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Abstract: Optimizing programs by applying source-to-source transformations is a
prevalent practice among programmers. Particularly so, while programming for high-
performance and cost-effective embedded systems, where the initial program is subject
to a series of transformations to optimize computation and communication. In the con-
text of parallelization and custom memory design, such transformations are applied on
the loop structures and index expressions of array variables in the program, more often
manually than with a tool, leading to the non-trivial problem of checking their correct-
ness. Applied transformations are semantics preserving if the transformed program is
functionally equivalent to the initial program from the input-output point of view. In
this work we present an automatic technique based on geometric modeling to formally
check the functional equivalence of initial and transformed programs under loop and
data reuse transformations. The verification is transformation oblivious needing no in-
formation either about the particular transformations that have been applied or the
order in which they have been applied. Our technique also provides useful diagnostics
to locate the detected errors.
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1 Introduction

The design of embedded systems for the consumer electronics market, particu-
larly for multimedia signal processing applications, is a complex task. The de-
mands on the optimality of design of these systems in terms of performance, area,
power and cost are high. Typically, an initial design is assembled by a straightfor-
ward implementation of the specification in a high-level programming language.
This initial design, if naively implemented, often leads to an unacceptably sub-
optimal system. This has motivated development of frameworks for systematic
design of embedded systems. The frameworks call for design exploration and
optimization at different levels of abstractions, to arrive at a mapping of the
software onto the custom made platform, which is closer to the optimal im-
plementation. An important design rule is that optimizations applied at higher
abstraction levels offer greater gains. Hence the initial source code, called the
executable specification, is the starting point for a systematic exploration which
subjects it to source-to-source transformations. For example, in the context of
parallelization of programs [Banerjee 1994, Wolf and Lam 1991] and compiling
programs for systems with custom-made memories [Catthoor et al. 1998], trans-
formations that modify the loop structure of the program (loop transformations)
[Banerjee 1993] and/or introduce caches to reduce the cost of data transfers (data
reuse transformations) are very common, since they can lead to significant im-
provements. Such global transformations are still not within the scope of the
current optimizing compilers [Goos 2001]; they are applied at the source level in
a pre-compilation phase.

Within the realm of designing embedded systems for multimedia signal pro-
cessing applications, it is a widespread practice [Catthoor et al. 1998] to start
from a specification at the level of C-code. By means of some preparatory
simple transformations the code is brought into a form where complex global
transformations aiming at optimizing data transfer and storage can be ap-
plied. Presently, the designers are themselves controlling the application of these
complex transformations. Some code transformation tools exist (for example,
[Samsom et al. 1993]), but they offer insufficient flexibility. Often the experi-
enced designers manually apply the transformations. Studying the results pro-
duced by the analysis/estimation tools (for example, [Atomium]), they use a
combination of application know-how, experience and ingenuity to determine
the bottlenecks in the design and to select and perform the transformations
that can break them. The problem of ensuring an error-free implementation of
today’s complex application specifications under time-to-market pressure is dif-
ficult enough, which is only being further exacerbated by the applied complex
transformations. As a result, a dire need exists to supplement/replace testing
with automatic verification tools. In fact, there is a general need to scale up
verification and testing techniques, to meet the present challenge in ensuring
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correctness of embedded software [Cousot and Cousot 2001].
An often suggested approach to ensure correctness of program transforma-

tions is the a priori method of allowing only a predefined set of transformations
to be applied, which are proven to be semantics preserving. If these transfor-
mations are applied by a formally verified tool, the transformed program will
be correct by construction. But, various practical problems exist with this the-
oretically elegant approach. Firstly, a customized program transformation tool
is rarely available for the given context and programming language. Moreover,
typical transformation tools provide designers only with a limited set of prede-
fined transformations. This is often too restrictive for designers; they need the
flexibility of applying a transformation that is not in the set when they see a
clear gain in doing so. Secondly, extendible tools are not a solution as designers
lack the time and the skill to introduce new transformations and to formally
prove them correct. Thirdly, the correctness of the tool at hand itself is ques-
tionable. Although a predefined set of transformations may have been proven to
be formally correct, often there is only a prototype implementation and there is
no proof that the prototype is a correct implementation. As a result, whether
transformations are applied manually or by means of a tool, there is need for
an independent verification of the equivalence between initial and transformed
program. Testing is tedious, time consuming and insufficient. An equivalence
proof by a separate tool can substantially increase the confidence that the func-
tionality is preserved. This has motivated us to look for an a posteriori solution
to the problem.

Assuming that the initial source code is correct, in this work, we address the
problem of automatically checking the functional equivalence of the transformed
program with the initial program. In other words, we verify that the transforma-
tions do not introduce any subtle bugs. Figure 1 shows a toy example of initial
and transformed programs which are functionally equivalent from the input-
output point of view, i.e., the sequence of values assigned to B[][] are the same
in both the programs for a given input A[]. This example is representative of
the class of programs whose equivalence we want to check. Since the equivalence
checking problem for programs is, in general, undecidable [Tsichritzis 1970], an
automated check has to be based on a decidable condition that is sufficient for
equivalence between initial and transformed programs. If the condition holds,
the transformation is safe, ensuring the equivalence; otherwise, nothing can be
concluded. In the latter case, to be useful, the check should be able to pinpoint
a reasonably small program fragment that is at the origin of the failure to prove
equivalence.

The technique we present in this paper is applicable for loop and data reuse
transformations on sequential programs in dynamic single-assignment form (they
are the most complex and error prone transformations in the whole design cycle).
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   ...
   for ( i = 0; i < 10; i++ )
1:  B[i][0] = 0;
   for ( i = 0; i < 10; i++ )
    for ( k = 0; k < 8; k++ )
2:   B[i][k+1] = f(B[i][k], A[i*4+k]);
   ...

    ...
    for ( i = 0; i < 10; i++ )
1’:  B[i][0] = 0;
    for ( j = 0; j < 4; j++ )
2’:  buf[0][j] = A[j]; 
    for ( i = 9; i >= 0; i-- ){
     for ( j = 0; j < 4; j++ )
3’:   buf[10-i][j] = A[4*(10-i)+j]; 
     for ( k = 0; k < 4; k++ )
4’:   B[9-i][k+1] = f(B[9-i][k], buf[9-i][k]);
     for ( k = 7; k > 3; k-- )
5’:   B[9-i][12-k] = f(B[9-i][11-k], buf[10-i][7-k]);
    }
    ...

I: Initial Program T: Transformed Program

Figure 1: An example of source-to-source optimizing program transformation

In a program in dynamic single-assignment form (called single-assignment form
from now on), each variable (array element) is written only once during the
execution of the program [Feautrier 1991]. The addressed transformations affect
only statements under the loop structures in the program. Hence, it is practical
to restrict the verification to checking the equivalence of executing the program
statements under the loop structures in the initial and transformed programs.
These program statements usually involve array variables (indexed variables)
and transforming the loop structures usually also results in the transformation
of index expressions. The semantics of a program statement in single-assignment
form that reads a number of (array) data elements and writes an (array) data
element can be abstracted by a geometric model that describes precisely which
elements are read/written in which iterations. Once these models are extracted,
it suffices to check the equivalence conditions on the corresponding models of the
initial and the transformed programs. Figure 2 puts our scheme in a nutshell.
The equivalence checking itself is done completely oblivious of any information
about either the particular transformations that have been applied or the order
in which they have been applied. As a result, the check provides an a posteriori
proof of equivalence independent of the agent applying the transformations.

This paper is a revision and extension of [Shashidhar et al. 2002].
Outline of the paper. Section 2 describes the source-to-source transfor-

mations that are targeted in this work. Section 3 explains in brief the geometric
model that we use in our verification technique. Section 4 presents the technique
that we propose to a posteriori verify the correctness of these transformations.
Section 5 discusses related work and contrasts the work presented in this pa-
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Figure 2: Transformation verification scheme

per with respect to it. We conclude in Section 6 with a brief summary of our
contributions and a discussion of future work.

2 Targeted Source-to-source Transformations

2.1 Loop Transformations

Loop transformations play a crucial role in program optimization when the goal
is to increase parallelism and to make efficient use of memory hierarchy. They
have been well studied as matrix manipulations on index sets. The most prim-
itive of loop transformations are: permutation/interchange, skewing, reversal
and bumping on tightly nested loops. A large class of generally applied loop
transformations can be derived through successive application of affine unimod-
ular transformations of these primitive types [Banerjee 1994]. Loop distribu-
tion/fission/splitting, merging/folding/fusion, strip-mining/tiling, unrolling are
other important loop transformations that cannot be derived from the primitives
above. Most of the loop transformations applied in practice belong to one of the
above types. Also, some of these transformations are just enabling transforma-
tions for other loop transformations and do not result in any optimization by
themselves.

The loop transformations change only the execution ordering while the overall
computation remains essentially the same. If the program is in single-assignment
form and every element is written before being read, then the set of elements
of the variables read and written, and the dependency between them should
remain unaltered by the transformation. As will be explained in Section 3, the
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Figure 3: The principle of data reuse transformation

geometric model captures this information independent of the particular loop
transformation that is applied, hence, enabling us to verify the whole set of
structure preserving and structure modifying loop transformations that were
mentioned above.

The example in Figure 1 shows a simple loop distribution transformation on
the inner loop and a loop reversal transformation on the outer loop and one of the
inner loops, along with a to be explained data reuse transformation. Though the
transformations applied in the example are trivial compared to transformations
applied in multimedia applications for rigorous optimization, they illustrate the
complexity involved in checking the correctness.

2.2 Data Reuse Transformations

Efficient use of a customized memory hierarchy to exploit temporal locality in
data accesses is very important for optimal design of embedded systems with
less energy consumption in the memory system. Hardware controlled caches ex-
ploit this, but at a very significant energy cost. Hence there is an increased
interest in software controlled caching. Compile time introduced data reuse
transformations on the program enable this in a system-level design framework
[Catthoor et al. 1998].

The data reuse transformation involves the introduction of a buffer variable
to hold the data element that is accessed multiple times as shown in Figure 3.
The introduction of buffer variables usually also requires that loop structure and
index expressions of the array variables are transformed. Clearly this transfor-
mation is semantics preserving. But, a mistake made during application of such
a transformation on non-trivial programs might introduce subtle bugs.

The fairly simple initial and transformed program pair in Figure 1 demon-
strates the transformation. Here, the buf[][] variable is introduced to hold
the reused elements of A[]. The buf[][] variable has the same number of ele-
ments as A[], this is because of the requirement of single-assignment form. Later
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transformation steps in the full transformation script remove these redundancies
[Catthoor et al. 1998, Quilleré and Rajopadhye 2000]. The example shows data
reuse with a single cache, but in practice, multi-level reuse is often required,
making it very hard to check manually that the semantics is preserved.

3 Geometric Modeling of Programs

Our approach relies on the use of the geometric model (also called polyhedral
model) for abstracting the meaning of programs. Geometric modeling of pro-
grams is well known in the parallel compiler and regular array synthesis research
domains and is used quite extensively to analyze the execution of program state-
ments [Feautrier 1991, Pugh 1992, Quilleré and Rajopadhye 2000]. The geomet-
ric model, while being quite simple, concisely represents all of the necessary
information about the data and control flow in the program. We use formulas
that encode affine constraints on integer variables, symbolic constants, logical
connectives and quantifiers, also called Presburger formulas, to symbolically rep-
resent the domain spaces and mapping between them. The geometric model is
explained at length in [Catthoor et al. 1998]. Here, we give only the definitions
that are required to present our technique.

In our notation, we follow the convention that the left super-script denotes
the program from which the object has been extracted and the left and right
sub-scripts denote the statement number and the program variables referred by
the object, respectively.

Definition 1 Iteration domain. Geometric domain in which each point with
integer coordinates represents exactly one execution of an assignment statement.

If the execution of the assignment statement is controlled by k iterator vari-
ables, the iteration domain will be a k-dimensional linearly bounded lattice (LBL)
[Thiele and Arzt 1993]. For an assignment statement labelled s in program P ,
the domain will be denoted by P

sD
iter. For example, the iteration domain of

statement 2 in the initial program I in Figure 1 is as given below:

I
2D

iter := { [i, k] | 0 ≤ i ≤ 9 ∧ 0 ≤ k ≤ 7 ∧ [i, k] ∈ Z
2}

The if-then-else constructs, if present, introduce additional constraints on
the domain with their branch conditions.

Definition 2 Definition domain. Geometric domain in which each point with
integer coordinates (i1, . . . , in) represents exactly one write to v[i1, . . . , in], an
element of a variable v defined by an assignment statement.

If v is a defined variable in an assignment statement labelled s in program
P , its definition domain is denoted by P

sD
def
v .
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Definition 3 Operand domain. Geometric domain in which each point with
integer coordinates (i1, . . . , in) represents exactly one read from an element
v[i1, . . . , in] of an operand variable v in an assignment statement.

If v is an operand variable in an assignment statement labelled s in program
P , its operand domain is denoted by P

sD
oper
v . For a d-dimensional array variable,

the definition and operand domains will be LBLs of the same dimension. For
example, the definition domain of B[][] and operand domain of A[] in statement
2 of program I in Figure 1 is:

I
2D

def
B := { [a1, a2] | a1 = i ∧ a2 = k + 1 ∧ [i, k] ∈ I

2D
iter}

I
2D

oper
A := { [a3] | a3 = i ∗ 4 + k ∧ [i, k] ∈ I

2D
iter}

Definition 4 Dependency mapping. A mapping associated with an assign-
ment statement, between a defined variable d and an operand variable o. Each
pair (i, j) in the mapping indicates that d[i] is written (defined) and o[j] is read
by an instance of the statement.

We denote the dependency mapping between the defined variable v and the
k-th operand variable wk in an assignment statement labelled s in program P

by P
sMv wk

. For example, the dependency mapping between the defined variable
B[][] and the second operand variable A[] in statement 2 of I in Figure 1 is:

I
2MB A := { [a1, a2] → [a3] | a1 = i ∧ a2 = k + 1

∧ a3 = i ∗ 4 + k ∧ [i, k] ∈ I
2D

iter}

The dependency mapping M : Ddef → Doper, as evident from the definition,
is a mapping from a definition domain to an operand domain which is neither
surjective nor injective. It is an integer tuple relation describing the complete
information about which elements of the defined variable depends on which el-
ements of the operand variable during all possible executions of the statement.
Each tuple in the relation corresponds to exactly one dependency mapping be-
tween the elements of the defined and operand variables. Without loss of gener-
ality, let us assume that an assignment statement has only one defined variable.
Therefore, an assignment statement with n operand variables will give n depen-
dency mappings from the defined variable, one to each of its operand variables. If
an operand variable appears more than once in an assignment statement, we use
an additional subscript to distinguish them by their position. A copy statement
is a statement with only one operand, on which the identity function is applied.
Hence it has only one dependency mapping.

The class of programs we can handle presently are composed of assignment
statements, for-loop statements, and if-then-else statements. The semantics
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of the expression in the assignment statement is not interpreted. Such programs
can be parsed to obtain the above domains and mappings. An important point
to make here is that the above model can be extracted from programs written
in any imperative programming language that provides the handled statements.
This makes the equivalence checking independent of the particular programming
language in which the initial and the transformed programs have been written.
The model described in [Catthoor et al. 1998] includes other definitions that
capture data flow information like dependency distance vector, direction vector
etc. But they are relevant for equivalence checking only to the extent that they
provide information about the ordering of reads and writes to elements of array
variables.

Given a geometric model of a program, one can identify array elements occur-
ring in an operand domain but not in a definition domain. They are the inputs of
the program. Similarly, some elements may occur in a definition domain, but not
in an operand domain. Assuming the program does not perform useless compu-
tations, they are outputs. However, also elements that are read may be intended
as output. Hence we assume the outputs are declared for the program pair. The
semantics (meaning) of a program can be characterized by the function mapping
inputs to outputs (input-output function). Note that domains are finite, hence
that geometric models only describe terminating programs.

3.1 Assumptions

Our transformation verification technique addresses only program pairs that can
be abstracted by geometric models. Moreover, we require a rather close corre-
spondence between initial and transformed programs, namely that differences
are limited to changes in the loop structure and the index expressions, and to
the introduction of buffers. While restrictive, it covers the important and er-
ror prone class of transformations applied by designers when optimizing data
transfer and storage costs. The assumptions listed below make the requirements
explicit.

– In many program transformation frameworks, it is common to transform the
program first to the single-assignment form as it provides much more freedom
in applying optimizing transformations. Hence, we require that programs
are in single-assignment form and also that they are free from pointers. We
assume that a preprocessing stage, partly described in [Catthoor et al. 1998],
has correctly transformed the source code to the required form.

– The index expressions and the expressions giving the bounds of the iterators
are quasi-affine functions (affine functions with mod, div, floor and ceil op-
erations) of only the surrounding iterator variables and symbolic constants.
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– The technique is concerned with only the reads and writes of elements of
array variables. Scalar variables are taken to be single element arrays under
the single-assignment form. The verification of correctness of arithmetic and
logic expressions can be handled with other techniques mentioned in Sec-
tion 5. The integration with other techniques is straightforward if the source
code is organized into two layers, wherein, the computation with loop con-
structs and array variables are sorted into one and the computation with
scalar variables into another. This in fact is essential to facilitate manual
transformations on the former, while leaving the optimization of the latter
to the compiler [Catthoor et al. 1998].

– The transformations do not change the variable names and their types in
the program.

– We assume that transformations only involve (1) the introduction of buffer
arrays (caches), that are written by copying other array elements and (2)
reorganization of the loop structure that preserves the functions applied
on the data elements in the right hand side of write statements i.e., only
modification of index expressions and replacement of an array being read by
buffer(s) are supported by our analysis.

– We assume that in initial and transformed programs each variable element
that is read in an assignment statement has either been already defined or
is an input variable. This can be ensured by a well known data-flow analysis
for array elements [Wolfe 1996].

In the technique that follows, we use the following two operations on integer
tuple relations in addition to the usual operations on sets.

Operation and its definition
F �� G (Join of F and G):
x → z ∈ F �� G ⇔ ∃y s.t. x → y ∈ F ∧ y → z ∈ G

F+ (Positive transitive closure of F ):
x → z ∈ F+ ⇔ x → z ∈ F ∨ ∃y s.t. x → y ∈ F ∧ y → z ∈ F+

4 Transformation Verification Technique

The transformation verification technique is an implementation of the scheme
shown in Figure 2. Given the initial and the transformed program pair (I, T ),
the geometric models are extracted from the two programs and their equiva-
lence is shown, i.e., it is verified that both programs compute the same function
from inputs to outputs. In addition, in case of failure, the purpose is to obtain
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 {
   .... 

i:  v[]= f(u1[],u2[],..,un[]); 
   ....

j:  v[]= g(w1[],w2[],..,wm[]);
   ....

k: v[]= f(u1[],u2[],..,un[]);
   ....
 }

  {
    ....

h’: buf[] = u2[];
    .... 

i’:  v[]= f(u1[],buf[],..,un[]); 
    ....

j’:  v[]= g(w1[],w2[],..,wm[]);
    ....

k’: v[]= f(u1[],u2[],..,un[]);
    ....

l’:  v[]= f(u1[],buf[],..,un[]);
    ....
  }

I: Initial Program T: Transformed Program

Figure 4: Example to explain statement classes. Each v[..] is a different element
of v as the programs are in single-assignment form.

a diagnosis that identifies the statements that are at the origin of the failing
verification.

Before we present the technique in detail, we define two notions of equivalence
of statements and a partition of statements into classes.

Definition 5 Weakly equivalent statements. Statements s1 and s2 are
weakly equivalent if they define the same array variable and apply the same
function on their operand variables.

Definition 6 Equivalent statements. Statements s1 and s2 are equivalent if
they are weakly equivalent and if their corresponding operand variables are iden-
tical.

Let PSdef
v be the set of statements defining the variable v in a program P .

Definition 7 Statement class, π(PSdef
v ) and PRv. A statement class for an

array variable v in a program is a maximal subset of equivalent statements
from the set PSdef

v of statements defining v. The set of statement classes for
v (a partition of PSdef

v ) is given by the function π(PSdef
v ); PRv (with an extra

superscript if needed) denotes a member of this set, i.e. a statement class for v.

For example, in the initial program I in Figure 4, the set of statements defin-
ing the array variable v, ISdef

v = {i, j, k} and its partition π(ISdef
v ) = {IR1

v,
IR2

v},
where IR1

v = {i, k} and IR2
v = {j} are statement classes with defined variable v.
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IR1
v has operand variables u1, . . . , un and applied function f ; IR2

v has operand
variables w1, . . . , wm and applied function g.

As mentioned above, the relevant behavior of a program is described by the
input-output function. As programs are in single-assignment form and all state-
ments contribute to the output, the input-output function of the initial program
I is completely determined by two things. On one hand the dependency map-
pings I

sMv w of the statements in I and on the other hand the functions applied
on the operands in the right-hand side of those statements. Hence a sufficient
condition for preserving the input-output function in the transformed program
is that these dependency mappings are (directly or indirectly) still present in
the transformed program. Part of our assumptions is that array variables are
preserved and that also the functions applied on the operands in the right-hand
sides of statements are preserved. However, operands can be replaced by buffer
variables which in turn are defined in new copy statements. In such cases, de-
pendency mappings are not preserved. By composing the dependency mapping
where the operand is a buffer variable with the dependency mapping of the copy
statement defining the buffer variable (if needed, repeating this) one eventually
obtains an (indirect) dependency mapping relating two variables present in the
initial program. This idea is formalized below. In what follows we refer to ar-
rays occurring in the initial program as array variables (or arrays) and to arrays
introduced in the transformed program as buffer variables (or buffers).

Definition 8 Related statements τ(IRv). Given a statement class IRv in
the initial program I, the related statements in the transformed program, de-
noted τ(IRv), are defined as the set {s | s ∈ TSdef

v and s is weakly equivalent
with the statements of IRv}.

For example, in the transformed program T in Figure 4, τ(IR1
v) = {i′, k′, l′}.

To be able to verify that dependency mappings in the initial program are pre-
served in the transformed program, we define an indirect dependency mapping
that eliminates buffer variables.

Definition 9. Let v and w be array variables and b1, . . . , bn be buffer variables
such that: (1) there is a statement sv with a dependency mapping between v and
b1, (2) there are copy statements s1, . . . , sn−1 where each si has a dependency
mapping between bi and bi+1, and (3) there is a copy statement sn with a
dependency mapping between bn and w. Then the indirect dependency mapping
M

′
v w(sv, s1, . . . , sn) is given by:

M
′
v w(sv, s1, . . . , sn) := sv

Mv b1
�� s1

Mb1 b2
�� · · · �� sn−1

Mbn−1 bn
�� sn

Mbn w

where the operator �� is as defined in Section 3.

259Shashidhar K.C., Bruynooghe M., Catthoor F., Janssens G.: An Automatic Verification ...



In what follows, we call sv, s1, . . . , sn a buffer chain between v and w. Note
that, for given arrays v and w, several buffer chains of possibly different lengths
may exist. As the code is in single-assignment form, each chain relates a distinct
set of pairs of indices in the arrays v and w. We are interested in the union of
all these mappings, not only for a single statement defining v but for a set of
weakly equivalent statements. Hence we define:

Definition 10 Indirect dependency mapping M
′
v w(S). Let S be a set of

weakly equivalent statements defining an array v. Let C(v, w, s) be the set of
buffer chains between v and w starting in s. Then M

′
v w(S) is defined as

⋃

s∈S

⋃

s,...,sn∈C(v,w,s)

M
′
v w(s, . . . , sn)

A computational problem arises when there is a self dependence in a copy
statement s from a buffer bi to itself. It is called a recurrent mapping and is
detected when the intersection T

sD
def
bi

∩ T
sD

oper
bi

is non-empty. To avoid the ineffi-
ciency of having to consider chains . . . bi−1, bi, . . . , bi, bi+1, . . . containing variable
length subsequences of bi, we compute a so called end-to-end mapping M con-
taining pairs of indices (k, l) such that bi[k] is defined by s while bi[l] is not
defined by s and use this mapping M instead of a sequence of Mbi bi

when
computing the indirect dependency mapping. It can be calculated as follows:

– Compute the positive transitive closure of the recurrent mapping:
m := (TsMbi bi

)+.
– Get the domain and range of the computed closure:

d := domain(m); r := range(m).
– Get the domain and range of the end to end mapping:

d′ := (d − r); r′ := (r − d).
– Restrict the closure to the tuples in the end-to-end mapping:

M := {x → y |x → y ∈ m ∧ x ∈ d′ ∧ y ∈ r′}
The primitives used in the above procedure are provided by the Omega

library [Kelly et al. 1996a]. It is important to remark here that transitive clo-
sure is exactly computable only under certain conditions, but this limitation
is not a problem for most of the commonly occurring relations in practice
[Kelly et al. 1996b]. Another remark is that, we do not have to compute the
transitive closure for self dependences on output variables, because the transfor-
mations ensure that they are preserved in the transformed program. This is the
case with the self dependence of variable B[][] in statement 2 in our example
in Figure 1.

Now, a sufficient condition for ensuring that the transformed program com-
putes the same input-output function as the initial program is that every tuple
(a, b) in a dependency mapping I

sMv w of the initial program is part of the indi-
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rect dependency mappings between v and w of the weakly equivalent statements
of the transformed program. This is given by the following definition.

Definition 11 Equivalence condition. For each variable v defined in the ini-
tial program I it must be the case that, ∀IRv ∈ π(ISdef

v ), ∀k such that 1 ≤ k ≤ n:
⋃

s∈ IRv

I
sMv wk

⊆ TM
′
v wk

(τ(IRv))

where n is the number of operands in the equivalent statements of IRv and wk

is their k-th operand.

The sufficiency of the equivalence condition is formulated in the following
theorem:

Theorem 12. Let I and T be a pair of programs in single-assignment form
which have the same inputs and outputs and for which the equivalence condition
holds. Then both programs compute the same input-output function.

Proof. (Sketch.) Without loss of generality, we assume arrays have only one
index. We have to prove that if an output array element has a value v in I then
it has the same value v in T .

Let o[i] be an output array element. The value v assigned to o[i] in I is given
by a function f(u1[i1], . . . , um[im]). The dependency mapping IMo uk

identifies
the element of uk[ik] that serves as k-th input to f . In T , the value v assigned to
o[i] is given by f(u′

1[l1], . . . , u
′
m[lm]). The indirect dependency mapping TM

′
o uk

identifies the element vk[jk] that is at the origin of the value of u′
k[lk] and hence

serves as k-th input to f in T .
Hence o[i] is assigned the same value in T when uk[ik] = vk[jk] for all k. The

equivalence condition ensures that uk = vk and ik = jk. It remains to show that
uk[ik] has the same value in I and T . This holds trivially when it concerns an
element of an input array. In the other case, one can apply the same reasoning
as for o[i] and conclude, by induction, that indeed all array elements uk[ik] have
the same value in I and T . �

It is desirable to verify also that the transformed program does not perform
useless computations, i.e., does not define more array elements than the initial.
An inexpensive check, that can be done before testing the equivalence condition,
is to verify that the definition domains in the initial and transformed programs
are the same for all array variables.

Formally, the following condition should hold for each defined variable v in
the initial program I:

⋃

s∈ ISdef
v

I
sD

def
v =

⋃

t∈ TSdef
v

T
tD

def
v
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Example 1. To illustrate the technique, we verify in the example of Figure 1 that
the relation between defined variable and the second operand variable, i.e., the
variable pair (B[][], A[]) of statement 2 in I is preserved in T :
The iteration domain is: I

2D
iter := { [i, k] | 0 ≤ i ≤ 9 ∧ 0 ≤ k ≤ 7 ∧ [i, k] ∈ Z

2}
Let C0 := ( a4 = i ∧ a5 = k + 1 ∧ a3 = i ∗ 4 + k ∧ [i, k] ∈ I

2D
iter)

The array dependency between B and A is given by:
I
2MB A := { [a4, a5] → [a3] |C0 }
The function τ maps statement 2 in I to the statements 4′ and 5′ of T . But,
array A is replaced by buf, which is defined in statements 2′ and 3′ in T . Hence,
the dependency between buf and A in the statements 2′ and 3′ has to be used
in computing the indirect dependency between B and A.
Statement 2′ of T has the iteration domain:
T
2′Diter := { [j] | 0 ≤ j ≤ 3 ∧ [j] ∈ Z}
The following constraint will be used in its dependency mapping:
C2 := ( a1 = 0 ∧ a2 = j ∧ a3 = j ∧ [j] ∈ T

2′Diter)
For statement 3′, iteration domain and the constraint are respectively:
T
3′Diter := { [i, j] | 0 ≤ i ≤ 9 ∧ 0 ≤ j ≤ 3 ∧ [i, j] ∈ Z

2} and
C3 := ( a1 = 10 − i ∧ a2 = j ∧ a3 = 4 ∗ (10 − i) + j ∧ [i, j] ∈ T

3′Diter)
Resulting dependency mappings are:
T
2′Mbuf A := { [a1, a2] → [a3] |C2 }; T

3′Mbuf A := { [a1, a2] → [a3] |C3 }
For statement 4′, iteration domain and the constraint are respectively:
T
4′Diter := { [i, k] | 0 ≤ i ≤ 9 ∧ 0 ≤ k ≤ 3 ∧ [i, k] ∈ Z

2}
C4 := ( a4 = 9 − i ∧ a5 = k + 1 ∧ a1 = 9 − i ∧ a2 = k ∧ [i, k] ∈ T

4′Diter)
Finally, for statement 5′ iteration domain and the constraint are respectively:
T
5′Diter := { [i, k] | 0 ≤ i ≤ 9 ∧ 4 ≤ k ≤ 7 ∧ [i, k] ∈ Z

2}
C5 := ( a4 = 9 − i ∧ a5 = 12 − k ∧ a1 = 10 − i ∧ a2 = 7 − k ∧ [i, k] ∈ T

5′Diter)
Resulting dependency mappings are:
T
4′MB buf := { [a4, a5] → [a1, a2] |C4 }; T

5′MB buf := { [a4, a5] → [a1, a2] |C5 }
We have that:
TMbuf A := T

2′Mbuf A ∪ T
3′Mbuf A := { [a1, a2] → [a3] |C2 ∨ C3 }

and TMB buf := T
4′MB buf ∪ T

5′MB buf := { [a4, a5] → [a1, a2] |C4 ∨ C5 }
Hence the indirect dependency mappings in the transformed program are:
TM

′
B A({4′, 5′}) := TMB buf ��

TMbuf A := { [a4, a5] → [a3] | (C2 ∨ C3) ∧ (C4 ∨ C5) }

Define: C1 := ((C2 ∨ C3) ∧ (C4 ∨ C5))
Now, the equivalence condition is satisfied when:
I
2MB A − TM

′
B A({4′, 5′}) := { [a4, a5] → [a3] |C0 ∧ ¬C1} = ∅

This can be verified with the Omega test framework [Pugh 1992].
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4.1 Error Diagnosis

A successful verification implies that initial and final programs are equivalent.
Failure indicates either a genuine error or that the transformation is beyond the
assumptions about the syntactical correspondence between initial and trans-
formed program, e.g. that functions in right hand side of statements have been
modified or that operations other than plain copy operations are used when fill-
ing the buffer arrays. If a condition does not hold it means that some points are
missing in the domain or the mapping in question. Since our condition checks are
made by calculating the differences of domains for each variable or mappings for
each variable pair separately for each statement class, the resulting non-empty
set of points gives enough information about the location of the errors. The
variable or the variable pair in question and the missing range of index values
is sufficient to direct the designer to the part of the code under an erroneous
transformation. This is a very useful property of the presented technique.

4.2 Complexity and Experience

The condition checks as described evaluates the validity of the constraints and
the best known upper bound for determining validity in Presburger arithmetic is
222pn

on the length of the formula [Oppen 1978], where p > 1 is some constant.
The Omega test framework [Pugh 1992] based on Fourier-Motzkin variable elim-
ination and a host of heuristics provides an integer programming solver for the
Presburger arithmetic which is very efficient in practice. This has prompted us
to use the Omega calculator [Kelly et al. 1996a] to perform the condition checks
on our domains and mappings. The mappings that we check are taken separately
for each definition-operand variable pairs and hence, the length of the formula
depends solely on the size of the statement classes and in all practical cases the
problem size remains reasonable.

We have implemented our technique in a prototype tool which integrates calls
to the geometric model extractor and the Omega calculator and coordinates the
constructed checks and provides error location information to the user. The tool
has successfully verified some real life examples with many complex loops and
multi-dimensional arrays, like data reuse transformations on Mpeg-4 motion
estimation kernel and loop transformations on implementations of signal pro-
cessing application cores like Durbin and updating singular value decomposition
(USVD) algorithm. The verification was possible in a push-button style and took
time only in the order of few seconds. In the USVD case, the tool detected a bug
in the transformed USVD (400 lines of C-code in the core), which was traced to
a bug in the constant propagation unit of the code generator that a prototype
loop transformation tool used. In the past, both testing and manual paper-and-
pencil based checking had taken unreasonable amount of time and yet without
guarantee of correctness.
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5 Related Work

The front line formal verification techniques, model checking and theorem prov-
ing, are not suited to the problem that we are addressing. Model checking is not
suitable because we are dealing with sequential data dominated programs which
are not amenable to be represented as state transition systems. Symbolic model
checking of infinite state systems has been presented in [Bultan et al. 1997] for
verifying temporal properties, which is not the focus of our work. But, we do use
a similar framework in addressing our problem. Theorem proving is unattrac-
tive to the designer because of the often quoted requirement of skill. Also, tech-
niques applied for verification of equivalence of implementation to the behavioral
specification [Claesen et al. 1992, van Aelten et al. 1994] and other implementa-
tion level verification techniques (for example those based on SAT solvers like
Chaff [Moskewicz et al. 2001]), are suited for checking arithmetic and logic ex-
pressions, but not for loop constructs on array variables in the source code. A
solution proposed often is to completely unroll the loop, but this is clearly in-
feasible given that the loops are nested and the bounds are quite large in real
programs, especially in embedded multimedia applications. In particular, SFG-
Tracing [Claesen et al. 1992] provides proof of equivalence of loop constructs
based on induction with the restriction that loop ordering is unchanged. But,
automation has only been possible for non-loop transformations.

The work on translation validation [Pnueli et al. 1999, Necula 2000], with
motivation that props our own, addresses a very related problem of a pos-
teriori validating whether the target code produced by a compiler is a cor-
rect translation of the source program, providing an alternative to the veri-
fication of translators/compilers. In this technique, a trade-off exists between
the class of transformations that can be checked and the extent of compiler
instrumentation that is required to provide enough information to the valida-
tor about the transformations applied. In the closely related Verifix project
[Goos and Zimmermann 1999], methods were proposed to prove that the im-
plementation of the compiler meets the compiling specification and also to check
the correctness of the compiled code by program checking. In contrast to transla-
tion/compilation, our concern is on the source-to-source transformations, which
is mainly a pre-compilation activity. More importantly, the problem is com-
pounded here by the fact that usually transformations are made manually in the
context of system-level hardware-software co-design of embedded systems and it
is desirable to have first a verification at the level of the source code before get-
ting down to compilation and synthesis. Our attempt here has been to provide a
transformation verification infrastructure which is complementary to translation
validation and verification of the implemented compiler. In Figure 5 the line in
bold delineates the problem that we are addressing in contrast to other related
problems. With an altogether different goal, source-code level approximate equiv-
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source
program

 transformed
 source
 program

Is the compiler correct?
[Compiler Verification]

compiler

 Is the target code a correct 
translation of the source?
[Translation Validation]

target
code

[Transformation Tool Verification]
Is the transformation tool correct?

Is the transformed source program a 
correct transformation of the source?

[Transformation Verification]

designer guided program 
transformation tool

manual transformations

Figure 5: Contrasting with related work

alence checking methods [Yang et al. 1989, Ramalingam and Reps 1989] have
been proposed based on program representation graphs and program slicing
in the context of program integration. But, their method is restricted to a lan-
guage subset which omits array variables and hence is not suited to address our
problem.

In [Mateev et al. 2001], a technique called fractal symbolic analysis (FSA) is
introduced to address the same problem as we are. Their idea is to reduce the
difference between the two programs by incrementally applying simplification
rules until the two programs become close enough to allow a proof by symbolic
analysis. Each simplification rule preserves the meaning of the program. The
programmer can also assist the analyzer by providing some problem specific
program invariants. The power of FSA depends on the simplification rules that
are available. However, the more rules, the larger the search space and it is
yet unclear whether the heuristics to measure the difference and to select the
most promising simplification rule are sufficient in practice. In comparison, our
method, while addressing a more limited (but in practice important) class of
transformations, does neither require search nor guidance from the programmer.

In prior work, at Imec, the feasibility of the approach in handling pure loop
transformations has been demonstrated [Samsom et al. 1995] and also, a heuris-
tic to handle bigger problem sizes has been proposed [Čupák et al. 1998]. The
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approach of [Samsom et al. 1995] was to define for each statement one complex
dependency mapping instead of a separate one for each operand. This had pre-
vented handling data reuse transformations in all but very simple cases. Splitting
the dependency mapping into a separate one for each operand not only allows
the handling of reuse but also substantially reduces the computational complex-
ity of checking the equivalence conditions. As a consequence, we can analyze
much larger programs.

6 Conclusions

Correctness checking is a complex problem which manifests itself in many con-
texts in varied forms eluding a general solution, hence it is important to explore
every avenue of entry available to tackle the problem. In this paper we describe
a technique that can assist designers of embedded systems for multimedia and
telecommunication applications in verifying that the applied loop and data reuse
transformations are correct. The main idea behind the technique is to extract
the geometric model from the initial and the transformed program and to show
that both models define the same input-output function.

Our technique relies on a rather close relationship between initial and trans-
formed programs. Indeed, we assume that all array variables of the initial pro-
gram are preserved in the transformed program and also that the same functions
are applied on the operands of the statements defining these array variables. An
interesting question is whether this close correspondence can be relaxed. One
way to do this is to start with the goal of showing that the outputs in the two
programs are the same. This can be expressed by a finite number of expressions
oI [i] = oT [i] where i ranges over an LBL (oI and oT refer to the outputs in
the initial and the transformed programs, respectively). Using the dependency
mappings of the defining statements, such a goal can be reduced to showing
equalities between the operands, provided that the defining statements apply
the same function on their operands. Recursively applying this reduction, one
can eventually reduce these goals to equalities between inputs. A very recent
work [Barthou et al. 2002], independent to our work [Shashidhar et al. 2002],
precisely follows this approach. They represent programs by systems of affine
recurrence equations (SAREs), which correspond to geometric models of pro-
grams in single-assignment form. In this approach, because of the goal reduction
strategy, only the input and output variables of the initial program have to be
preserved in the transformed program.

One of the most limiting requirements of our method (as well as other
techniques based on geometric modeling) is that programs must be in single-
assignment form. For programs that meet all other requirements, there are meth-
ods [Wolfe 1996, Feautrier 1988] to transform programs to single-assignment
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form. Also, there are methods (for example, [van Engelen and Gallivan 2001])
which aim at converting pointers in a program to array accesses. Such prepro-
cessing techniques could substantially broaden the class of programs that can be
verified.

In future work we would like to handle a broader class of transformations and
would like to be able to cope with differences in the statements. For example
differences that can be explained by the algebraic properties (commutativity,
associativity,. . . ) of the applied functions or those which are the result of moving
some computation out of a loop (e.g. f(x) in one program corresponding to
g(x) + c in the other).
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