-
pose a novel checking method which we call program checking with certificates. It
is particularly suited for checking the results of optimization problems. We have
applied program checking with certificates to code generation, a phase in op-
timizing compilers which transforms intermediate representations into machine
code. In this paper, we present our checking algorithm for such code genera-
tors as well as a case study with experimental results proving the practicality
of our approach. Moreover, we summarize previous work about frontend check-
ing and compare it with our insights concerning backend checking. Thereby we

Journal of Universal Computer Science, vol. 9, no. 3 (2003), 191-222
submitted: 30/9/02, accepted: 13/3/03, appeared: 28/3/03 J.UCS

reveal significant differences between the computations and corresponding check-
ing tasks in compiler frontends and backends. With this evaluation, we achieve
an integrated view an all compiler passes concerning the respectively applicable
checking methods and the advantage they might or might not offer compared to
the full verification of the respective entire compiler passes.

Program checking is based on the observation that if one wants to obtain
provably correct results, it is sufficient to verify the results instead of verifying
the program code that produced them. Such a strategy makes sense whenever
it is much more expensive to compute a result than to check a result. Compiler
frontend computations have typically unique solutions. Even though calculating
them might involve complex computations, their correctness can nevertheless
be checked easily. Hence, for frontend computations, the standard black-box
checking method as proposed in [Blum et al. 1993, Blum and Kannan 1995] can
be applied.

In backends, the situation is different because complex optimization prob-
lems need to be solved which might have much more than one solution. When
checking the correctness of the solution of such an optimization problem, it does
not matter if it is optimal, thus simplifying the checking task and the verification
of the checker considerably. Many of the backend problems are NP-hard. Such
problems are characterized by the fact that the correctness of a solution can
be shown by a proof of polynomial length. Our proposed method of program
checking with certificates uses this property. We extend the checking scenario by
requiring that the implementation to be checked also outputs a certificate which
tells the checker how the solution has been computed. The checker uses this cer-
tificate to recompute the solution. It classifies the solution of the implementation
as correct only if it is identical with the recomputed solution.

Even though compilers are often assumed to be error free and trustworthy,
many compilers used in practice do have bugs. This leads in turn to the phe-
nomenon that many programmers try to find bugs in their own code rather
than assuming mistakes in the compilers which they use. Nevertheless compilers
are not above suspicion as is demonstrated by the bug reports of widely-used
compilers [Borland/Inprise 2002a, Borland/Inprise 2002b]. Often compilers work
correctly as long as no special optimizations are used. But as soon as higher op-
timization levels are switched on, errors occur, cf. e.g. [Newsticker 2001] which
describes an error in Intel’s C++ compiler showing up during interprocedural
optimization (option -ipo). This paper focuses on the question of how compilers
can be implemented correctly. Besides this question there are two other aspects
of correctness. Firstly one needs to prove that the specification of the com-
piler implementation is correct. Such a proof requires the certificate that the
semantics of the respecting source and translated target programs are the same.
Secondly, one needs to take into account that the compiler implementation is

192 Glesner S.: Using Program Checking to Ensure the Correctness ...

typically written in a higher programming language and needs to be translated
into machine code itself. Hence, it is necessary to guarantee that the compiler
implementation is compiled correctly into machine code.

These different aspects of compiler correctness as well as related work dealing
with them are summarized in section 2. In section 3, we introduce our method of
program checking with certificates which can be used to check the correctness of
the solutions of optimization problems. Moreover, we argue why we cannot hope
to get a similar method to also check the optimality of the computed solutions. In
section 4, we discuss the characteristics of compilers, in particular their structure
and the corresponding implications for the task of correctness checking. Sections
5 and 6 present our novel work on backend checking. In section 5 we apply pro-
gram checking with certificates to compiler backends by proposing a checking
algorithm for the code generation phase. Thereby we take the code generator
generator CGGG (code generator generator based on graphs) [Boesler 1998] as
basis for our investigations. It implements bottom-up rewrite systems (BURS)
[Nymeyer and Katoen 1997]. We modified it so that the code generators gener-
ated with it do not only produce the target program but a certificate as well.
Moreover, we argue that the checkers can be generated from specifications in the
same way as the code generators. In section 6 we show how program checking
with certificates behaves in practice. In our case study, we have implemented a
checker for an industrial compiler backend generated with the CGGG system.
In section 7 we restate related work about frontend checking with respect to the
characteristics established in section 4. In section 8, we evaluate frontend and
backend checkers in an integrated view. In section 9, we discuss related work.
Finally we close with conclusions and aspects of future work in section 10.

2 Compiler Correctness

Compiler correctness is widely accepted as an important requirement and many
different definitions exist. In this section, we summarize the definition given in
[Goos and Zimmermann 1999, Goos and Zimmermann 2000] because it has two
main advantages: Firstly, it considers resource limitations which might cause
compiler errors. Secondly, it clearly distinguishes between specification, imple-
mentation, and compiler compilation correctness. In particular, it offers a so-
lution to the problem that one might wish to use compiler generators whose
verification itself would be too expensive. Earlier work on compiler verifica-
tion [Polak 1981, Chirica and Martin 1986] also distinguished between specifi-
cation and implementation correctness but did not mention the problem that
the translation of a verified compiler implementation into executable machine
code also needs to be verified, i.e. the question of compiler compilation correct-
ness. [Polak 1981] mentioned the problem of compiler generators but did not

193Glesner S.: Using Program Checking to Ensure the Correctness ...

offer any solution. Moreover, [Polak 1981] addressed the question of resource
limitations and stated a definition similar to the one described below.

Preservation of Observable Behavior A correct compiler is required to
preserve the semantics of the translated programs. More precisely, it should
preserve their observable behavior. This requirement has been discussed exten-
sively. In a curtailed summary, the definition of [Goos and Zimmermann 1999,
Goos and Zimmermann 2000] states that the execution of a program can be rep-
resented by an operational semantics as a sequence of states. Selected observable
states communicate with the outside world. A translation is correct iff for each
source and translated target program and for each possible program input, the
sequence of observable states is the same.

Resource Limitations This definition raises the question of resource limita-
tions. In a mathematical sense, each compiler will produce no result for nearly
all programs, namely all those that do not fit into the memory of the computer
on which the compiler is running. In the same sense, each translated program
will produce no result for nearly all inputs, namely those inputs that are too
long to fit into the memory of the computer executing the translated program.
This question can be carried to extremes by asking whether a compiler is correct
that never produces any target program but only says for each source program
that there is no result due to resource limitations. In a practical sense, such
a compiler is worthless. But from a formal point of view, it is correct. Since
nearly all programs and program inputs, resp., do not fit into the memory of
any existing computer, we cannot hope for a better formal definition. From a
practical perspective, we require a correct compiler to translate most programs
of reasonable length such that their observable behavior is preserved for most
inputs of realistic interest.

Decomposition along Compiler Passes Each compiler consists of a se-
quence of translation steps (cf. section 4 for more details), also called compiler
passes. Each compiler pass is defined by a translation specification. To ensure
the correctness of the overall translation, it is sufficient to prove that each indi-
vidual translation step preserves the semantics of the translated programs.

Correctness of Compiler Specification The correctness proof for each indi-
vidual compiler pass can be split into three different proof obligations. The first
concerns the specification correctness. Thereby it is necessary to show that the
specified translation preserves the semantics of the source programs, i.e. retains
their observable behavior. In [Zimmermann and Gaul 1997], such a translation
verification has been done for all compiler passes from a simple imperative source

194 Glesner S.: Using Program Checking to Ensure the Correctness ...

language into DEC-Alpha machine code. Such correctness proofs can also be
done mechanically by using automated theorem provers [Dold et al. 1998].

Correctness of Compiler Implementation The second level of compiler
correctness is concerned with the implementation correctness, i.e. the question
of how the translation specification can be implemented correctly. Thereby one
needs to take into account that today’s compilers are not written by hand but
rather generated from specifications. It would imply an enormous and much too
expensive effort if one wanted to verify either the generator implementation itself
or the compilers produced by them. The solution to this dilemma is program
checking [Goerigk et al. 1998]. Instead of verifying generator or generated com-
piler, one verifies the correctness of the result of the generated compiler, i.e. the
target program. This has been done successfully for the frontends of compilers
[Heberle et al. 1999]. To guarantee the formal correctness of the result, it is still
necessary to verify the checker code formally. Since most search and optimiza-
tion problems in the area of compiler construction are much more expensive to
solve than to check, this verification task can be done much faster.

Correctness of Compiler Compilation Finally, there is the question of
encoding correctness. Compiler and checker are typically written in a higher
programming language and need to be translated into machine code themselves.
For this purpose one needs an initial correct compiler. The investigations in
[Dold et al. 2002, Dold and Vialard 2001] show that it is possible to fully verify
a non-optimizing compiler mechanically by using an automated theorem prover.

Focus of this Paper In this paper, we concentrate on implementation correct-
ness, in particular on the implementation correctness of optimizing backends.
Therefore, we extend the classical notion of program checking and introduce
program checking with certificates. This checking method is particularly suited
to check the results of optimizations, as for example the target programs pro-
duced by optimizing compiler backends. Thus, we solve the open question of
how compiler backend checking can be done successfully. Moreover, we compare
the frontend and backend tasks in a compiler and identify principal differences
between the corresponding checking tasks. This comparison gives us an inte-
grated view on all compiler passes and the checking methods applicable in the
respective phases.

3 Program Checking: Trust is Good, Control is Better!

In this section, we introduce the notion of program checking with certificates.
With it, we extend the well-known concept of black-box program checking pre-
sented in [Blum and Kannan 1995]. Black-box program checking assumes that

195Glesner S.: Using Program Checking to Ensure the Correctness ...

an implementation solving a certain problem is used as a black box and that an
independent checker examines if a particular result is correct. We summarize this
approach in subsection 3.1. In subsection 3.2, we show how it can be extended
to be applicable in the context of optimization problems which might not have
only a single but possibly several correct solutions. In subsection 3.3, we argue
why it is unlikely that we might be able to construct efficient checkers for the
optimality of a solution.

3.1 Black Box Program Checking

Program checking [Blum and Kannan 1995] has been introduced as a method
to improve the reliability of programs. It assumes that there exists a black box
implementation P computing a function f . A program result checker for f checks
for a particular input x if P (x) = f(x). Assume that f : X → Y maps from X

to Y . Then the checker checker has two inputs, x and y, whereby x is the same
input as the input of the implementation P and y is its result on input x. The
checker has an auxiliary function f ok that takes x and y as inputs and checks
whether y = f(x) holds.

proc checker (x : X, y : Y) : BOOL

if f ok(x, y) then return True

else return False

end proc

Note that the checker does not depend on the implementation P . Hence, it
can be used for any program P ′ implementing f . Thereby the checker should
be simpler than the implementation of f itself and, a stronger requirement,
simpler than any implementation P ′ computing f . Simple checkers would have
the advantage of potentially having fewer bugs than the implementation P .
Since there is no reasonable way to define the notion of being simpler formally,
[Blum and Kannan 1995] states a definition for being quantifiably different. The
intention is to force the checker to do something different than the implementa-
tion P . A checker is forced to do something different if it has fewer resources than
the implementation. This would imply that bugs in the implementation and in
the checker are independent and unlikely to interact so that bugs in the program
will be caught more likely. Formally, a checker is quantifiably different than the
implementation if its running time is asymptotically smaller than the running
time of the fastest known algorithm. However, for many interesting problems,
the fastest algorithm is not known. As a weaker requirement, one can consider
efficient checkers whose running time is linear in the running time of the checked
implementation and linear in the input size. [Blum et al. 1993] presents checking
methods for a variety of numerical problems.

196 Glesner S.: Using Program Checking to Ensure the Correctness ...

Nondeterministic Turing Machine

Computation Space of a Polynomial−Time

...

...
Solution

polynom
ial depth

Certificate

Figure 1: Computation Spaces in NP

3.2 Program Checking with Certificates

We introduce the method of program checking with certificates by extending
the notion of a program result checker such that it is allowed to observe the
implementation program P during its computation of the result. In our setting,
the program P might tell the checker how it has computed its solution.

To motivate this idea theoretically, let us take a look at the common defi-
nition for problems in NP. NP is the union of all problems that can be solved by
a nondeterministic polynomial time Turing machine. An alternative equivalent
definition for NP states the following: Assume that a language L is in NP. Then
there exists a polynomial time Turing machine M such that for all x ∈ L, there
exists y, | y |≤ poly(x) such that M accepts (x, y). Hence, for any language L in
NP, there is a simple proof checker (the polynomial time Turing machine M)
and a short proof (y) for every string x ∈ L. Given the proof y and the string x,
the proof checker M can decide if the proof is valid. Clearly, the two definitions
are equivalent: Computations within nondeterministic polynomial time can be
thought of as a search tree with polynomial depth. Each node represents the
choice which the nondeterministic Turing machine has at any one time during
computation. A proof for membership in the language L is a path to a solu-
tion during this search tree. Since the tree has polynomial depth, there always
exists a proof of polynomial length. Such a proof is also called a certificate, cf.
[Papadimitriou 1994].

When solving optimization problems, as e.g. in the backends of compilers,
huge search spaces need to be searched for an optimal or at least acceptable
solution. When we want to check the correctness of the solution, we do not
care about its optimality, only about its correctness. Hence, we can use the

197Glesner S.: Using Program Checking to Ensure the Correctness ...

implementation

output

input

checker yes / n o

to be verified

certificate

Figure 2: Checker Scenario with Certificates

certificate to recompute the result. In particular for the optimization variants of
NP-complete problems, we have the well-founded hope that the checker code is
much easier to implement and verify than the code generator itself. Our checking
scenario with certificates is summarized in figure 2. In the case of simple checking
tasks, the certificate input for the checker is empty, i.e. does not exist.

But what if the implementation is malicious and gives us a buggy certificate?
The answer is simple: If the checker manages to compute a correct solution with
this erroneous certificate and if, furthermore, this correct solution is identical
with the solution of the implementation, then the checker has managed to verify
the correctness of the computed solution. It does not matter how the implemen-
tation has computed the solution or the certificate as long as the checker is able
to reconstruct the solution via its verified implementation.

The checker functionality can be described as follows. Let P be the imple-
mentation of a function f with input x ∈ X and the two output values y ∈ Y

and Certificate such that y is supposed to be equal to f(x) and Certificate being
a description how the solution has been computed. The checker has an auxil-
iary function f ok that takes x, y, and Certificate as inputs and checks whether
y = f(x) holds.

proc checker (x : X, y : Y,Certificate) : BOOL

if f ok(x, y,Certificate) then return True

else return False

end proc

NP-complete problems have the tendency to have very natural certificates.
This holds in particular for the NP-complete problems to be solved in compiler
backends, cf. section 5.

3.3 What About Checking the Optimality of Solutions?

Our notion of checking with certificates makes sure that a solution is correct but
does not consider checking its quality. In this section, we want to argue that due

198 Glesner S.: Using Program Checking to Ensure the Correctness ...

to certain widely-accepted assumptions in complexity theory, we cannot hope to
construct efficient checkers which check if a solution is optimal.

Problems in NP are always decision problems, asking if a certain instance
belongs to a given language (e.g.: Is this a Hamiltonian path? Does the traveling
salesman have a tour of at most length n?). These problems are characterized
by their property that each positive instance has a proof of polynomial length, a
certificate. E.g. the Hamiltonian path itself or a tour for the traveling salesman
of length n or smaller would be such certificates. Conversely, the class coNP is
defined as containing all those languages whose negative instances have a proof
of non-membership, a disqualification, of polynomial length. E.g. the language
containing all valid propositional formulas is such a language. A non-satisfying
assignment for a formula proves that this formula does not belong to the language
of valid formulas. Hence, this non-satisfying assignment is a disqualification. To
prove that a solution is not only correct but also optimal, one would need a
positive proof in the spirit of NP-proofs and a negative proof as in the case
of coNP-proofs. The positive proof states that there is a solution at least as
good as the specified one. The negative proof would state that there is no better
solution. Complexity theory [Papadimitriou 1994] has studied this situation and
defined the class DP. DP is the set of all languages that are the intersection
of a language in NP and a language in coNP. One can think of DP as the
class of all languages that can be decided by a Turing machine allowed to ask a
satisfiability oracle twice. This machine accepts iff the first answer was ‘yes’ (e.g.
stating that the optimal solution is at least as good as the specified one) and the
second ‘no’ (stating that the optimal solution is at most as good as the specified
one). It is a very hard question to decide whether an optimization problem lies in
DP. The current belief in complexity theory is that NP-complete problems are
not contained in coNP, implying that conceivably they do not have polynomial
disqualifications. So if we design a checker for a problem being at least NP-
complete, it does not surprise that we are not able to announce a polynomial
checker also for the optimality of a solution, since such an announcement would
solve a few very interesting questions in complexity theory.

4 Compiler Architecture

Compilers consist of two main parts, their frontend and their backend. Both
parts can be specified by theoretically well-founded methods. Moreover, these
methods can be implemented in generators. Yet, there is a fundamental differ-
ence between the frontend and backend tasks. In subsection 4.1 we describe the
standard compiler architecture and the methods used to specify and generate
the respective compiler parts. Then we proceed by discussing the fundamental
differences between frontend and backend tasks in subsection 4.2.

199Glesner S.: Using Program Checking to Ensure the Correctness ...

4.1 Structure of Compilers

Compilers consist of a frontend and of a backend. The frontend checks if a given
input program belongs to the programming language and transforms it into an
intermediate representation, cf. figure 3. The backend takes this intermediate
representation, optimizes it, and generates machine code for it, cf. figure 5.

Frontend Tasks Programming languages are described and processed by a

syntax
abstract

tree
SSAprogram

source lexical
analysis sequence

token
analysis
syntax

syntax tree
attributed semantic

analysis
trans−

formation
representation

intermediate

Figure 3: Frontend Tasks

three-stage process: First, a regular language defines how to group individual
characters of the input program into tokens. For example, the character sequence
‘e’ ‘n’ ‘d’ would be combined into the token ‘END’, treated as an indivisible unit.
Regular languages can be implemented easily by finite automata, constituting
the lexical analysis, also called scanner. These tokens are the basis to define the
context-free structure of programs by a deterministic context-free grammar. For
each program, this context-free grammar defines a derivation tree (the concrete
syntax). Context-free languages can be implemented by pushdown automata.
The corresponding compiler pass is called syntactic analysis or parser. These
derivation trees and the corresponding context-free grammar can be simplified
in many cases, e.g. by eliminating chain productions, yielding the abstract syn-
tax used in all subsequent definitions. In the third stage of language definition,
attributes are associated with the nodes in the abstract syntax tree, e.g. by
specifying an attribute grammar. These attributes define the context-sensitive
properties of programs. They are determined during the semantic analysis. In
general, these attributes cannot be computed locally within the scope of one
production but need more sophisticated strategies which traverse the abstract
syntax tree in special orders. Based on the attributed abstract syntax tree, the
intermediate representation of the program is easily computed.

SSA Intermediate Representation Static single assignment (SSA) form has
become the preferred intermediate program representation for handling all kinds
of program analyses and optimizing program transformations prior to code gen-
eration [Cytron et al. 1989, Cytron et al. 1991, Cytron and Ferrante 1995]. Its
main merits comprise the explicit representation of def-use-chains and, based on
them, the ease by which further dataflow information can be derived.

200 Glesner S.: Using Program Checking to Ensure the Correctness ...

Add

Phi
Block

Add

Const

Cond

Block

Add

Jmp

Block
2

Figure 4: SSA Example

By definition SSA-form requires that a program and in particular each basic
block is represented as a directed graph of elementary operations (jump, mem-
ory read/write, unary or binary operation) such that each ”variable” is assigned
exactly once in the program text. Only references to such variables may appear
as operands in operations. Thus, an operand explicitly indicates the data de-
pendency to its point of origin. The directed graph of an SSA-representation is
an overlay of the control flow and the data flow graph of the program. A con-
trol node may depend on a value which forces control to conditionally follow a
selected path. Each block node has one or more such control nodes as its pre-
decessor. At entry to a basic block, φ nodes, x = φ(x1, . . . , xn), represent the
unique value assigned to variable x. This value is a selection among the values
x1, . . . , xn where xi represents the value of x defined on the control path through
the i-th predecessor of the block node. n is the number of predecessors of the
block node. An SSA representation may easily be generated during a tree walk
through the attributed syntax tree.

As example, figure 4 shows the SSA representation for the program fragment:
a := a+2; if(..) { a := a+2; } b := a+2

In the first basic block, the constant 2 is added to a. Then the cond node passes
control flow to the ‘then’ or to the ‘next’ block, depending on the result of the
comparison. In the ‘then’ block, the constant 2 is added to the result of the previ-
ous add node. In the ‘next’ block, the φ node chooses which reachable definition
of variable a to use, the one before the if statement or the one of the ‘then’ block.
The names of variables do not appear in the SSA form. Since each variable is
assigned statically only once, variables can be identified with their value.

201Glesner S.: Using Program Checking to Ensure the Correctness ...

Backend Tasks The backend takes the intermediate representation, optimizes
it, and generates corresponding machine code, cf. figure 5. The machine-indepen-

SSA
source machin e

code

optimizations

representation

intermediatefront
end generator

code
program

Figure 5: Backend Tasks

dent optimizations transform an SSA representation into a semantically equiv-
alent SSA representation, thereby exploiting information from control and data
flow analyses. Complete code generation involves several phases which depend
on each other. Code selection and generation assigns machine instructions to
the operations of the intermediate representation and produces a sequence of
machine instructions. Register allocation decides which values of the interme-
diate representation are to be kept in registers and which need to be stored in
memory. Instruction scheduling rearranges the code sequence computed during
code selection in order to exploit the architecture of the target machine. All
these problems are optimization problems. Many of them are NP-hard. The
most prominent such example is register allocation which can be reduced to the
problem of graph coloring known to be NP-complete.

Code generation, on which we concentrate in sections 5 and 6, may be viewed
as a rewrite process on the intermediate representation. In traditional cases this
representation is a set of trees which are rewritten by techniques like Bottom Up
Pattern Matchers (BUPM) [Emmelmann 1992, Emmelmann 1994] or Bottom
Up Rewrite Systems (BURS) [Nymeyer and Katoen 1997]. Both mechanisms
use rewrite rules: E.g. (+(r, c) → r, code) is a rule to rewrite an addition of
two operands by its result. The target code code for this rule is emitted simulta-
neously. In an SSA representation, the program is represented by a graph with
explicit data and control flow dependencies. Therefore one needs graph rewrite
systems when rewriting SSA graphs during code generation. There might be
more than one rule for a given subtree or subgraph. Since rules are annotated
with their costs, the cheapest solution needs to be determined by a potentially
huge search.

Compiler Generators The translation methods for compilers mentioned in
this subsection are all implemented in generators. There exists a variety of gener-

202 Glesner S.: Using Program Checking to Ensure the Correctness ...

ators for the lexical and syntactic analysis, just to name the Unix tools Lex and
Yacc as most prominent examples. They take regular expressions and LR(1)
context-free grammars, resp., as input and generate the corresponding com-
piler passes. The semantic analysis can be generated based on miscellaneous
mechanisms, e.g. based on attribute grammars [Eli 2003]. For the machine-
independent optimizations, there is e.g. the PAG system [Martin 1998]. The BEG
tool [Emmelmann et al. 1989] generates machine code by implementing bottom-
up pattern matchers. In our case study, cf. section 6, we use the code generator
generator CGGG [Boesler 1998]. It generates code generators that implement
graph rewrite systems based on BURS theory [Nymeyer and Katoen 1997].

4.2 Significant Difference between Frontends and Backends

The frontend computations have one common characteristic: Their result is
uniquely determined. This simplifies the check whether their result is correct. It
can be done completely without any knowledge about the internal decisions of
the compiler. In contrast, backend computations solve optimization problems.
They have a huge solution space with potentially several solutions. Cost func-
tions define their quality. When checking the solutions of backends, only the
correctness of the solutions, not their optimality, needs to be checked. We do
this by using internal knowledge about the decisions of the compiler. We call
this internal knowledge certificate, as it corresponds directly with a correctness
proof as discussed in subsection 3.2. Thus we restrict the search space and get
more efficient checkers.

Remark: In practical frontend construction, one faces the problem of construct-
ing a deterministic context-free grammar which in addition needs to satisfy the
special needs of the parser generator one might wish to use (e.g. parser gener-
ators accepting only LALR grammars). Such a grammar is not unique since a
programming language might have ambiguities. When constructing a parser for
one specific programming language, one must avoid and solve ambiguities and
conflicts, e.g. when dealing with subtle precedence and associativity rules, by
specifying a deterministic context-free grammar, i.e. a grammar which defines a
unique syntax tree for each program. This grammar is not unique. Nevertheless,
if such a grammar exists and has been constructed, the syntactic analysis will
always produce a unique result.

In the following two sections, we present our novel checking algorithm for
the code generation phase as well as the experimental results of our case study
implementing it. The checking algorithm is based on program checking with
certificates. Afterwards we proceed by summarizing previous work on frontend
checking. Then we evaluate frontend and backend checkers with respect to two

203Glesner S.: Using Program Checking to Ensure the Correctness ...

criteria: The first criterion is the question if formal correctness and verification
can be established more easily via the checker approach than by verifying the
compiler or compiler generator directly. The second criterion asks if the checkers
can be generated in order to ensure their practical applicability for generated
compilers. With this common evaluation of frontend and backend checkers, we
achieve an integrated view on all compiler passes and the respective checking
methods which are applicable for them.

5 Program Checking for Compiler Backends

The backend of a compiler transforms the intermediate representation into target
machine code. This task involves code selection, register allocation, and instruc-
tion scheduling, cf. subsection 4.1. These problems are optimization problems
that do not have a unique solution but rather a variety of them, particularly
distinguished by their quality. Many of these problems are NP-hard. Hence,
algorithms for code generation are often search algorithms trying to find the
optimal solution or at least a solution as good as possible with respect to certain
time or space constraints. If one wants to prove the implementation correctness
of such algorithms, it is not necessary to prove the quality of the computed
solutions. It suffices to prove their correctness.

5.1 BURS and the CGGG System

In this paper, we deal with checking the code selection phase. Thereby we con-
sider bottom-up rewrite systems (BURS) for code generation. BURS systems
are a powerful method to generate target machine code from intermediate pro-
gram representations. Conventional BURS systems allow for the specification of
transformations between terms which are represented as trees. Rules associate
tree patterns with a result pattern, a target-machine instruction, and a cost.
If the tree pattern matches a subtree of the intermediate program representa-
tion, then this subtree can be replaced with the corresponding result pattern
while simultaneously emitting the associated target-machine instruction. The
code generation algorithm determines a sequence of rule applications which re-
duces the intermediate program tree into a single node by applying rules in a
bottom-up order.

Traditionally, BURS has been implemented by code generation algorithms
which compute the costs of all possible rewrite sequences. This enormous com-
putation effort has been improved by employing dynamic programming. The
work by Nymeyer and Katoen [Nymeyer and Katoen 1997] enhances efficiency
further on by coupling BURS with the heuristic search algorithm A∗. This search
algorithm is directed by a cost heuristic. It considers the already encountered
part of costs for selected code as well as the estimated part of costs for code

204 Glesner S.: Using Program Checking to Ensure the Correctness ...

which has still to be generated. A∗ is an optimally efficient search algorithm.
No other optimal algorithm is guaranteed to expand fewer nodes than A∗, cf.
[Dechter and Pearl 1985]. Using such an informed search algorithm offers the
advantage that only those costs need to be computed that might contribute to
an optimal rewrite sequence. [Nymeyer and Katoen 1997] propose a two-pass al-
gorithm to compute an optimal rewrite sequence for a given expression tree. The
first bottom-up pass computes, for each node, the set of all possible local rewrite
sequences, i.e. those rewrite sequences which might be applicable at that node.
This pass is called decoration and the result is referred to as decorated tree. The
second top-down pass trims these rewrite sequences by removing all those local
rewrite sequences that do not contribute for the reduction of the term.

BURS theory has been extended to be able to deal with SSA representations
by a two-stage process [Boesler 1998]. The first stage concerns the extension from
terms, i.e. trees, to terms with common subexpressions, i.e. DAGs. This modifi-
cation involves mostly technical details in the specification and implementation
of the rewrite rules. The second stage deals with the extension from DAGs to
potentially cyclic SSA graphs. SSA graphs might contain data and control flow
cycles. There are only two kinds of nodes which might have backward edges, φ

nodes and nodes guiding the control flow at the end of a basic block to the suc-
ceeding basic block. For these nodes, one can specify general rewrite rules which
do not depend on the specific translation, i.e., which are independent from the
target machine language. In a precalculation phase, rewrite sequences are com-
puted for these nodes with backward edges. These rewrite sequences contain
only the general rewrite rules. In the next step, the standard computation of the
rewrite sequences for all nodes in the SSA graph is performed. Thereby, for each
node with backward edges, the precalculated rewrite sequences are used.

The BURS code generation algorithm has been implemented in the code
generator generator system CGGG (code generator generator based on graphs)
[Boesler 1998]. CGGG takes a specification consisting of BURS rewrite rules
as input and generates a code generator which uses the BURS mechanism for
rewriting SSA graphs, cf. figure 6. The produced code generators consist of three
major parts. First the SSA graph is decorated by assigning each node the set of
its local alternative rewrite sequences. Then the A∗-search looks for the optimal
solution, namely the cheapest rewrite sequence. This search starts at the final
node of the SSA graph marking the end of computation, by working up through
the SSA graph until the start node is reached. Finally, the target machine code
is generated by applying the computed rewrite sequence.

An example for a rule from a code generator specification is:

RULE a:Add (b:Register b) -> s:Shl (d:Register c:Const);

RESULT d := b;

205Glesner S.: Using Program Checking to Ensure the Correctness ...

Decoration of
SSA GraphGraph

SSA Machin e
CodeTarget Code

Emitting theSearch for Cheapest
Rewrite Sequence

Rewrite Sequence
Recording the

Extension for
Checker Scenario

SSA Graph
Decorated Solution

Path

Checker
BURS

(extended)

BURS
(extended)

Code Generator Generator
CGGG

yes / no

generates generates generates

Extension for Checker Scenario:
can be generated by slightly
extending the input BURS
specification for the CGGG

Certificate

Figure 6: Extended CGGG Architecture

EVAL { ATTR(c, value) = 1; }
EMIT {}

This rule describes an addition of two operands. On the left hand side of the
rule, the first operand is a register with short name b. The second operand is the
first operand again, identified by the short name. Note that the left-hand side of
this rule is a directed acyclic graph. If the code generator finds this pattern in the
graph, it rewrites it with the right-hand side of the rule. In general, this could be
a DAG again. Thereby the EVAL code is executed. This code places the constant
1 in the attribute field value of the Const node. The RESULT instruction informs
the register allocator that the register d equals register b.

Optimal BURS code generation for SSA graphs is an NP-complete problem:
In [Aho et al. 1977], it is shown that code generation for expressions with com-
mon subexpressions is NP-complete. Each instance of such a code generation
problem is also a BURS code generation problem for SSA graphs. Thus it follows
directly that BURS code generation for SSA graphs is NP-complete.

5.2 A Generic Checker for Code Generators

The CGGG architecture can easily be extended for the program checking ap-
proach. Therefore we record which sequence of rewrite rules has been selected
during the A∗-search for the cheapest solution. This sequence of rewrite rules
is the certificate. The checker takes it and recomputes the result. This result is

206 Glesner S.: Using Program Checking to Ensure the Correctness ...

compared with the result of the code generator. Only if it is equal to that of
the checker, the checker will output ‘yes’. If the checker outputs ‘no’, then it
has not been able to recompute the same result. Such a checker is generic in
the sense that the respective BURS system is one of the checker inputs. Hence,
the same generic checker can be used for all code generators generated by the
CGGG system.

It is particularly easy to extend the CGGG architecture such that it outputs
the certificate necessary to check the results of the generated code generators.
We can extend the BURS specification such that not only the machine code is
output but also, in a separate file, the applied rules. Therefore, we only need
to extend the EMIT part of each rule. This part contains instructions which
will be executed on application of the rule. We can place one more instruction
there, namely a protocol function. This protocol function writes a tuple to the
certificate file. This tuple contains the applied rule as well as the node identifier
of the node where it has been applied. We have decided to take the address in
main memory of each node as its unique identifier.

One might ask why it is not sufficient to check only the local decorations of the
nodes on the solution path found during the A∗-search to ensure the correctness
of the computed result. The answer concerns the sorting of the nodes in the SSA
graph. Each node has a specific sort which might be changed on application
of a rule. Hence, the correctness of a rule sequence can only be decided if one
makes sure that the sorts of the nodes and the sorts required by the rules fit
together in each rule application. Moreover, one needs to check that the rules
are applied according to the bottom-up strategy of BURS. We do not know of
any other checking method assuring well-sorting and bottom-up rewriting other
than recomputing the solution.

The exact checking algorithm is summarized in figure 7. The certificate
Certificate is a list of tuples, each containing a rule and the node identifier
node no. This node identifier characterizes uniquely the node at which the rule
has been applied. BURS is the extended rewrite system which the CGGG has
taken as input. SSA Graph is the intermediate representation or the interme-
diate results obtained during the rewrite process, resp. Finally, Target Code is
the result of the rewrite process, the machine instruction sequence. To keep the
presentation of the checking algorithm as simple as possible, we did not give all
details of the auxiliary procedures but only described them colloquially. Clearly,
this checker is generic because the respective BURS system is not hardwired into
its code but one of the input parameters.

Theorem 1 Correctness of Checker. If the checker outputs ‘yes’
(TRUE) on input (BURS ,SSA Graph ,Target Code ,Certificate), then the target
code Target Code has been produced correctly by transforming the intermediate
representation SSA Graph according to the rules of the BURS system BURS. �

207Glesner S.: Using Program Checking to Ensure the Correctness ...

Proof. The CGGG system is supposed to generate code generators implementing
the respective input rewrite system BURS. To check whether a code sequence
produced by such a code generator is correct, we need to make sure that there is
a sequence of rule applications conforming to the BURS rewrite method. Instead
of testing if there is any such sequence of rule applications, we check the weaker
proposition if the certificate produced by the code generator is a BURS rewrite
sequence. This is done successively by repeating each rule application, starting
with the same SSA intermediate representation. In each step, it is tested that the
node exists at which the rewrite step is supposed to take place. Then it is tested
that the rewrite step conforms to the bottom-up strategy of BURS. Finally, the
left-hand side of the rule must match the graph located at the respective node.
If all three requirements are fulfilled, then the rewrite step is performed by the
checker. If this recomputation of the target machine code results in exactly the
same code sequence, then the result of the code generator has been tested. If we
verify the checker with respect to the requirements listed in this proof, then we
have a formally verified correct result of the code generation phase. �

6 Backend Case Study and Experimental Results

The computations performed in the checker for the CGGG do the same rewrite
steps as the backend itself and return ‘False’ if an error occurs. The only differ-
ence between checker and backend lies in the search for the optimal solution. The
checker gets it as input for granted while the backend needs to compute it by an
extensive search. In subsection 6.1, we explain why this observation is a general
property of NP-complete problem checkers. In subsection 6.2, we point out how
we have exploited it in our checker implementation and state our experimental
results. Finally, in subsection 6.3, we discuss and summarize the differences bet-
ween black-box program checkers and program checkers using certificates from
a practical point of view.

6.1 The Characteristic Trait of NP-Complete Problem Checkers

It is a characteristic property of checkers for NP-complete problems that their
implementation is part of the implementation for the NP-complete problem itself
whose results they check. Program checkers for NP-complete problems have
three inputs, the input and output of the implementation to be checked as well
as a certificate describing how the implementation has computed the solution,
cf. subsection 3.2. Based on the certificate, the checker recomputes the solution,
compares it with the output of the implementation, and classifies the output as
correct if and only if it is identical with its recomputed solution. Speaking in the
language of Turing machines, the problem implementation is a nondeterministic
Turing machine that needs good random guesses to find a solution. The checker

208 Glesner S.: Using Program Checking to Ensure the Correctness ...

is a deterministic Turing machine that knows the good guesses (the certificate
as its input) and just needs to recompute the solution. Hence, we can expect
that the checker implementation is a part of the overall implementation of the
optimization problem. Our case study confirmed this expectation.

6.2 Experimental Results

For BURS code generation, this expectation has come true. We could extract
most of the code for the checker implementation from the code generator imple-
mentation directly. This is an advantage since CGGG has been tested extensively,
making sure that many obvious bugs have been eliminated from the (implemen-
tation and checker) code already in the forefront of our experiment. CGGG has
been used during the last four years by many graduate students who tend to
be very critical software testers. Moreover, the CGGG system has been utilized
to generate a compiler in the AJACS project (Applying Java to Automotive
Control Systems) with industrial partners [Gaul 2002, Gaul et al. 2001]. This
compiler transforms restricted Java programs into low-level C code.

We found that we can distinguish between three different kinds of code in
the CGGG implementation:

1. Code with documentation functionality that does not have any influence on
the correctness of the results at all. This comprises in particular all debugging
functionalities. This code does not need to be verified.

2. Code that implements the search for the optimal solution. This code needs
to be extended by the protocol function which writes the certificate. This
code does not need to be verified.

3. Code that computes the rewrite steps. In a slightly extended form, this code
becomes part of the checker and needs to be verified in order to get formally
correct results of code generation.

In our case study, we implemented a checker for the AJACS compiler described
above. The table in figure 8 compares the overall size of the AJACS code gen-
erator generated by the CGGG system with the size of its checker. Both imple-
mentations, CGGG and the code generator, are written in C.

If one wants to obtain formally verified solutions for the code generation
phase, one needs to verify only the checker code. A first comparison between the
size of the code generator and its checker shows that the verification effort for the
checker seems to be half of that of the code generator. This comparison is only
half the truth as the verification effort is even smaller. Much of the checker code
is generated from the code generator specification. This is very simple code which
just applies the rewrite rules. The verification conditions for the various rewrite

209Glesner S.: Using Program Checking to Ensure the Correctness ...

proc CGGG Checker (BURS ,SSA Graph ,Target Code,Certificate) : Bool;
var Checker Code : list of strings;
Checker Code := [];
while Certificate �= [] do

(rule, node no) := head(Certificate);
Certificate := tail(Certificate);
if rule �∈ BURS then return False;
SSA Graph := apply and check (rule, SSA Graph ,node no);
insert(code(rule),Checker Code);

od;
return compare(Checker Code ,Target Code)

end

proc apply and check (rule, SSA Graph ,node no) : Bool;
node := find node(SSA Graph ,node no);
if node = Nil then return False;
if BURS successors (SSA Graph ,node no) �= ∅ then return False;
if not match(lhs(rule),node ,SSA Graph) then return False;
apply(rule,SSA Graph ,node no);

end;

proc find node(SSA Graph ,node no) :
returns node in SSA Graph with number node no;
if node does not exist, it returns Nil;

end

proc BURS successors(SSA Graph ,node no) :
returns set of nodes in SSA Graph that have to be rewritten before node
node no if bottom-up rewrite strategy is used;
control and data flow cycles are disconnected as in the code generator as well.

end

proc lhs(rule) : returns left-hand side of the rewrite rule rule; end

proc match(pattern ,node ,SSA Graph) :
checks if pattern pattern matches subgraph located at node node ;

end

proc apply(rule, SSA Graph ,node no) : does the rewrite step; end

proc compare(Checker Code,Target Code) :
checks if Checker Code and Target Code are identical;

end

proc code(rule) : returns code associated with rule rule; end

Figure 7: Checker for Code Generation

Code Generator Checker
lines of code in .h-Files 949 789
lines of code in .c-Files 20887 10572
total lines of code 21836 11361

Figure 8: Size of Code Generator and Checker

210 Glesner S.: Using Program Checking to Ensure the Correctness ...

rules are basically the same, simplifying the verification task considerably. In
contrast, the code for the A∗-search is very complicated and would need much
more verification effort. Luckily it does not belong to the checker. Up to now
we have not formally verified the checker code. For this task it seems helpful to
parameterize the rewrite routines with the respective rewrite rules. In doing so,
it would suffice to only formally verify the parameterized rewrite routine. We
did not find any bugs in the AJACS compiler after having integrated our checker
into it.

6.3 Black-Box Checking versus Checking with Certificates

In the setting of black-box program checking, the checker and the program com-
puting the solution are supposed to implement inherently different algorithms.
Consequently, bugs in the program and bugs in its checker can be assumed to
be independent. Hence, bugs in the program should be caught more likely when
additionally using the checker.

Program checking with certificates follows a completely different strategy.
Instead of verifying the search for a solution together with the actual computa-
tion of this solution, we only verify its computation. Therefore, we partition the
implementation computing an optimal solution into a correctness-critical part,
into an optimality-critical part, and into a documentation part. To ensure cor-
rectness, we implement a checker by directly using the correctness-critical part.
In this sense, program checking with certificates helps us in filtering those imple-
mentation parts which are correctness-critical and need to be verified in order
to guarantee the formal correctness of the computed results.

7 Program Checking for Compiler Frontends

Frontend checking has been investigated in [Heberle et al. 1999]. In this section,
we summarize these results in order to be able to classify them in section 8
according to our integrated view on all compiler passes. The semantics of pro-
gramming languages is defined only with respect to the abstract syntax trees of
programs, not with respect to the character sequences of input programs. We
defined a compiler pass to be correct if it preserves the semantics, i.e. the ob-
servable behavior, of the translated programs. Hence, we cannot prove that a
frontend transformation is semantics-preserving because a stream of characters
or tokens does not have a formal semantics. This means that we need to refine
our notion of correctness for the frontend computations as they are the compiler
passes that compute the basis for all semantic definitions.

211Glesner S.: Using Program Checking to Ensure the Correctness ...

7.1 Checking Lexical Analysis

The lexical analysis combines subsequent input characters into tokens, thereby
eliminating meaningless characters such as whitespaces, line breaks, or com-
ments. Identifiers (e.g. variable names) need special treatment. They are always
mapped to one specific token, e.g. ‘IDENT’. The particular name of the identi-
fier itself is stored in a separate table called symbol table. A similar approach is
taken for numbers whose token is also unique, e.g. ‘REAL’ or ‘INT’, and whose
value is stored in the symbol table as well. The lexical analysis is specified by
finite automata together with the rule of the longest pattern (prefer the longest
possible character sequence as possible) and priorities to avoid indeterminism.
E.g. the sequence ‘w’ ‘h’ ‘i’ ‘l’ ‘e’ is mapped to the token ‘WHILE’, not to an
identifier. All in all, the lexical analysis produces a unique result.

The checker for the scanner needs to make sure that the computed token
sequence has been computed according to the transition rules of the automaton.
Therefore, the checker tries to recompute the character sequence of the input
program given the token sequence of the scanner. It is fairly easy to recompute
the character sequence of a single token. In case of an identifier, the correspond-
ing identifier needs to be looked up in the symbol table. In case of a number
token, the corresponding number is also looked up. Typically the representation
of the number in the symbol table is different than the representation in the
original program. Therefore one needs to prove that both representations, the
one in the symbol table and the one in the original program, denote the same
number. This check requires some case distinctions and can be done easily. The
tokens for the predefined identifiers, operator symbols, etc. can be stored in a
finite table together with their respective character sequence.

Additional checking tasks are necessary to deal with the problem of whites-
paces. There are pairs of subsequent tokens whose respective character sequences
must be separated by whitespaces in the original program. For example, the char-
acter sequences for the tokens ‘WHILE’ and ‘IDENT’ need to be separated. If
they were not separated, then the rule of the longest pattern would be applied,
recognizing only one identifier consisting of the concatenation of the character
sequence of the ‘WHILE’ token and of the ‘IDENT’ token. There are only finitely
many different tokens. Hence, the pairs of tokens whose character sequences need
to be separated by whitespaces can be enumerated in a table called conflict table.

The checker for the lexical analysis has three inputs, the source program, the
computed token sequence, and the symbol table. Based on the token sequence
and the symbol table, it recomputes the character sequence. Thereby it inserts
whitespaces if required by the conflict table. Then the checker compares the
computed character sequence with the source program. Additional whitespaces
between characters belonging to different tokens are always acceptable.

212 Glesner S.: Using Program Checking to Ensure the Correctness ...

7.2 Checking Syntactic Analysis

The syntactic analysis computes the context-free properties of programs which
are expressed by deterministic context-free grammars. Given the token sequence
of the lexical analysis, it computes the syntax tree of a program by using pro-
ductions of the context-free grammar. Its result is unique.

The checker for the parser needs to test if this syntax tree is a valid deriva-
tion. Furthermore, it needs to check whether the token sequence is the result of
this derivation. This test can be done with the following top-down left-to-right
recursive process along the syntax tree:

Root Node: The root of the syntax tree must be annotated with the start
symbol of the context-free grammar.

Inner Nodes: If an inner node of the syntax tree is annotated with a symbol
X0 and if it has n children nodes annotated with X1, . . . , Xn, then there
must exist a production X0 → X1 · · ·Xn in the context-free grammar.

Leaves: Each leaf in the syntax tree must be annotated with a terminal symbol.

If the concrete syntax tree has been simplified by transforming it into an
abstract syntax tree, cf. section 4.1, then this simplification needs also to be
checked. If this transformation from the concrete to the abstract syntax tree
involves only local transformations of the syntax tree, then the corresponding
check can be done easily. It is an open question of how to check the abstract
syntax if also global transformations are applied.

7.3 Checking Semantic Analysis

The semantic analysis computes context-sensitive properties of programs. These
properties are expressed by attributes which are associated with the nodes in the
abstract syntax tree of the program. Attributes are described by local attribution
rules. These rules belong to particular productions of the underlying context-free
grammar. Attribution rules may have conditions which must be fulfilled by a
valid attribution.

The checker for the semantic analysis takes the abstract syntax tree, the at-
tributed abstract syntax tree, and the specification of the attribution rules as
input. It checks if the attributed abstract syntax tree is a correct result of the
semantic analysis. Therefore it must test whether the original abstract syntax
tree and its attributed version are the same if one ignores the attribution. Fur-
thermore, the checker must make sure that the attribution is consistent, i.e.,
that all attribution rules applied in the abstract syntax tree, in particular their
conditions, are fulfilled. These are only local checks that can be done easily by
traversing the abstract syntax tree in an arbitrary order:

213Glesner S.: Using Program Checking to Ensure the Correctness ...

Abstract Syntax Trees: The abstract syntax tree and its attributed version
must be the same if one ignores the attribution.

Attribution Rules: If an attribution rule r is associated with a production
X0 → X1 · · ·Xn and if r has been used in to compute the attribution of a
node X and its successors, then X must be annotated with X0 and it must
have n successor nodes annotated with X1, . . . , Xn.

Attribute Values: The values of the attributes of a node and its successor
nodes must fulfill the applied local attribution rules.

Conditions of Attribution Rules: The conditions of the applied local attri-
bution rules must be fulfilled.

The specification of the attribute grammar itself might not be trivial. E.g. for
an incremental or a JIT compiler, one needs to specify type inference attribution
rules which must adhere to the programming language semantics. The question
whether such an attribute grammar is conform with the programming language
specification might not be easy to answer. Also the computation of the attributes
might involve complex traversals of the abstract syntax tree. Nevertheless, once
the attribute grammar is established and the attributes are computed, the corre-
sponding check whether the attributes are conform with the attribute grammar
can be done locally and easily.

8 Evaluation of Frontend and Backend Checkers

Frontend computations are inherently different compared to backend computa-
tions. This difference also determines the applicable checking methods. Front-
ends compute uniquely determined results which can be checked by black-box
program checking. Backend computations solve optimization problems whose
solutions can be checked by program checking with certificates. In this section
we establish an integrated view on the use of program checking in compilers by
comparing frontend and backend checkers with respect to two criteria: Firstly we
ask if it pays off to use program checking in order to establish formal correctness.
Secondly we discuss if checkers can be generated in the same sense as compiler
passes can be generated.

8.1 Evaluation of Frontend Checkers

Formal Correctness and Verification The lexical and syntactic analysis
can be computed in linear time O(n) where n is the size of the input program.
Their checkers need linear time as well. Hence, in the formal sense described in
subsection 3.1, they are not quantifiably different than the compiler passes they

214 Glesner S.: Using Program Checking to Ensure the Correctness ...

check. Especially in the lexical analysis, the size of the checker is not smaller
than the size of the corresponding scanner. If one wants to formally verify the
lexical analysis, one has the choice of verifying the program code either of the
checker or of the scanner directly. The latter seems to be simpler. For the syntac-
tic analysis, this observation does not hold. The implementation of the syntactic
analysis implements a pushdown automaton which is, in a practical sense, harder
to verify than the simple checking procedure. Finally, the semantic analysis can
be computed in polynomial time for nearly all programming languages of prac-
tical interest. The corresponding checker runs in linear time and performs much
simpler computations. Hence, this checker is easier to verify.

Concludingly, we see that if one wants to obtain formally correct results,
the checker-based approach helps for the syntactic and for the semantic anal-
ysis. In these two cases, the corresponding checkers are much simpler and, in
turn, easier to verify. For the lexical analysis, this does not hold. Checker and
scanner seem to be equally difficult to verify. Nevertheless, they do independent
computations. This increases the probability of finding bugs in the checker-based
approach, even without formal verification, since errors in the scanner and errors
in its checker will hopefully not interact with each other. But this is no formal
notion of correctness, only an increase in the trustworthiness of the scanner.

Generating Frontend Checkers Today’s compilers are generated and not
written by hand. To establish the checker method as a practical way of con-
structing correct compilers, it is essential that checkers can be generated as well.
This is indeed possible. For the syntactic and semantic analysis, this is fairly
simple. A generic checker (the checker generator) can be parameterized with the
context-free grammar and with the attribution rules, resp. Hence, the checker
can be generated from the same specifications as the corresponding compiler
pass. The checkers for the lexical analysis need as additional input the conflict
table (and the symbol table which is part of the scanner’s output). The conflict
table can be generated automatically given the finite automaton specification
for the scanner. These considerations show that each frontend compiler pass can
be extended with a checker that can be generated from the same specification
as the corresponding compiler pass itself.

8.2 Evaluation of Backend Checkers

Formal Correctness and Verification Many backend problems are opti-
mization problems. For them, program checking with certificates is the method
of choice. This way of program checking helps to partition the implementation
into two major parts, the optimality-critical part performing the search and the
correctness-critical part computing the actual result. In our case study, we con-
sidered code generation based on rewrite systems. For this problem, we could

215Glesner S.: Using Program Checking to Ensure the Correctness ...

separate the search part and the computation part. The computation part be-
comes the principal part of the checker and needs to be formally verified. The
search part determines how to compute the best solution and does not need to be
verified. We are convinced that the implementations for most backend problems
can be partitioned in the same way.

Generating Backend Checkers It is essential that a checking method can
be integrated into the generator methods well-known in compiler construction.
This is the case for checkers for backends based on rewrite systems. Therefore,
we simply need to parameterize the checkers with the rewrite rules of the code
generator specification.

9 Related Work

Correctness of compilers has been investigated in many approaches. The earliest
such research [McCarthy and Painter 1967] focused on arithmetic expressions.
Many approaches considered compilers based on denotational semantics, e.g.
[Paulson 1981, Mosses 1992, Palsberg 1992], based on refinement calculi, e.g.
[Müller-Olm 1997, Börger and Rosenzweig 1994, Börger and Durdanovic 1996],
based on structural operational semantics, e.g. [Diehl 1996], or based on abstract
state machines, e.g. [Börger and Rosenzweig 1994, Schellhorn and Ahrendt 1997,
Börger and Durdanovic 1996, Stärk et al. 2001]. Most of these approaches did
not consider compilation into machine code. Instead, they designed abstract
machines and compiled input programs for interpreters of these abstract ma-
chines. Moreover, these approaches lead to monolithic architectures which did
not allow to use the standard well-understood compiler architecture with its
compiler generation tools nor did they allow for the reorganization of code on
the machine code level. E.g. expressions are usually refined into postfix form
and then interpreted on a stack machine. The efficiency of the generated code
is by magnitudes worse than that of other compilers and, thus, does not meet
practical requirements, cf. [Diehl 1996, Palsberg 1992].

The German Verifix project [Goerigk et al. 1996] has the goal of develop-
ing novel methods for the construction of correct compilers. This project has
achieved progress by establishing the claim that it is possible to build provably
correct compilers within the standard framework of compiler construction, es-
pecially by deploying compiler generators. Its results have been summarized in
section 2. In the Verifix project, program checking has been proposed to ensure
the correctness of compiler implementations. It has been successfully applied in
the context of frontend verification, cf. section 7. It also claims to have dealt
successfully with backend checking [Gaul et al. 1999, Gaul et al. 2000]. In par-
ticular, it claims to have built a checker for the BEG tool [Emmelmann 1992]

216 Glesner S.: Using Program Checking to Ensure the Correctness ...

which is based on pattern matching. Nevertheless, these publications do not
present a checking algorithm. They just claim that it is sufficient to check the
annotations generated by a BEG code generator. It remains unclear how these
annotations can be checked. We already argued in subsection 5.2 that, in con-
trast to their claims, it is necessary to recompute the solution because of three
main reasons. Firstly, otherwise one could not make sure that the solution is
computed according to a valid bottom-up rewrite strategy, i.e. that the order
of the schedule in which the rules are applied is valid. Secondly, otherwise it
could happen that some nodes with annotations are rewritten and eliminated
without executing their annotated rewrite steps beforehand. In such cases, only
incomplete code sequences would be the result. Thirdly, some rules are sorted.
These sorts can be changed during the rewrite process. Therefore it is necessary
to make sure that each rule is applied according to its sorts. We do not know of
any other strategy than recomputing the solution that fulfills all three require-
ments. Certainly the results in [Gaul et al. 1999, Gaul et al. 2000] do not ensure
these correctness requirements.

The program checking approach has also been used in further projects aiming
to implement correct compilers. In [Necula 2000], it is shown how some back-
end optimizations of the GCC can be checked. Proof-carrying code is another
weaker approach to the construction of correct compilers [Necula and Lee 1996,
Necula and Lee 1997, Necula and Lee 1998, Colby et al. 2000] which guarantees
that the generated code fulfills certain necessary correctness conditions. During
the translation, a correctness proof for these conditions is constructed and deliv-
ered together with the generated code. A user may reconstruct the correctness
proof by using a simple proof checking method. In recent work, a variant of
proof-carrying code [Necula and Rahul 2001] has been proposed which is related
to our notion of program checking with certificates. In this setting, trusted in-
ference rules are represented as a higher-order logic program, the proof checker
is replaced by a nondeterministic higher-order logic interpreter and the proof
by an oracle implemented as a stream of bits that resolve the nondetermin-
istic choices. This proof directly corresponds to our notion of certificate as it
helps in resolving the nondeterminism in the same way as in our setting. Nev-
ertheless, this work does not draw the same conclusion as we do, namely that
checking with certificates isolates the correctness-critical part of an implementa-
tion. Pnueli [Pnueli et al. 1998b, Pnueli et al. 1998a] also addresses the problem
of constructing correct compilers, but only for very limited applications. Only
those programs consisting of a single loop with loop-free body are considered and
translated without the usual optimizations of compiler construction, only refin-
ing translations are considered. Thereby, such programs are translated correctly
such that certain safety and liveness properties of reactive systems are sustained.
In more recent work [Zuck et al. 2001], a theory for validating optimizing com-

217Glesner S.: Using Program Checking to Ensure the Correctness ...

pilers is proposed which is similar to the method developed in the Verifix project.
The main difference to our work is that these approaches do not assume to have
access to the implementation of the compiler or its generator. This access gives
us the freedom to modify the implementation to get a certificate used in the
checker.

As discussed in detail in section 3, the notion of program checking itself has
been introduced in [Blum and Kannan 1995]. Our experiments show that for
optimization problems, program checking with certificates helps in classifying the
code of an implementation into the part which manages the search for an optimal
solution and the part which makes sure that the computed solution is correct. To
formally verify the correctness of the solutions computed by the implementation,
it is sufficient to verify only this second part of it. Thus, program checking with
certificates divides the implementation into two distinct parts, the search part
and the correctness part. This is in contrast to the classical notion of black-box
program checking which relies on the idea that errors in the implementation
and in the checker are unlikely to depend on each other if implementation and
checker compute different algorithms.

10 Conclusions

In this paper, we have established an integrated view on all compiler passes
and shown that the correctness of compiler implementations can be ensured by
program checking. In particular, we have solved the open problem how program
checking in optimzing compiler backends can be achieved. Therefore we have in-
troduced the notion of program checking with certificates which can be applied
for checking the correctness of solutions of NP-complete and optimization prob-
lems. Such problems might typically have several solutions of different quality.
To prove their correctness, we do not need to consider their quality, a property
which we exploit when checking programs with certificates. Backend computa-
tions are optimization problems. Most of their computation time and large parts
of their code deal with the search for a good solution. We have extended these
optimization algorithms such that they keep track of their search and output a
certificate that tells us how the solution has been computed. This certificate is an
additional input for the checker. The checker recomputes the solution with the
help of the certificate, thereby avoiding any search. Furthermore, we have com-
pared frontend and backend computations and identified a significant difference
between them. In contrast to backend computations, frontend computations are
characterized by the uniqueness of their solutions. This makes it possible that
the checking algorithm follows a very different algorithm than the correspond-
ing frontend algorithm implemented in the compiler. For the syntactic and the
semantic analysis, we can save verification effort with the checking approach.

218 Glesner S.: Using Program Checking to Ensure the Correctness ...

For the lexical analysis, the checking method does not reduce the verification
amount. Concerning backend checking, program checking with certificates sub-
stantially reduces the verification cost. All checkers can be generated from the
same specifications as the corresponding compiler passes.

We have tested our backend checking approach by designing and implement-
ing a checker for a code generator used in an industrial project. This experiment
proves that program checking with certificates can handle full real-life program-
ming languages. This industrial code generator generates low-level C code. The
same checking approach can be used without any modifications to ensure the cor-
rectness of native machine code generators. Since we have not modified the code
generation algorithm itself (besides the protocol function), the efficiency of the
generated code is not modified either. Our experiment has revealed that in this
checker scenario with certificates, the checker can be extracted from the imple-
mentation, i.e., the checker code is part of the code of the implementation whose
results are to be checked. This implies that program checking with certificates
is also a method to isolate the correctness-critical parts of an implementation.

In future work, we still need to show that the remaining, not yet considered
backend tasks like e.g. register allocation or instruction scheduling can be han-
dled with the same checking methods. Because their nature is similar to that of
code generation (all of them are optimization problems), we are confident that
program checking with certificates will be applicable for them as well. To prove
this is subject of future work. Further open problems are the questions of how
checking can be applied in incremental or JIT compilers and how the transfor-
mation into an intermediate representation as e.g. SSA form can be checked.

Acknowledgements
The author would like to thank Gerhard Goos and Wolf Zimmermann for

many valuable discussions. Moreover, thanks to Jan Olaf Blech who implemented
the checker for the AJACS compiler. Also thanks to Boris Boesler, Florian Liek-
weg, and Götz Lindenmaier for helpful discussions on the design of the checker
for the AJACS compiler. Finally thanks to the anonymous reviewers for many
helpful comments.

References

[Aho et al. 1977] Aho, A. V., Johnson, S. C., and Ullman, J. D. (1977). Code Gener-
ation for Expressions with Common Subexpressions. Journal of the Association for
Computing Machinery, 24(1):146–160.

[Blum and Kannan 1995] Blum, M. and Kannan, S. (1995). Designing Programs that
Check Their Work. Journal of the ACM, 42(1):269–291. Preliminary version: Pro-
ceedings of the 21st ACM Symposium on Theory of Computing (1989), pp. 86-97.

[Blum et al. 1993] Blum, M., Luby, M., and Rubinfeld, R. (1993). Self-
Testing/Correcting with Applications to Numerical Problems. Journal of Computer

219Glesner S.: Using Program Checking to Ensure the Correctness ...

and System Sciences, 47(3):549–595. Preliminary version: Proceedings 22nd ACM
Symposium on Theory of Computing (1990), pp. 73-83.

[Boesler 1998] Boesler, B. (1998). Codeerzeugung aus Abhängigkeitsgraphen. Diplo-
marbeit, Universität Karlsruhe.

[Börger and Durdanovic 1996] Börger, E. and Durdanovic, I. (1996). Correctness of
compiling Occam to Transputer Code. Computer Journal, 39(1):52–92.

[Börger and Rosenzweig 1994] Börger, E. and Rosenzweig, D. (1994). The WAM -
definition and compiler correctness. In Beierle, L. and Pluemer, L., editors, Logic
Programming: Formal Methods and Practical Applications. North-Holland Series in
Computer Science and Artificial Intelligence.

[Borland/Inprise 2002a] Borland/Inprise (2002a). Of-
ficial Borland/Inprise Delphi-3 Compiler Bug List.
http://www.borland.com/devsupport/delphi/fixes/3update/compiler.html.

[Borland/Inprise 2002b] Borland/Inprise (2002b). Of-
ficial Borland/Inprise Delphi-5 Compiler Bug List.
http://www.borland.com/devsupport/delphi/fixes/delphi5/compiler.html.

[Chirica and Martin 1986] Chirica, L. M. and Martin, D. F. (1986). Toward Compiler
Implementation Correctness Proofs. ACM Transactions on Programming Languages
and Systems, 8(2):185–214.

[Colby et al. 2000] Colby, C., Lee, P., Necula, G. C., Blau, F., Plesko, M., and Cline,
K. (2000). A Certifying Compiler for Java. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’00), pages
95–107, Vancouver, British Columbia, Canada.

[Cytron and Ferrante 1995] Cytron, R. and Ferrante, J. (1995). Efficiently Computing
Φ-Nodes On-The-Fly. ACM Transactions on Programming Languages and Systems,
17(3):487–506.

[Cytron et al. 1989] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and
Zadeck, F. K. (1989). An Efficient Method of Computing Static Single Assignment
Form. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’89), pages 25–35, Austin, Texas, USA. ACM
Press.

[Cytron et al. 1991] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and
Zadeck, F. K. (1991). Efficiently Computing Static Single Assignment Form and
the Control Dependence Graph. ACM Transactions on Programming Languages and
Systems, 13(4):451–490.

[Dechter and Pearl 1985] Dechter, R. and Pearl, J. (1985). Generalized Best-First
Search Strategies and the Optimality of A∗. Journal of the Association for Com-
puting Machinery, 32(3):505–536.

[Diehl 1996] Diehl, S. (1996). Semantics-Directed Generation of Compilers and Ab-
stract Machines. PhD thesis, Universität Saarbrücken, Germany.

[Dold et al. 1998] Dold, A., Gaul, T., and Zimmermann, W. (1998). Mechanized Ver-
ification of Compiler Backends. In Steffen, B. and Margaria, T., editors, Proceedings
of the International Workshop on Software Tools for Technology Transfer (STTT’98),
pages 13–24.

[Dold and Vialard 2001] Dold, A. and Vialard, V. (2001). A Mechanically Verified
Compiling Specification for a Lisp Compiler. In Proceedings of the 21st Conference
on Software Technology and Theoretical Computer Science (FSTTCS 2001), pages
144–155, Bangalore, India. Springer Verlag, Lecture Notes in Computer Science, Vol.
2245.

[Dold et al. 2002] Dold, A., von Henke, F. W., Vialard, V., and Goerigk, W. (2002).
A Mechanically Verified Compiling Specification for a Realistic Compiler. Ulmer
Informatik-Berichte 02-03, Universität Ulm, Fakultät für Informatik.

[Eli 2003] Eli (2003). Translator Construction Made Easy.
http://www.cs.colorado.edu/˜ eliuser/.

220 Glesner S.: Using Program Checking to Ensure the Correctness ...

[Emmelmann 1992] Emmelmann, H. (1992). Code selection by regularly controlled
term rewriting. In Giegerich, R. and Graham, S., editors, Code Generation - Con-
cepts, Tools, Techniques, Workshops in Computing. Springer Verlag.

[Emmelmann 1994] Emmelmann, H. (1994). Codeselektion mit regulär gesteuerter
Termersetzung. PhD thesis, Universität Karlsruhe, Fakultät für Informatik.

[Emmelmann et al. 1989] Emmelmann, H., Schröer, F.-W., and Landwehr, R. (1989).
BEG - A Generator for Efficient Back Ends. In ACM Proceedings of the SIGPLAN
Conference on Programming Languages Design and Implementation (PLDI’89), Port-
land, Oregon, USA.

[Gaul 2002] Gaul, T. (2002). AJACS: Applying Java to Automotive Control Systems.
Automotive Engineering Partners, 4.

[Gaul et al. 1999] Gaul, T., Heberle, A., Zimmermann, W., and Goerigk, W. (1999).
Construction of Verified Software Systems with Program-Checking: An Application
to Compiler Back-Ends. In Proceedings of the Workshop on Runtime Result Verifi-
cation (RTRV’99).

[Gaul et al. 2001] Gaul, T., Kung, A., and Charousset, J. (2001). AJACS: Applying
Java to Automotive Control Systems. In Grote, C. and Ester, R., editors, Confer-
ence Proceedings of Embedded Intelligence 2001, Nürnberg, pages 425–434. Design &
Elektronik.

[Gaul et al. 2000] Gaul, T., Zimmermann, W., and Goerigk, W. (2000). Practical Con-
struction of Correct Compiler Implementations by Runtime Result Verification. In
Proc. SCI’2000, International Conference on Information Systems Analysis and Syn-
thesis, Orlando, Florida, USA.

[Goerigk et al. 1996] Goerigk, W., Dold, A., Gaul, T., Goos, G., Heberle, A., von
Henke, F., Hoffmann, U., Langmaack, H., Pfeifer, H., Ruess, H., and Zimmermann,
W. (1996). Compiler Correctness and Implementation Verification: The Verifix Ap-
proach. In Fritzson, P., editor, Poster Session of CC’96. IDA Technical Report
LiTH-IDA-R-96-12, Linkoeping, Sweden.

[Goerigk et al. 1998] Goerigk, W., Gaul, T., and Zimmermann, W. (1998). Correct
Programs without Proof? On Checker-Based Program Verification. In Tool Sup-
port for System Specification and Verification, ATOOLS’98, pages 108–123, Malente,
Germany. Springer Series Advances in Computing Science.

[Goos and Zimmermann 1999] Goos, G. and Zimmermann, W. (1999). Verification of
Compilers. In Olderog, E.-R. and Steffen, B., editors, Correct System Design, pages
201–230. Springer-Verlag, Lecture Notes in Computer Science, Vol. 1710.

[Goos and Zimmermann 2000] Goos, G. and Zimmermann, W. (2000). Verifying Com-
pilers and ASMs or ASMs for uniform description of multistep transformations. In
Gurevich, Y., Kutter, P. W., Odersky, M., and Thiele, L., editors, Proceedings of the
International Workshop ASM 2000, Abstract State Machines - Theory and Applica-
tions, pages 177–202, Monte Verit, Switzerland. Springer-Verlag, Lecture Notes in
Computer Science, Vol. 1912.

[Heberle et al. 1999] Heberle, A., Gaul, T., Goerigk, W., Goos, G., and Zimmermann,
W. (1999). Construction of Verified Compiler Front-Ends with Program-Checking. In
Bjoerner, D., Broy, M., and Zamulin, A., editors, Perspectives of System Informatics,
Third International Andrei Ershov Memorial Conference, PSI’99, pages 493–502,
Akademgorodok, Novosibirsk, Russia. Springer Lecture Notes in Computer Science,
Vol. 1755.

[Martin 1998] Martin, F. (1998). PAG – an efficient program analyzer generator. In-
ternational Journal on Software Tools for Technology Transfer, 2(1):46–67.

[McCarthy and Painter 1967] McCarthy, J. and Painter, J. (1967). Correctness of a
Compiler for Arithmetic Expressions. In Schwartz, J. T., editor, Mathematical As-
pects of Computer Science, Proceedings of Symposia in Applied Mathematics, pages
33–41. American Mathematical Society.

[Mosses 1992] Mosses, P. D. (1992). Action Semantics. Cambridge University Press.

221Glesner S.: Using Program Checking to Ensure the Correctness ...

[Müller-Olm 1997] Müller-Olm, M. (1997). Modular Compiler Verification : A
Refinement-Algebraic Approach Advocating Stepwise Abstraction. Springer Verlag,
Lecture Notes in Computer Science, Vol. 1283. PhD dissertation, Technische Fakultät
der Christian-Albrechts-Universität zu Kiel, Germany, 1996.

[Necula 2000] Necula, G. C. (2000). Translation Validation for an Optimizing Com-
piler. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’00), pages 83–94, Vancouver, British Columbia,
Canada.

[Necula and Lee 1996] Necula, G. C. and Lee, P. (1996). Proof-Carrying Code. Tech-
nical Report CMU-CS-96-165, School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA.

[Necula and Lee 1997] Necula, G. C. and Lee, P. (1997). Proof-Carrying Code. In
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’97), pages 106–119, Paris, France.

[Necula and Lee 1998] Necula, G. C. and Lee, P. (1998). The Design and Implemen-
tation of a Certifying Compiler. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’98), pages 333–344,
Montreal, Quebec, Canada.

[Necula and Rahul 2001] Necula, G. C. and Rahul, S. P. (2001). Oracle-Based Check-
ing of Untrusted Software. In Proceedings of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’01), pages 142–154,
London, UK.

[Newsticker 2001] Newsticker, H. (2001). Rotstich durch Fehler in Intels C++ Com-
piler. http://www.heise.de/newsticker/data/hes-11.11.01-000/.

[Nymeyer and Katoen 1997] Nymeyer, A. and Katoen, J.-P. (1997). Code generation
based on formal BURS theory and heuristic search. Acta Informatica 34, pages
597–635.

[Palsberg 1992] Palsberg, J. (1992). Provably Correct Compiler Generation. PhD the-
sis, Department of Computer Science, University of Aarhus, Denmark.

[Papadimitriou 1994] Papadimitriou, C. H. (1994). Computational Complexity.
Addison-Wesley Publishing Company.

[Paulson 1981] Paulson, L. (1981). A Compiler Generator for Semantic Grammars.
PhD thesis, Department of Computer Science, Stanford University, Stanford, Cali-
fornia, USA.

[Pnueli et al. 1998a] Pnueli, A., Shtrichman, O., and Siegel, M. (1998a). The code val-
idation tool (cvt.). International Journal on Software Tools for Technology Transfer,
2(2):192–201.

[Pnueli et al. 1998b] Pnueli, A., Siegel, M., and Singermann, E. (1998b). Translation
validation. In Steffen, B., editor, Proceedings of Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 151–166, Lisbon, Portugal. Springer Verlag,
Lecture Notes in Computer Science, Vol. 1384.

[Polak 1981] Polak, W. (1981). Compiler Specification and Verification. Springer Ver-
lag, Lecture Notes in Computer Science, Vol. 124.

[Schellhorn and Ahrendt 1997] Schellhorn, G. and Ahrendt, W. (1997). Reasoning
about Abstract State Machines: The WAM Case Study. Journal of Universal Com-
puter Science, 3(4):377–413.

[Stärk et al. 2001] Stärk, R., Schmid, J., and Börger, E. (2001). Java and the Java
Virtual Machine: Definition, Verification, Validation. Springer Verlag.

[Zimmermann and Gaul 1997] Zimmermann, W. and Gaul, T. (1997). On the Con-
struction of Correct Compiler Backends: An ASM Approach. Journal of Universal
Computer Science, 3(5):504–567.

[Zuck et al. 2001] Zuck, L., Pnueli, A., and Leviathan, R. (2001). Validation of Opti-
mizing Compilers. Technical Report MCS01-12, Faculty of Mathematics and Com-
puter Science, The Weizmann Institute of Science.

222 Glesner S.: Using Program Checking to Ensure the Correctness ...

