Journal of Universal Computer Science, vol. 9, no. 2 (2003), 106-119
submitted: 14/10/02, accepted: 14/2/03, appeared: 28/2/03 0 J.UCS

Checking Object System Designs Incrementally

Hans-Dieter Ehrich
(Technical University Braunschweig
HD.Ehrich@tu-bs.de)

Maik Kollmann
(Technichal University Braunschweig
M.Kollmann@tu-bs.de)

Ralf Pinger
(SIEMENS AG Transportation Systems
Ralf.Pinger@siemens.com)

Abstract: We present a method for checking global conditions for object systems in a
way that avoids state space explosion. The objects referred to in a global condition are
checked step by step against local conditions and communication requirements derived
from the global condition. The derivation is automatic, based on information about the
system structure contained in the global condition. The approach is demonstrated using
model checking, but the idea works for other approaches to verification or testing as
well. In our current investigation, a multi-object variant of CTL is used for expressing
global conditions. The local conditions and communication requirements can be verified
independently using; standard model checkers. The method is illustrated by a large
example (about 102 states) where our method shows a spectacular speedup over global
model checking.

Key Words: multi-object logic, model checking, modelling and design, object system,
temporal logic, verification.

Category: F.3.1, 1.6.4

1 Introduction

By an object system, we mean a community of sequential objects operating
concurrently and communicating synchronously in an RPC-like fashion. This is
in accordance with current middleware technology.

When checking such systems using automatic verification or testing methods,
the complexity tends to grow exponentially with the number of objects: the
state space “explodes” in size. This puts very tight limits on the practicality of
checking object systems.

We show that these limits may be overcome if information about the system
structure is available at the time a global condition is written. The idea is to
reflect the system structure in the global condition in a way that enables auto-
matic translation to local conditions plus communication requirements. Then,
instead of checking the global model which is the product of the local models, a

Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ... 107

network of communicating local models is checked incrementally. The checking
involves only the models referred to in the condition. The savings in overall effort
may be spectacular.

Our method looks set to enable verification of large object systems in an early
phase of development, using affordable standard equipment and not requiring
too much human expertise. This may bring checking and verification methods
into broader practical use. This in turn may help to improve software quality and
to avoid costs which arise if errors are detected late in the software development
life cycle.

Moreover, the work can be split and parallelized easily, letting the local checks
be performed on different machines. And it is possible to check incomplete de-
signs as soon as models of those objects are available to which the global condi-
tions in question refer.

The method put forward here does not directly compare with composition-
ality approaches [Pnu85, CLM89, GL94, dR97]: these work on the grounds that
no knowledge about the system’s structure is available when writing the global
conditions. Consequently, there is the crucial step of recognizing internal inter-
faces and equipping these with appropriate assumptions and guarantees. This
requires much human expertise and cannot be automatized except for very re-
stricted cases. Similar arguments hold for abstraction techniques. [CGP00] gives
an overview of these techniques and others. [Pin02] gives a detailed comparison
with our approach.

There is another fully automatic state-reduction technique in use: partial-
order reduction [KP88, CGPO00]. It does not easily compare with our method: it
is restricted to interleaving composition and linear-time temporal logic without
the next operator. Our approach doesn’t have these limitations, so we decided to
demonstrate it in cases where partial-order reduction does not apply. A detailed
comparison is under study. For the moment being, we use global model checking
as a yardstick for comparison where the global state space is constructed and no
reduction technique is applied.

RPC-like object interaction cannot be directly expressed in current model
checkers, but it can be encoded in a rather straightforward way. We do not
elaborate on this aspect here and refer the reader to [Pin02] for details.

Our approach is based on using a ‘global’ logic D, for expressing multi-object
conditions that is automatically translatable to a ‘local’ logic D, for express-
ing single-object conditions and communication requirements [ECSD98, EC00].
While the original idea was to use this for object system specification, the ap-
proach was later elaborated for model cheking. [EP00] and [PEO01] contain former
versions of the basic idea illustrated with small examples, and [Pin02] reports
on refining and implementing the method and running big experiments. The
current paper communicates results of that work.

108 Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ...

An explanation is in order what we mean by ‘global’ and ‘local’ in our logics.
The problem is how to express properties of a set of sequential objects working
concurrently. The temporal logics having well-developed verification tools can
only express properties of sequential systems. Conventionally, a global property
referring to several objects is interpreted in a global sequential system com-
posed from the objects in question. This composite system may explode in size.
In contrast, we leave the objects separate and associate the logics with them,
avoiding to build the global state space. Consequently, all our conditions are
local—strictly speaking. For expressing ‘global’ properties, we express state-
ments about other objects in a local logic. Thus, by a ‘global’ statement we
mean a statement which contains substatements referring to other objects. The
validity of these substatements is evaluated on the basis of synchronous commu-
nication during which two objects are coupled so tightly that they act as one
sequential system. This coupling, however, is volatile and only implicit.

For the work reported here, we used CTL, the computation tree logic pro-
posed by E. Clarke and A.E. Emerson [CE81], and the SMV model checker
[McM96]. Folklore says that, while CTL is more efficient in model checking,
LTL is more intuitive for humans. We cannot confirm the latter, though, after
working through a number of examples. We demonstrate the practicality of the

024 states) which took a

method by model checking a large example (about 1
few minutes with our approach while global model checking took hours on the
same equipment. In order to make it easier to compare with other approaches,
we chose the steam boiler example which is well known from the verification
literature (cf. [ABL96]).

Current model checkers like SMV offer module concepts where each module
represents a process which may be abstractly characterized as a Kripke structure
[Kri63a, Kri63b]. Two modes of cooperation are usually supported: step-by-step
synchronization of all modules using a global clock, and interleaving by taking
one step of one module at a time. In contrast, our approach supports what
was called “perspective concurrency” in [Pin02], allowing objects to perform
transitions independently of each other. It may then depend on the viewpoint of
a sequential observer whether steps of different objects appear synchronous or
in any sequence.

In the next section, we give a brief informal introduction to our approach;
details can be found in [Pin02].

2 Multi-object logics

Temporal logics like CTL are designed for describing properties of sequential
systems: a path formula refers to a given trace of states, and a state formula refers
to a given state, possibly stating a property of the collection of paths emanating

Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ... 109

from that state. Using temporal logic for a communicating network of concurrent
objects requires some adaptation: we use CTL locally for the sequential objects,
and combine the local logics via communication constructs. The latter may be
done in different ways, and here is where our logics D, and D, differ.

Let I be a finite set of identities representing sequential objects. Misusing
terminology slightly, we speak of “object ¢ when we mean the object with
identity ¢. Each object ¢ € I has an individual set P; of atomic state predicate
symbols, its signature. In applications, predicate symbols may express which
attributes have which values, which actions are enabled, which actions have
occurred, etc. For the purpose of this paper, we need not go into detail here.

We use the multi-object logic D; as described in [ECSD98, EC00] but instan-
tiated with CTL. This means that we have a local logic :.CTL over signature P,
for each object ¢ € I. D, allows to use formulae from j.CTL for any other object
j € I as subformulae within ¢.CTL. These constituents are called communication
subformulae.

In anticipation of the steam boiler example in section 5, let us look at sim-
plified examples of conditions for a system consisting of three objects: control,
boiler, and pump. We want to express the control rule that if the control is in
normal mode, the water level is ok and the steam volume in the boiler gets high,
then the pump is switched on; if the pump does not work, control leaves normal
operation.

This condition is best attached to the control but refers to the boiler and the
pump, therefore it is considered global.

control.AG(mode = normal A water-level = ok A boiler.(steam-level = high)
= AXpump.(action = geton) V AF mode # normal)
The following condition is local because it does not refer to any other object. It
says that the pump should start operation if the corresponding action is called,
unless it is defective or in its stop state.
pump.AG(state # stop A state # defective A action = geton = state = on)

Please note that the propositions are in different local logics: ‘mode = normal’
is local to the control, ‘steam-level = high’ applies to the boiler, ‘action = geton’
makes only sense for the pump, etc.

Formally, the syntax of D; = {Di}ie 7 is given by the following BNF gram-
mar. We make use of well-known adequate sets of propositional connectives and
of CTL operators (i.e., all others can be derived). In addition to P;, we have
propositional symbols @j in 4’s local logic, for every j € I; these are supposed
to mean that ¢ currently synchronizes with j. This is redundant because we will
have i.(Qj < j. true), but we introduce it for the sake of compatibility with D,
see below.

110 Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ...

Dt =W
Wi =P | QI Wi | (Wi VW) | EXW | EGW! | E[Wi U W | Ci
Ciu=...|DJ|... (jeLj#i)

The intended meaning of D; is that, in a formula i.(...j.¢...), the commu-
nication subformula j.1) holds in a given state of ¢ iff ¢ synchronizes with j in a
state where 1 holds during this synchronization. Formal interpretation of D is
given in the next section.

D, has an interesting sublogic called Dy: it is like D; without communication
subformulae but with separate communication formulae of the kind i.(p = j.q)
where p € P; and ¢ € P; are propositional symbols. These communication for-
mulae mimic RPC as supported by current middleware: in 4, p (a call) implies
synchronization with j assuring q (execution of the called procedure) there (possi-
bly moving data back and forth during synchronization—but this is not reflected
in the abstraction).

As an example, the first of the above conditions can be stated in D, as follows.

control.AG(mode=normal A water-level=ok A q1 = AXr; V AF mode#normal)
boiler.(¢2 = Qcontrol A steam-level = high)

pump.(r2 = @control A action = geton)

control.(q1 = boiler.q2)

boiler.(g2 = control.q;)

control.(r1 = pump.r2)

pump.(r2 = control.ry)

The ¢’s and 7’s are communication predicates establishing the obvious syn-
chronization.

Formally, the syntax of D is given by the following BNF grammar.

Di =i | i.C§
W =P | QI -0 | (B¢ VW) | EXWE | EGW | EWEU W)
Chu=...|(P=34P)|... (e Lj#1)

In applications, not all propositional symbols in P; would probably be ac-

ceptable as communication symbols, a subset A; C P;, e.g., of action occurrence
symbols, would be used instead. We refrain from elaborating on this ramification.

3 Interpretation

We give a brief account of D; interpretation (cf. [EC00]). This includes an inter-
pretation of D, since it is a sublogic of D;. We assume that the reader is familiar
with CTL interpretation over Kripke models M = (S, Sy, —, L) as described,
e.g., in [HROO0]. S is a set of states with subset Sy of initial states, —=C S x S is

Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ... 111

the transition relation, and L : S — 2% is the state labelling function associat-
ing a set of propositional symbols with each state. For simplifying interpretation
definition, we assume — to be total, i.e., every state has at least one next state.
Thus, there are no finite life cycles (maximal traces).

In our setting, we assume a family {Mi}ie 7 of models, one for each object.
Conventional interpretation of CTL formulae defines the meaning of M;, s; =, ¢
for every object i € I where s; € S; and ¢ € D}, as long as ¢ does not contain a
communication subformula.

For capturing communication, we note that we have to synchronize at states
across models. However, a state of an object may be reentered several times
during a trace, and it need not synchronize each time with the same state of
another object. For instance, in a mutual exclusion example, if a process leaves
the critical region, it may synchronize with another process to enter if it wants
to. If the latter process is in its ready state, it will enter; if it is in its idle state,
it will not. If the first process leaves the critical region several times during its
trace, the second process will enter in some cases and not in others. The following
definition captures this intuition.

M, si =, jap it M; in s; synchronizes with some state s; in M,
and for every state s; in M; with which M; in
s; may synchronize, we have M, s; |:j 0

This means that ¢ synchronizes with 7 whenever ¢ enters state s;, and all states
in j which may possibly synchronize with s; must satisfy .

More details can be found in [EC00] where interpretation of D, is given more
comprehensively in terms of event structures (albeit for a different local logic).

4 Localizing global conditions

In [EC00], a sound and complete translation D; — 2P is presented: working
inside-out, every formula ¢ < i.(...j.¢)...) with an innermost communication
subformula 5.1 is replaced by the D; formula ¢’ < i.(... ¢; ...) and the D,
formulae 6 < j.(¢; & QiAY), a<i.(qg=j.q;), and < j.(g; =1i.¢;), where
g; and g; are propositional symbols to be matched with existing ones in the
signatures P; and P;, respectively (see below). The formulae o and 3 are called
communication requirements.

The D; and D, examples in section 2 give an example of such a translation.
Note that the number of communication subformulae in ¢’ is one less than that in
@. If ¢’ is not yet in Dy, the transformation step is iterated for another innermost
communication subformula. Since the number of communication subformulae is
finite and strictly decreases in each step, the transformation terminates after a
finite number of iterations.

112 Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ...

This transformation can be used to break global D; checking conditions down
into sets of D, conditions which can be checked locally, and communication sym-
bols which have to be matched with existing ones according to the communica-
tion requirements. This is elaborated in [EP00, PEO1, Pin02].

The matching algorithm follows the translation steps ¢ < i.(...j.¢...) —
{¢',0,a, 8} as given above. Here is a rough sketch. For each translation step,
the following actions are performed.

1. Compute the set Sy of states of object j in which % holds. This is done by
model checking.

2. Retrieve the set be of all communication symbols r; € P; that occur in a
subset of Sy, and establish communication with ¢ (i.e., the D, communication
formulae j.(r; = i.r;) and i.(r; = j.r;) hold for some r; € ;).

In other words, pr is the set of all communication symbols in j having
corresponding ‘partner’ symbols in ¢ such that «, 3, and § as given above
hold true.

3. Let be be the set of communication symbols ¢; € P; that are in a-3 corre-
spondence with symbols g; € P;; let

¢ = i(... quQQ, q...).

@ holds iff ¢’ does. If ¢’ has no further communication subformulae, it can be
locally model checked. Otherwise, the above step is repeated.

It may happen that one or the other of the above sets of communication
symbols is empty; that would be the case if there is no state in j satisfying
1, or if there is no suitable match of communication symbols. In this case, the
disjunction in ¢’ above is empty and evaluates to false, indicating that there is
no v preserving communication to j. If so, detailed warnings may be given to
the user helping to find the error in the design.

More details can be found in [Pin02] where also the correctness of the al-
gorithm is proved. Most interestingly, all checkings necessary for establishing
global validity of the checking condition can be done on the local models of the
objects. Standard model checkers are used not only for local model checking but
also for essential parts of matching the communication symbols and checking
the communication requirements.

5 The steam boiler example

We illustrate the practicality of the method with the steam boiler example as
treated in [ABL96] (cf. figure 1). Duval and Cattel [DC96] have a model check-
ing approach there using SPIN 2.8.5 with partial-order reduction enabled. This

Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ... 113

version is no longer available. We tried SPIN 3.2.0 but had to abandon the
experiment after several days computing time because of lack of memory!. The
same happened when we tried the global model with SMV. So we used a reduced
example omitting, e.g., some of the technical error handling for water level and
steam outlet control.

)l | steam outlet
pump 1
1 controller 1
| A gy
fffffffffffffffffff M2
pump 2 .
1 controller 2 v
1 - >] N2
; | water
p”i“#3 controller 3 |. S levd
o= T DT ‘ Nl
pump 4 : coS S
T controller 4 Fr A ML
(- B F

Figure 1: Steam boiler

First we recall structure and function of a steam boiler as presented in
[ABLY6]. Figure 1 shows the essential parts—with one exception: control. Other-
wise, the boiler consists of a tank with four markings representing water levels.
Between levels N1 and N2, the boiler works under normal condition. Outside
this area but between levels M1 and M2, the boiler works in restricted mode.

In normal mode, the steam leaves the tank through the steam outlet at the
top. The water level is adjusted via four pumps. Each of these is turned on or
off by a controller.

If the water level is below M1, the boiler is about to overheat and switches
off into stop mode. Likewise, the boiler stops if the level exceeds M2, indicating
overpressure. Then the relief valve at the bottom opens in order to release water
and let the level drop to normal.

The main task of the control is to keep the water level in normal mode,

! The experiment was run on a Sun UltraSPARC with 2 processors, 360 MHz, 2 GB
memory each.

114 Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ...

providing a safe operational system.

The steam boiler specification has been addressed and interpreted in various
ways in the literature. There are treatments which concentrate on specification
issues (e.g., [BHW96, BBDT96]), and others focussing on verification issues (e.g.
[CW96, L1L96]). Our approach follows the latter line of work. We checked the
following set of conditions. It is the subset of conditions as laid down in [ABL96]
that applies to our reduced model. We give the conditions in natural language
and in multi-object logic D;.

1. The valve is never open if control is in normal or restricted mode.

control.AG(((mode = normal V mode = restr) A @boiler = boiler.(valve # open))

2. After the initialization phase, the water level is ok or control stops operation.

control.AG(mode = ini = AF (boiler.(waterlevel > N1 A waterlevel < N2) V mode
= stop))
3. In normal or restricted mode, the water level is never below M1 or above
M2.
control.AG((mode = normal V mode = restr) A clock = get-water-level =
boiler.—(water-level < M1 V water-level > M2))
4. If a pump is defective, it will resume normal operation when receiving a
repair message.

pump;.AG(state = defective = AF (action = getrepaired = state # defective))

5. In normal mode of control, no pump is defective.

control.AG(\/?:1 pump;.state = defective = mode # normal)

6. If, in normal mode of control and with water between normal levels, the
steam volume goes up to 20, then all pumps are successively switched on or
the control leaves normal operation because of pump defects.
control. AG(mode = normal A water-level = NIN2 A clock = send-pump; A

boiler.(steam-level = 20) = (AX(pump;.action = geton
A AX(pumps.action = geton A AX(pumps.action =
geton A AX pumpy.action = geton)))) V AF mode
normal)

pump;.AG(state # stop A state # defective A action = geton = state = on)

Table 1 shows the results, comparing the multi-object approach with the
global approach (last column).

The speedup is spectacular. Condition 4 is especially interesting: the con-
dition is local for pumps and requires only local checking of the pump state
spaces in our approach. In contrast, the global approach does not exploit this
knowledge and searches the global state space. Here we see that our approach
automatically concentrates on the objects referred to in the conditions.

Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ... 115

multi-object global

control boiler pumps| total total
|#states]| 1.2 x10% 3.5 x105 198 | [1.3 x10%
cond 1||~ 6 min 15s ~42s ~ 7 min ||~ 2 h 57 min
cond 2 ||~ 4 min 38 s =&~ 46 s ~ 5 min 20 s||~ 2 h 36 min
cond 3 ||~ 5 min 30s ~ 46 s ~ 6 min 15 s||~ 2 h 52 min
cond 4 <l1s < 1s ~ 2 h 51 min
cond 5 ||~ 5 min 17 s < 1s |~ 5 min 20 s||~ 2 h 50 min
cond 6 ||~ 4 min 27s ~46s < 1s|~5 min 10 s||~ 2 h 43 min

Table 1: Results

6 Implementation details

The implementation of our method consists of three parts: a parser which trans-
forms a D; formula into a syntax tree, a decomposer which translates this D,
formula syntax tree into a set of D, formula syntax trees, and an interface which
connects to the model checker.

The parser transforms a given D; formula into a syntax tree or stops if the
formula is not in D;. In our prototype, a module for CTL as the D, local logic
is implemented. This module may be replaced by a module implementing LTL
or ACTL or some other local logic.

The decomposer translates a D; formula into the set of D, formulae as ex-
plained above. Figure 2 illustrates the decomposition of checking condition 2
from the steam boiler example. The D, syntax tree is cut into as many pieces as
the D, formula contains occurrences of object identifiers, starting at the root of
the tree. Each time the decomposer reaches an innermost identifier, it introduces
a new communication symbol which substitutes the rest of the tree. Addition-
ally, a new tree for the inner identifier and its subtree is created. Along with this
step, the corresponding communication requirements are generated (cf. figure
2).

The next step is to integrate the model checker. Our prototype implements an
interface to the SMV model checker. So far, we do not make direct use of internal
model checker interfaces which generate the set of states in which a checking
condition ¢ holds. Instead, we call the model checker for every communication
predicate, generating the set of matching predicates iteratively. Using internal
interfaces which do this in one step would be an obvious optimization. The
obvious drawback is that the model checker could not so easily be replaced by
another one.

The prototype consisting of parser, decomposer and model checker interface

116 Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ...

(wasion) [w) (wemes) (N)

Figure 2: Decomposition of condition no. 2. The corresponding communication
requirements: o < control.(¢ = boiler.q), 8 < boiler.(¢ = conitrol.q).

was developed in only one diploma thesis [H6r01]. This shows that it is not really
much work to implement our method.

7 Concluding remarks

Further study will explore how the approach can best be utilized for checking
object system designs and how it compares with other techniques like partial-
order reduction. Appropriate tool support in combination with existing model
checkers is essential. Tools for generating the SMV inputs from D; descriptions
have been implemented [Pin02]. What would be welcome is better tool support
for moving from statechart models of objects to the inputs of model checkers.
Because we incrementally check only the objects involved in the checking
condition, the size of the entire system is not relevant for the method: it focusses
automatically on the part of interest. Very big models can be checked as long as
not too many objects are involved, those involved are small enough, and com-
munication traffic between these is not too dense. In more precise complexity-
theoretic terms, what we mean is that if the effort for checking an object and its

Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ... 117

communication requirements can be bounded by a constant, then the method
is linear in the number of objects involved. It is good practice anyway to design
systems in a way that constrains the size of objects and the amount of their
interaction with other objects. And a single checking condition will in practice
most often refer to a small part of the system only.

As mentioned above, we had to reduce the steam boiler example in order to
get the global model through. This was necessary for comparing our technique
with global model checking. However, we will implement the full model in order
to demonstrate the practicality of our method also in cases where the model is
too big for the conventional technique.

The fact that a ‘global’ D; checking condition in our approach is bound to
an object and is expressed from a local viewpoint also brings pragmatic limita-
tions: the condition can only express what can be ‘observed’ from this object
in the sense that there is direct and synchronous communication. However, by
nesting communication subformulae, complicated communication patterns may
be expressed. There is not much experience yet, though, how useful and natu-
ral the logic is to express and check properties of objects not directly related
by communication links. An example is the condition that a message sent by a
sender will eventually be received by a receiver, but communication takes place
via a transmission channel. In our method, there is no way to express the con-
dition as a sender condition like “sender.(messages will eventually be received
by the receiver)”, mentioning the receiver but not mentioning the channel. On
the other hand, it actually is a condition of the channel, and binding it to the
channel enables to talk about sender and receiver in a natural way.

If there is no suitable object to bind the condition to, it is possible to define a
new ‘observer object’ establishing just the communications that enable natural
expression of the checking condition. This observer object, however, must faith-
fully mimic the behaviours in the objects involved, so we have to prove some
form of equivalence. This may be too high a price to pay.

So far, we concentrated on systems with synchronous communication. Asyn-
chronous communication may in principle be reduced to synchronous communi-
cation by introducing message buffers between any two communicating objects.
However, this is not very elegant and hardly practical: if we treat the buffers
as objects, the nesting depth of communication subformulae doubles, and the
formulae get clumsy because the buffers have to be mentioned explicitly. We
believe that there is a better solution, and finding it would be important for
applying our method to checking widely distributed systems.

Acknowledgements

This work was partially supported by DFG under contract Eh 75/12 in the
priority project SPP 1064.

118 Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ...
References
[ABL96] Jean-Raymond Abrial, Egon Borger, and Hans Langmaack, editors. Formal

Methods for Industrial Applications: Specifying and Programming the Steam
Boiler Control, volume 1165 of Lecture Notes in Computer Science. Springer-
Verlag, 1996.

[BBDT96] Christoph Beierle, Egon Borger, Igor Dudanovic, Uwe Glisser, and Elvinia

[BHWO6]

[CES1]

[CGPO0O]

[CLMS9]

[CW96]

[DCY6)]

[dR97]

[ECO0]

Roccobene. An evolving algebra solution to the steam boiler control speci-
fication problem. In Abrial et al. [ABL96].

Robert Biissow, Maritta Heisel, and Matthias Weber. A steam boiler control
specification with statecharts and Z. In Abrial et al. [ABL96].

Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchro-
nization Skeletons Using Branching Time Temporal Logic. Lecture Notes in
Computer Science, 131:52-71, 1981.

Edmund M. Clarke, Orna Grumberg, and Doran A. Peled. Model Checking.
MIT Press, 2000.

E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional Model
Checking. In Proceedings fo the 4th Annual Symposium on Principles of
Programming Languages, pages 343-362, 1989.

Jorge Cuellar and Isolde Wildgruber. The Dagstuhl steam boiler controller
problem: The TLT solution. In Abrial et al. [ABL96].

Gregory Duval and Thierry Cattel. Specifying and Verifying the Steam
Boiler problem with SPIN. In Jean-Raymond Abrial, Egon Bérger, and Hans
Langmaack, editors, Formal Methods for Industrial Applications: Specifying
and Programming the Steam Boiler Control, volume 1165 of Lecture Notes
in Computer Science, pages 203—-217, 1996.

Willem-Paul de Roever. The Need for Compositional Proof Systems: A
Survey. In Willem-Paul de Roever, Hans Langmaack, and Amir Pnueli,
editors, Compositionality: The Significant Difference, volume 1536 of Lecture
Notes in Computer Science, pages 1-22, September 1997.

H.-D. Ehrich and C. Caleiro. Specifying communication in distributed in-
formation systems. Acta Informatica, 36(Fasc. 8):591-616, 2000.

[ECSD98] H.-D. Ehrich, C. Caleiro, A. Sernadas, and G. Denker. Logics for Specify-

[EP00]

[GLY4]

[Hor01]
[HROO]

[KP8S]

[Kri63a]

ing Concurrent Information Systems. In J. Chomicki and G. Saake, editors,
Logics for Databases and Information Systems, pages 167-198. Kluwer Aca-
demic Publishers, 1998.

H.-D. Ehrich and R. Pinger. Checking object systems via multiple ob-
servers. In International ICSC Congress on Intelligent Systems & Applica-
tions (ISA’2000), volume 1, pages 242-248. University of Wollongong, Aus-
tralia, International Computer Science Convetions (ICSC), Canada, 2000.
Orna Grumberg and David E. Long. Model Checking an Modular Ver-
ification. ACM Transactions on Programming Languages and Systems,
16(3):843-871, 1994.

Daniel Hornig. Ein Werkzeug zur Dekomposition von Di-Spezifikationen.
Master’s thesis, Technische Universitdat Braunschweig, 2001.

Michael R. A. Huth and Mark D. Ryan. Logic in Computer Science - Mod-
elling and reasoning about systems. Cambridge University Press, 2000.

S. Katz and D. Peled. An efficient verification method for parallel and dis-
tributed programs. In Proc. Workshop on Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency., volume 354 of
Lecture Notes in Computer Science, pages 489-507. Springer-Verlag, 1988.
S. A. Kripke. Semantical Analysis of Modal Logic I — Normal Modal Propo-
sitional Calculi. Zeitschrift fir mathematische Logik und Grundlagen der
Mathematik, 9:67-96, 1963.

[Kri63b]
[LL96]
[McMO6]

[PEO1]

[Pin02]

[Pnu85]

Ehrich H.-D., Kollmann M., Pinger R.: Checking Object System Designs ... 119

S. A. Kripke. Semantical Considerations on Modal Logic. Acta Philosophica
Fennica — Modal and Many-valued Logics, pages 8394, 1963.

Gunther Leeb and Nancy Lynch. Using timed automata for the steam boiler
controller. In Abrial et al. [ABL96].

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, second edition, 1996.

R. Pinger and H.-D. Ehrich. Compositional Checking of Communication
among Observers. In H. Hussmann, editor, Fundamental Approaches to
Software Engineering (FASE), Part of the Joint European Conferences on
Theory and Practice of Software (ETAPS 2001), Genova, volume 2029 of
Lecture Notes in Computer Science, pages 32—44, 2001.

R. Pinger. Kompositionale Verifikation nebenldufiger Softwaremodelle durch
Model Checking. PhD thesis, Institut fiir Software — Abteilung Datenbanken,
TU Braunschweig, 2002.

Amir Pnueli. In Transition From Global to Modular Temporal Reasoning
about Programs. In Krzysztof R. Apt, editor, NATO ASI Series, volume
F13, 1985.

