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Abstract: Simulated learning environments provide an efficient means for improving individual
skills in specific problem solving and learning situations. One crucial aspect of an optimal system
for simulated training environments is its capability to keep track of the improvements of the user
along the whole training process. In this paper we present a set-theoretical formal framework that
can be applied for the efficient assessment of the skills of an individual in a simulated learning
environment. The basic concept underlying our approach is that of a functional skill mapping of
the simulated learning environment through problem spaces.
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1 Introduction

Simulated training environments, like virtual reality or computerized training
systems, provide an efficient means for improving individual skills in specific
problem solving and learning situations. A simulated environment is usually
cheaper and safer than a real one. Moreover, simulation allows reversibility of
the user’s action (i.e., the user can always ‘redo’ or ‘undo’ an action or a move),
which is not always possible in a real environment. Furthermore, in a simu-
lated environment, complex cognitive tasks can be decomposed into simpler
sub-problems that are well-suited to the actual skills and competencies of the
learner (see e.g., [Lee & Anderson, 2001]). This facilitates inductive/deductive
reasoning, exercise and insight which, in turn, allow the user to learn new skills
and competencies (or to strenghten existing ones) in the domain of the problem.
1 A short version of this article has been presented at I-Know’03 (Graz, Austria, July 2-4, 2003)
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An optimal training system is a training system which triggers and keeps this
virtuous circle steady along the whole learning process.

The development of simulated training environments is a necessary, but not a
sufficient condition for an optimal and efficient training of a learner in complex
cognitive tasks. One crucial aspect of an optimal system for simulated train-
ing environments is its capability to keep track of the improvements of the user
along the whole training process. This implies a dynamic adaptation of the sys-
tem to the user’s skills and performance (personalisation) so that her/his moti-
vation and mental activity remains at an optimal level during the whole training
session. One mechanism at the basis of this adaptation is performance and skill
assessment and monitoring.

The basic idea underlying our approach is a functional (skill) mapping of the
simulated learning/training environment. When the learner enters the simulated
environment, s/he finds her/himself in some initial state, and her/his objective
is to move to some final (solution) state by performing appropriate actions, op-
erations and moves. From a cognitive perspective, when the user tackles a new
problem, s/he uses a number of strategies that involve, among others, inductive
and deductive reasoning, learning by trials and errors and insight. Whatever the
strategies are, to solve a problem the user performs a sequence of (either mental
or concrete) operations that allow her/him to move from one state to another
until the final (solution) state of the problem is reached [Simon & Reed, 1976].
In the formal framework that we present in the next section a problem space is
a set Q of problem states connected by operations, and a problem is an ordered
pair 〈a, b〉 of problem states such that state b can be reached from state a through
a suitable sequence of operations.

One obvious consequence is that if an individual is not capable of performing
an operation (or a sub-sequence of operations) contained in this sequence then
s/he will fail to solve the problem. A failure, however might occur also for other
reasons. Problems can be constructed by transitivity: if 〈a, b〉 and 〈b, c〉 are both
problems, then 〈a, c〉 is a problem too. We make a distinction between optimal
and human problem solvers. If an optimal problem solver is able to solve both
〈a, b〉 and 〈b, c〉, then s/he always solves 〈a, c〉 by transitivity. This, however,
does not hold in general for human problem solvers. In particular, we assume
that — as far as a human problem solver is concerned — solving both 〈a, b〉 and
〈b, c〉 is not a sufficient condition for solving 〈a, c〉. The operation that combines
〈a, b〉 and 〈b, c〉 (or, in general, many different sub-problems) together is, itself,
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a mental operation (a kind of meta-operation) that occurs in the mind of the
problem solver either by deductive reasoning or by insight.

In our framework a skill is regarded as the capability of performing a given se-
quence of operations, where the elementary sequences are the single operations,
and the skill state of an individual is the collection of all the skills possessed
by this individual. In the next sections we face the question of uncovering the
skill state of an individual in an efficient way during the training process. Our
approach can be viewed as an extension of knowledge space theory ([Albert
& Lukas, 1998]; [Doignon & Falmagne, 1999]) to simulated training environ-
ments.

2 Problem spaces

A problem space is a labeled directed graph P := 〈Q,Ω, v〉 in which Q is a set
of nodes called (problem) states, Ω a set of operations, and v : Q × Ω → Q a
partial function specifying the edges of the graph. Nodes in the graph are labeled
by elements in Q, and edges are labeled by elements in Ω.

A string on Ω is a sequence 〈o1, o2, . . . , on〉 of operations in Ω. In the se-
quel we use lowercase Greek letters like ‘σ’ to denote strings on Ω, and the
empty string 〈〉 is denoted by the letter ε, fixed throughout. The concatena-
tion of two strings α = 〈a1, a2, . . . , am〉 and β = 〈b1, b2, . . . , bn〉 is the string
αβ = 〈a1, a2, . . . , am, b1, b2, . . . , bn〉. The collection of all strings on Ω is the
closure Ω∗ under concatenation of Ω defined by

Ω∗ =
⋃

n≥0

Ωn.

Note that εα = αε = α holds for all α ∈ Ω∗.

An extension V of the function v to strings is defined (recursively) as follows:
if q ∈ Q, o ∈ Ω and σ ∈ Ω∗ then

V (q, ε) := q; (1)

V (q, oσ) := V [v(q, o), σ]. (2)

A pair 〈a, b〉 in Q × Q is called a (solvable) problem in the problem space P if
and only if V (a, σ) = b for some σ ∈ Ω∗. The set of all problems is the binary
relation P ⊆ Q × Q such that, for a, b ∈ Q,

aPb ⇐⇒ V (a, σ) = b for some σ ∈ Ω∗.
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In other words, we say that 〈a, b〉 is a problem if state b is reachable from
state a through some sequence σ of operations in the graph of P. Moreover,
if V (a, π) = b for some problem 〈a, b〉 and some string π, then we say that π

solves problem 〈a, b〉. A string solving some problem in P is called a path in P,
and the collection of all problems solvable by path π is

V (·, π) = {〈a, b〉 ∈ Q2 : V (a, π) = b},

while the collection of all paths (i.e., all strings solving some problem) in Ω∗ is

Π := {π ∈ Ω∗ : V (·, π) �= ∅}.

In the sequel we use the terms path and skill to denote, essentially, the same
kind of objects, namely sequences of operations in Ω solving some problem.
However, while path is used, more in general, to denote sequences of operations
in P, the term skill denotes a path that ‘belongs’ to some individual. This means
that a path π solving some problem 〈a, b〉 represents the skill of some individual
if this last is capable of solving 〈a, b〉 by means of π. In this sense, every skill is
represented by some path, but the opposite does not hold in general.

Then we use the term skill state to denote the subset S ⊆ Π of all paths that
an individual is able to compute. More concretely, if S is the skill state of some
individual, and π ∈ S then we say that this individual is able to compute V (a, π)
for all a ∈ Q for which V (a, π) is defined. Thus one first assumption in our
framework is that

[S1] if π is a skill in S then an individual in state S is capable of solving all
problems in V (·, π).

Our second and third assumptions provide an explicit distinction between an
optimal problem solver and a human problem solver.

[S2] If α and β are two actual paths, and S the skill state of an optimal problem
solver then:

αβ ∈ S ⇐⇒ α, β ∈ S.

On the other hand,

[S3] if α and β are two actual paths, and S the skill state of a human problem
solver then:

αβ ∈ S =⇒ α, β ∈ S.
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Clearly, [S2] is stronger than [S3]. Henceforth, with the term skill state we refer
to the set of skills of a human problem solver. Thus, S ⊆ Π is a skill state if and
only if it is consistent with [S3]. We use, instead, the term optimal skill state to
refer to subsets of Π that are consistent with [S2].

One key concept in our framework is that of string inclusion. If ω and π are
strings then ω includes π (denoted by π � ω) if ω = απβ for some α, β ∈ Ω∗.
String inclusion is reflexive, transitive, and antisymmetric, thus 〈Ω∗,�〉 is a
partially ordered set. It follows from [S3] that any down-set in the partially
ordered set 〈Π,�〉 is, in fact, a skill state.

3 Skill maps and knowledge states

A skill map for the problem space P is a triplet 〈P,Π, f〉 where f : P → 2Π is
a mapping such that, for any 〈a, b〉 ∈ P ,

f(a, b) = {π ∈ Π : V (a, π) = b}. (3)

The collection f(a, b) is called the set of skills assigned to 〈a, b〉 and it is, simply,
the set of all paths solving 〈a, b〉. If 〈P,Π, f〉 is a skill map for P and X ⊆ Π a
set of skills, then we say that K ⊆ P is the knowledge state delineated by X if

K = ϕ(X) := {〈a, b〉 ∈ P : f(a, b) ∩ X �= ∅} , (4)

where ϕ : 2Π → 2P is called the disjunctive model of skill maps ([Doignon,
1994]; [Doignon & Falmagne, 1999]), and the collection of all knowledge states
delineated by subsets of Π is the image ϕ(2Π ). This collection of knowledge
states is what, in theory of knowledge spaces, is called a knowledge space.

4 Skill assessment

Knowledge space theory provides efficient procedures for uncovering the knowl-
edge state (and the corresponding skill state) of an individual in an interactive
computerized session by means of a knowledge space (see, e.g., [Falmagne &
Doignon, 1988]). These procedures can be applied to the framework delineated
above.

The above-mentioned assessment procedures have, at least, three nice features
that make them appropriate in dynamic and adaptive assessment systems:
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– efficiency: the knowledge state of an individual can be completely recovered
after the presentation of a small fraction of the whole set P of problems;

– adaptivity: an individual is never presented with problems that are too diffi-
cult or too easy for her/him to solve.

– the procedure is stochastic and always terminates with the best estimate of
the knowledge state of an individual also in the case in which this state is
not stable (i.e., the user oscillates among two or more states) during the
assessment process.

A detailed presentation of these procedures is beyond the scope of this paper;
we refer the reader to [Falmagne & Doignon, 1988], [Doignon & Falmagne,
1999], [Dowling & Hockemeyer, 1999] for a comprehensive introduction. We
just outline here the basic concepts underlying these methods (we call them the
basic assessment procedure).

Let K∗ be the (true but unknown) knowledge state of a learner, and K be the
knowledge space on the set P of problems used for the assessment. At the out-
set, with no prior information about K∗, the basic assessment procedure starts
with the assumption that K∗ is one of the states in K (we denote this by setting
H = K). A first problem 〈a, b〉 ∈ P is presented to the learner. If the problem
is successfully solved by the learner, all states K ∈ H not containing 〈a, b〉 are
removed from H. If the problem is not solved, all states K′ ∈ H containing
〈a, b〉 are removed from H. Then a new step takes place and a new problem is
presented until H contains exactly one knowledge state. This state is the esti-
mate of the true state K∗ of the user. The problem chosen in each step is the one
who maximizes the uncertainty of the observer. To clarify this, let Hn be the
collection of knowledge states remaining in step n. Moreover, given a problem
x ∈ P , let Hn,x be the collection of all states in Hn containing x, i.e.,

Hn,x = {K ∈ Hn : x ∈ K}.

Then the next problem chosen is the one for which the absolute difference

hx =
∣∣∣∣
|Hn,x|
|Hn| − 1

2

∣∣∣∣ .

is minimal. This difference is exactly zero when x belongs to half the number
of states in Hn. In this case, whatever the response of the learner to problem x,
exactly |Hn|/2 states will be eliminated from Hn. If there are more than one
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problem minimizing this difference, then the next problem is chosen at random
among them.

As an example consider the knowledge space (P,K) on a set P = {1, 2, 3, 4, 5}
of five different problems, where

K = {∅, {1}, {2}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}, P},

and suppose that the (unknown) knowledge state of the learner is K∗ = {1, 2, 3}.
In order to choose the first problem one needs to calculate hx for each x in P .
Table 1 shows this computation for H0 = K. It can be seen from the table that

Item (x) |H0,x| hx

1 7 0.28
2 6 0.17
3 4 0.06
4 3 0.17
5 1 0.39

Table 1: Computation of hx for choosing the first problem

there is only one problem minimizing hx, namely problem 3. This will be the
problem presented to the learner in the first step of the procedure. Since 3 ∈ K∗,
the learner will solve this problem. Then, one needs to update the collection H0

accordingly. A new collection H1 is constructed containing all states K in H0

such that 3 ∈ K:

H1 = {{1, 3}, {1, 2, 3}, {1, 2, 3, 4}, P}.

Among the remaining problems, that who minimizes hx in this step is 4, with
h4 = 0. Since 4 /∈ K∗, the learner will fail this problem, thus all states in H1

containing this problem are removed, yielding

H2 = {{1, 3}, {1, 2, 3}}.

At this point, the next problem is 2 (h2 = 0). Since 2 ∈ K∗, the learner will
solve this problem, and thus one will be left with the collection

H3 = {{1, 2, 3}}.
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The procedure stops here since H3 contains exactly one state representing a
deterministic estimate of the knowledge state of the learner. Two remarks will
be done here. First, it should be noted that, in this example, the knowledge state
of the learner has been recovered after three steps, i.e. after presenting problems
3,4 and 2. Problems 1 and 5 have never been presented to the learner, however
the information stored in the knowledge structure K made it possible to infer
what the response of the learner to these two problems would have been. This
means that the assessment procedure exploits the dependencies among the items
in order to shorten the number of questions presented to the learner.

In the second place, the procedure presented here is a deterministic one. As
mentioned at the beginning of this section, there exist probabilistic assessment
procedures taking into account, for instance, the probability of a careless error,
or that of a lucky guess in attempting to solve a problem, and provide a proba-
bilistic estimate of the knowledge state of a learner.

5 An example application: Towers of Hanoi

In this section we give a concrete example of how the formal framework de-
lineated in the previous sections applies in practical problem solving contexts.
Towers of Hanoi is a classical game that has a rather long tradition in experi-
mental studies on human problem solving (see e.g., [Ewert & Lambert, 1932];
[Gagne & Smith, 1962]; [Simon, 1975]; [Goel & Grafman, 1995]; [Anderson
& Douglas, 2002]). Thus, we take it as a first example application of our for-
mal framework. The psychological importance of this game resides in that its
solution requires that some well defined planning and sub-goaling strategies are
mastered by the problem solver.

Basically, the rules of the game are rather easy to understand. There are three
pegs called source (1), temporary (2) and destination (3) pegs, and a number of
disks (say, 4) of decreasing diameter stacked on the first peg, forming a tower.
Figure 1 depicts a schematic representation of the game. The objective of the
game is to move the tower of disks from the source peg to the destination peg
under the following constraints: (i) in each single move only one disk can be
moved from a peg to another; (ii) only the top disks of the pegs can be moved;
(iii) a disk cannot be placed over a smaller disk.

A single move of the game is represented by a pair (i, j), where i, j ∈ {1, 2, 3},
meaning that the top disk of peg i is moved to the top of peg j. Thus, what-
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Source Peg (1) Temporary Peg (2) Destination Peg (3)

Figure 1: Schematic representation of the “Towers of Hanoi” with four disks.

ever the number of disks, with a number of three pegs there are in the whole 6
different moves. The set of all these moves is denoted by

M := {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

Note however that not all moves are allowed in all circumstances because of
constraint (iii) (we will come back to this point later).

The basic strategy to solve the problem with an arbitrary number n of disks
(called the goal recursion strategy) is rather simple and its application is an
example of recursive sub-goaling (Simons, 1975). Given a tower of n disks, the
(n − 1)-th sub-tower is the stack of n − 1 disks lying over the larger disk in
the original tower — mathematically, a tower can be viewed as a linear order
Tn of disks, and the (n − 1)-th subtower Tn−1 ⊂ Tn is simply obtained by
removing the larger element from Tn. Then, the goal recursion strategy (GRS)
can be stated as follows: to move a tower Tn from peg i to peg j having an
auxiliary peg k,

(1) if Tn−1 �= ∅ move tower Tn−1 from i to k;

(2) move the larger disk l ∈ Tn \ Tn−1 from i to j;

(3) if Tn−1 �= ∅ move tower Tn−1 from k to j.

The goal recursion strategy is clearly recursive, as it calls itself in both steps
(1) and (2), and the number of moves required to solve a problem with n disks
amounts to 2n − 1.

The three steps of the GRS consist basically of two kinds of operations: moving
a sub-tower from one peg to another, and moving a disk from one peg to another.
Any operation of the goal recursion strategy is thus captured by the notation
tn(i, j) and dn(i, j), for i, j ∈ {1, 2, 3}, where tn means moving subtower n−1
(steps (1) and (3) of the GRS), and dn means moving disk n (step (2) of the GRS).
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Thus, for instance, t4(3, 2) describes an operation in which a subtower of four
disks is moved from peg 3 to peg 2.

A problem space corresponding to an application of the GRS to the towers of
Hanoi with n disks is depicted in Figure 2. Note that, in order to simplify the
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Figure 2: Problem space corresponding to an application of the goal recursion
strategy to the towers of hanoi with n disks. Numbered circles denote states of
the problem, and labeled edges denote operations.

diagram, not all possible operations are represented in the figure. In particuar,
for each operation tn(i, j) (resp. dn(i, j)) displayed in the diagram, there exists
a reverse operation tn(j, i) (resp. dn(j, i)) not displayed in the diagram. The
problem space contains 9 different states, represented by the numbered circles
in the diagram. Each single state is a particular configuration of the problem.
For instance, in state 1 all disks are stacked on peg 1. This is the usual initial
state of the problem. In states 4 and 7 all disks are staked, respectively, in pegs
3 and 2. The remaining states can be viewed as intermediate configurations of
the problem. The problem space of Figure 2 is valid for any number of disks. In
this sense, for each level of recursion of the GRS there is a problem space like
that depicted in the figure.

As usual, subproblems are represented by pairs (x, y) of states such that y is
reachable from x through a suitable sequence of operations. If one takes into
account both operations displayed in the diagram and those not displayed (the
reverse operations), in this problem space any state can be reached from any
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other. Moreover, some of the problems can be solved through alternative se-
quences of operations like for instance problem 〈1, 4〉. In fact, both paths

〈tn(1, 2), dn(1, 3), tn(2, 3)〉

and
〈tn(1, 3), dn(1, 2), tn(3, 1), dn(2, 3), tn(1, 3)〉

solve this problem.

In our example application we focus on a small portion of this problem space.
We will consider the sub-space consisting of the four states 1, 2, 3 and 4 and
the three operations tn(1, 2), dn(1, 3), tn(2, 3). To simplify notation we rename
the three operations as follows: an ≡ tn(1, 2), bn ≡ dn(1, 3), cn ≡ tn(2, 3).
Thus, the set of states is Qn = {1, 2, 3, 4} and the set of operations is Ωn =
{an, bn, cn}. In this problem space there are in the whole 6 different problems:
{〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉, 〈3, 4〉}. Dropping the subscript n and skip-
ping the empty path ε for convenience, the set of all (nonempty) paths is

Π = {a, b, c, ab, bc, abc}.

An application of the approach presented in sections 2 and 3 yields the skill
space displayed in Figure 3. Each problem in the portion of the problem space

{a}

{b}

{c}

{a,b}

{a,c}

{b,c}

{a,b,ab}

{a,b,c}

{b,c,bc}

{a,b,c,ab}

{a,b,c,bc}

{a,b,c,ab,bc}

{a,b,c,ab,bc,abc}
{}

Figure 3: Skill space for the portion of the problem space of Towers of Hanoi
considered in the text.

considered here can be solved by exactly one solution path. As a consequence,
there is a one-to-one correspondence between the skill space displayed in Figure
3 and the knowledge space that can be derived from it.
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Suppose now a learner is in the (unknown) skill state S = {a, b, c, ab}. The
(unknown) knowledge state of this person is K = {〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈1, 3〉}.
This is the knowledge state corresponding to S. At the outset, with no prior
information on the knowledge state of the learner, the estimated skill state is
H0 = K where K denotes the skill space displayed in figure 3.

The assessment procedure then works in the following way: the learner is pre-
sented with a first problem, say 〈1, 2〉. This problem corresponds to skill a.
Since a ∈ S we assume that the learner solves this first problem and thus all
skill states not containing a are removed from H0 obtaining thus

H1 := {{a}, {a, b}, {a, c}, {a, b, c}, {a, b, ab}, {a, b, c, ab},
{a, b, c, bc}, {a, b, c, ab, bc}, Π}.

At this point the learner is presented with a second problem, say 〈1, 3〉. This
problem corresponds to skill ab. Again, this skill is in the state of the learner,
thus all states in H1 not containing ab are removed. This way the following
collection is obtained:

H2 := {{a, b, ab}, {a, b, c, ab}, {a, b, c, ab, bc}, Π}.
The next problem is 〈2, 4〉 whose corresponding skill is bc. This skill is not in the
state of the learner, thus all states containing bc are removed from H2 obtaining

H3 := {{a, b, ab}, {a, b, c, ab}}.
The fourth question is 〈3, 4〉. The corresponding skill (c) is in S, thus state
{a, b, ab} is removed from H3 and we are left with a collection containing ex-
actly one state, namely H4 = {S}.

It should be noted that the skill state of the learner was uncovered after four
problem presentations, i.e. it was not necessary to present all six problems to
the learner. This feature of the assessment procedure becomes a real advantage
when the number of problems is large. In this case one expects to uncover the
skill state of the learner after presenting a small fraction of the whole set of
problems.

The result of the assessment can be used to train the learner on specific prob-
lems in order to improve her/his skill state. If Figure 3 is considered, the skill
state {a, b, c, ab, bc} comes immediately after S in terms of set inclusion. The
difference between these two sets is {bc}, and skill bc corresponds to problem
〈2, 4〉. Training should focus, then, on this problem.
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6 Conclusion

A set-theoretical formal framework for the efficient assessment of the skills
of an individual in a simulated learning environment has been presented. The
basic idea underlying this approach is a skill mapping of the simulated learn-
ing/training environment. A specific model, called a ‘problem space’, for the
learning environment is constructed, and a skill and a knowledge space are de-
rived from this model. The skill space and the knowledge space can then be used
for assessment and training purposes in the simulated environment. An example
application to the problem of ‘Towers of Hanoi’ has been shown.

One advantage of the presented models is that a knowledge space can be derived
by automatic procedures from any problem space. In this sense, one only needs
to specify the problem space itself for a given learning environment. Semi-
automatic procedures for the construction of a problem space are the subject
of future work.

On the other hand, in order to apply these models, one needs to specify a learn-
ing environment in a rather highly structured way. In this sense, the proposed
models are well-suited to some kinds of domains, in which the structure of a
problem can be clearly specified in terms of discrete states and operations on
these states.
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