Journal of Universal Computer Science, vol. 9, no. 3 (2003), 189-190
submitted: 3/3/03, accepted: 25/3/03, appeared: 28/3/03 © J.UCS

J.UCS Special Issue on Compiler Optimization meets
Compiler Verification (COCV 2002)

Jens Knoop
(Vienna University of Technology, Austria
knoop@complang.tuwien.ac.at)

Wolf Zimmermann
(Martin-Luther University Halle-Wittenberg, Germany
zimmer@informatik.uni-halle.de)

Semantics preservation between source and target program is the commonly
accepted minimum requirement to be ensured by compilers. It is the key term
compiler verification and optimization are centered around. The precise meaning,
however, is often only implicit. As a rule of thumb, verification tends to interpret
semantics preservation in a very tight sense, not only but also to simplify the
verification task. Optimization generally prefers a more liberal view in order to
enable more powerful transformations otherwise excluded. The surveyor’s rod of
admissibility is semantics preservation, and hence the language semantics. But
the adequate interpretation varies fluently with the application context (“stand-
alone” programs, communicating systems, reactive systems, etc.).

This special issue contains revised and extended versions of selected papers
from the international workshop on Compiler Optimization meets Compiler Ver-
ification (COCV 2002), which has been held in conjunction with the 5th Eu-
ropean Joint Conferences on Theory and Practice of Software (ETAPS 2002),
Grenoble, France, April 6 - 14, 2002. The aim was to bring together researchers
and practitioners working on optimizing and verifying compilation as well as on
programming language design and semantics in order to plumb the mutual im-
pact of these fields on each other, the degrees of freedom optimizers and verifiers
have, to bridge the gap between the communities, and to stimulate synergies.

The papers finally accepted after a second round of peer-reviewing discuss
topics such as certifying compilation, verifying compilation, translation valida-
tion, and optimization. Glesner shows how to construct correct code-generators
without proving the correctness of the compiler itself. This technique is called
program checking or translation validation. The contribution of Zuck et al. uses
also this technique to show how the correctness of optimizing loop transforma-
tions can be checked. Shashidar et al. also discuss correctness of loop transforma-
tions. In contrast to Zuck’s approach they distinguish the correctness proof for
transformations and their implementation. Nguyen and Irigoin discuss how to



190 Knoop J., Zimmermann W.: Compiler Optimization meets Compiler Verification ...

verify aliases in FORTRAN. The absence of aliases is an important pre-condition
of many optimizations.
The papers in this issue were reviewed, besides the editors, by

— Michael Franz, University of California at Irvine, CA, USA

Hans Langmaack, Universitit Kiel, Germany

— Robert Morgan, DataPower, Cambridge, MA, USA

— Markus Miiller-Olm, Universitdt Dortmund, Germany

— George C. Necula, University of California at Berkely, CA, USA

We are grateful to Dana Kaiser. Her help has been crucial for the success of the
editing this special issue. We thank Hermann Maurer for giving us the opportu-
nity to publish this special issue.

Wien, Halle, March 2003

Jens Knoop
Wolf Zimmermann



