Journal of Universal Computer Science, vol. 9, no. 11 (2003), 1296-1321
submitted: 21/6/03, accepted: 5/9/03, appeared: 28/11/03 © J.UCS

On the Use of Graph Transformation in the Formal
Specification of Model Interpreters

Gabor Karsai
(Institute for Software Integrated Systems (ISIS)
Vanderbilt University, Nashville, TN, USA
gabor.karsai@vanderbilt.edu)
Aditya Agrawal
(Institute for Software Integrated Systems (ISIS)
Vanderbilt University, Nashville, TN, USA
aditya.agrawal@vanderbilt.edu)
Feng Shi
(Institute for Software Integrated Systems (ISIS)
Vanderbilt University, Nashville, TN, USA
feng.shi@vanderbilt.edu)
Jonathan Sprinkle
(Institute for Software Integrated Systems (ISIS)
Vanderbilt University, Nashville, TN, USA
jonathan.sprinkle@vanderbilt.edu)

Abstract: Model-based development necessitates the transformation of models be-
tween different stages and tools of the design process. These transformations must be
precisely, preferably formally, specified, such that end-to-end semantic interoperability
is maintained. The paper introduces a graph-transformation-based technique for spec-
ifying these model transformations, gives a formal definition for the semantics of the
transformation language, describes an implementation of the language, and illustrates
its use through an example.

Key Words: Graph grammars, graph transformations, Model-Integrated Computing,
domain-specific modeling languages, model-driven architecture, formal specifications.

Category: D.2.2 Tools and Techniques

1 Introduction

The engineering of complex, Computer-Based Systems (CBS) both enables and
necessitates formal approaches that support a model-based engineering process.
As discussed in a previous paper [1], there are several motivating factors for doing
this. (1) We wish to use a model-based approach for development. Using models
implies the use of precisely defined, domain-specific modeling languages, which
capture the formal specification of the system being designed. (2) The model-
based approach includes a significant effort to perform design-time analyses on
the models. Early detection of problems with the design allows saving work at

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1297

integration time, and can significantly decrease the effort there. (3) In order to
synthesize/generate an implementation from the design, one has to bridge the
gap between the Domain-Specific Modeling Language (DSML) used in the design
process and the semantic domain defined by the underlying software/hardware
infrastructure or platform.

In practice, there are very few complete model-based tool-suites yet, although
many packages [2][3][4] support portions of the model-based design process out-
lined above. We conjecture that this can be attributed to that fact that, although
tools for specific points in the design process are available, the capability of mov-
ing designs from one tool to another is lacking. To illustrate the point, let us
consider a design flow based on UML. In this case, UML tools are used to create
models of the application, and, provided they are available, code generator tools
will generate the application from the models. In practice, this latter step is
often replaced by (or at least augmented with) hand-produced code, as current
code generators do no typically “know” about the particulars of the target ex-
ecution platform. Furthermore, if one wants to verify state machine models for
the system, one has to rebuild the models in the input language of some analysis
tool, like SMV [5] or KRONOS [6]. The lack of these capabilities in practical
model-based engineering of CBS has motivated us to look for solutions that al-
low the transformation of design information. Obviously, these transformations
can always be implemented by writing translators by hand, but this approach,
in addition to being inefficient, has yet another serious drawback: the semantic
mapping between the input and the output is vaguely specified. In order to cre-
ate the design translators in a correct-by-construction manner, we have to find
approaches that allow the formalization of the transformation itself. Naturally,
the formal specification must have an executable semantics, too, as we would
like to facilitate the transformation based on its formal model.

In this paper we present a formal approach for specifying translators that
allow one to capture the semantic mapping between the designs captured in
various design tools. We claim that in addition to supporting the CBS design
process through the “semantic bridges” between tools, it can actually also be
used to formally define the semantics of DSML-s. The reasoning is as follows:
assume that a “base” semantics is defined for an underlying platform. In other
words, the platform defines a semantic domain, into which the design models
have to be mapped. For instance, we have the formal specification of a platform
that supports Finite State Machines. We conjecture, that given a DSML and its
formal mapping onto the platform’s semantic domain, one can formally define
the semantics of the DSML. This idea has been presented in [7], in the context
of Statecharts and can easily be generalized.

The paper introduces a manifestation of the model-based engineering pro-
cess for CBS: Model-Integrated Computing (MIC), and reviews graph transfor-

1298 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

mation techniques. Next it introduces a graph transformation language we have
developed, formally specifies its semantics, and it shows how it can be used for
representing specific transformations. The paper concludes with a summary and
suggestions for further research.

2 Background

Model-Integrated Computing (MIC, for short) is a software and system devel-
opment approach that advocates the use of domain specific models to represent
relevant aspects of a system. The models capturing the design are then used to
synthesize executable systems, perform analysis or drive simulations. The ad-
vantage of this methodology is that it speeds up the design process, facilitates
evolution, helps in system maintenance and reduces the cost of the development
cycle [8].

The MIC development cycle (see Figure 1) starts with the formal specifi-
cation of a new application domain. The specification proceeds by identifying
the concepts, their attributes, and relationships among them through a process
called metamodeling. Metamodeling is enacted through the creation of meta-
models that define the abstract syntax, static semantics and visualization rules
of the domain. The visualization rules determine how domain models are to be
visualized and manipulated in a visual modeling environment. Once the domain
has been specified, the specification is used to generate a Domain Specific De-
sign Environment (DSDE, for short). The DSDE can then be used to create
domain specific designs/models; for example, a particular finite state machine is
a domain specific design that conforms to the rules specified in the metamodel
of the finite state machine domain. However, to do something useful with these
models such as synthesize executable code, perform analysis or drive simulators,
we have to convert the models into other formats like executable code, inputs to
some analysis tool, or configuration files for simulators. This mapping of models
to a more useful form is called model interpretation and is performed by model
interpreters. Model interpreters are programs that convert models of a given
domain into some other format, typically with a different semantic domain. The
output of the transformation can be considered as another model that conforms
to a different metamodel and thus model interpreters can be considered as tools
facilitating a mapping between domains|8].

The premier MIC implementation is built around a metaprogrammable toolkit
called Generic Modeling Environment (GME) developed at the Institute for Soft-
ware Integrated Systems (ISIS), Vanderbilt University. It provides an environ-
ment for creating domain-specific modeling environments [9]. The metamodeling
language of GME is based on UML class diagrams [10]. This language is used to
define domain specific modeling languages by capturing the (abstract) syntax,

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1299

Metamodeli
ng Ervironment Application Application
Evolution Evoluticn Domain

=7 \|/
N ,;bﬂ&\}

N " o
Interpretation

Meta-Level
\ T
—
— - — I

Figure 1: The MIC Development Cycle

semantics and visualization rules for the DSML in metamodels. A tool called
the meta-interpreter interprets the metamodels and configures a new instance of
GME via a file. This configuration file acts as a meta-program for the (generic)
GME editing engine, so that it makes GME behave like a specialized modeling
environment supporting the target domain. GME is used both in the metamod-
eling environment and the target environment.

GME has both a metamodeling environment and metamodel interpreter that
generates a new modeling environment from the metamodels. Currently the map-
pings from models to a semantic domain are performed by model interpreters.
These interpreters are written by hand. This is the most time consuming and
error prone phase of the MIC approach. There is a need for higher-level methods
and tools for building model interpreters. These generic tools should automati-
cally generate domain specific model interpreters from models.

The MIC approach described above is gaining a lot of attention recently with
the advent of the Model Driven Architecture (MDA) by Object Management
Group (OMG) [11]. The MDA could be a particular application of the MIC
approach where the domain language will be UML 2.0. However, a more general
approach to the MDA problem will be to achieve domain specific model driven
software development [41].

Graph grammars and graph rewriting [14][15] have been developed during the
last 254 years as formal techniques for modeling and very high-level program-

1300 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

ming. Graph grammars are the natural extension of the generative grammars of
Chomsky from the domain of strings into the domain of graphs. The produc-
tion rules for (string-) grammars could be generalized into production rules on
graphs, which generatively enumerate all the sentences (i.e. the ”graphs”) of a
graph language. String rewriting is a well-known technique, where replacement
rules containing patterns and replacement strings convert matching strings into
other strings. String rewriting can be generalized into graph rewriting as follows:
a graph-rewriting rule consists of a pattern graph and a replacement graph. The
application of a graph-rewriting rule is straightforward; the matching sub-graph
of a (host) graph is replaced with another graph. For precise details see[14].

Beyond the ground-laying work in the theory of graph grammars and rewrit-
ing, the approach has found several applications as well. Graph rewriting has
been used in formalizing the semantics of StateCharts[18], as well as various con-
currency models[14]. Several tools -including programming environments- have
been developed[16][17] that illustrate the practical applicability of the graph
rewriting approach. These environments have demonstrated that (1) complex
transformations can be expressed in the form of rewriting rules, and (2) rewrit-
ing rules can be compiled into efficient code. Programming via graph trans-
formations has been applied in some domains[15] with reasonable success. In
this paper, we argue that the graph transformation techniques offer not only a
solid, well-defined foundation for model transformations, but can also be a be a
practical solution.

The need for techniques for model transformations has been recently rec-
ognized in the UML world. For examples, see[21], [22],[23],[26], and[27]. Model
transformation is an essential tool for many applications, including translating
abstract design models into concrete implementation models[26], for specification
techniques[23], translation of UML into semantic domains[27], and even for the
application of design patterns[29]. The new developments in UML (see[24],[25])
emphasize the use of meta-models, and provide a solid foundation for the precise
specification of semantics. Related efforts, like aspect-oriented programming[19]
or intentional programming[20] could also benefit from using transformation
techniques based on graph rewriting. A natural extension of these concepts is to
use transformational techniques for translating models into semantic domains:
a task for which graph transformation techniques are -arguably- well-suited.

3 Graph Grammars and Transformations

Domain specific modeling languages are specified with the help of UML class
diagrams that capture the abstract syntax of the language. Therefore, domain
specific models are networks of objects, where each object (link) belongs to a
corresponding class (association) in the class diagram. From a mathematical

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1301

SEMANTIC
QUTPUT DATA
MAPPING MODEL
|:> ‘ WETA MODEL
¥ /
TRANSLATOR
GENERATOR TRANSLATOR DESIGN TIME

. ¥ . TRANSLATOR RUN TIME
SEMANTIC TRANSLATOR

T
INPUT HPUT OUTPUT
DATA :> IF IF

Figure 2: Metamodel based model transformation

INPUT DATA
META MODEL

OUTPUT
DATA

viewpoint, one can recognize that domain specific models are graphs, to be more
precise: typed multi-graphs, where the labels denote the corresponding entities
(i.e. types) in the metamodel. Thus, the model transformation problem can be
converted into a graph transformation problem. We can then use the mathemat-
ical concepts of graph transformations to formally specify the intended behavior
of model transformers.

Graph grammars and graph transformations (GGT) have been recognized as
a powerful technique for specifying complex transformations that can be used
in various situations in a software development process[31][32][33][34]. Many
tasks in software development can be formulated using this approach, includ-
ing weaving of aspect-oriented programs|[35], application of design patterns[33],
and the transformation of platform-independent models into platform specific
models[13].

There exists a variety of graph transformation techniques described in [14][15]
[16][17][18][36][37][38][39]. The prominent among these are node replacement
grammars, hyperedge replacement grammars, algebraic approaches and pro-
grammed graph replacement systems. These techniques have been developed
mostly for the specification and recognition of graph languages, and performing
transformations within the same ”domain” (i.e. graph), while we need a graph
transformer that works on two different kinds of graphs. Moreover, these trans-
formation techniques rarely use UML class diagrams for the specification of their
graph schema.

In general, we pursue a scheme illustrated in Figure 2. We wish to create the
metamodel of the input and target models, as well as a model of the mapping:
the transformation between the two. Ultimately, from these models we wish to
create the executable translator.

1302 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

In summary, the following features are preferred in the transformation lan-
guage:

— The language should use UML for the specification of the abstract syntax,
and integrity constraints.

— There should be support for transformations that create an entirely different
graph based upon a given graph. The two graphs may belong to different
metamodels and have different integrity constraints.

— The approach should be expressive enough to specify model transformers
that convert models of high-level graphical languages to low-level implemen-
tations, with no or minimal textual coding.

— The language should have efficient implementations of its programming con-
structs. The implementation should have comparable efficiency to equivalent
hand-written code.

— The language should be "user friendly” and increase programmer produc-
tivity.

4 Graph Rewriting and Transformation Langauge (GReAT)

In this paper we will focus on a generalized graph transformation system called
Graph Rewriting and Transformation language (GReAT). GReAT is a visual
language developed using GME[9].

GReAT is divided into 2 major parts.

1. Graph Transformation Language

2. High-Level Control Flow Language

4.1 Graph Transformation Language

In model-interpreters that perform model transformations there exists a concern
about structural integrity during the transformation process. Model-interpreters
transform models from one domain to models that conform to another domain.
This class of transformations makes the problem two-fold. The first problem is to
specify and maintain two different models conforming to two different metamod-
els (as in MIC, metamodels are used to specify structural integrity constraints).
The second problem is maintaining linkages between the two (source and target)
models. These linkages, in general, can be vertices (i.e. objects) and links (i.e.
instances of associations), which are created temporarily during the transforma-
tion process, however they are not legal in any of the metamodels. The linkages
are required to correlate graph objects across the two domains.

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1303

A solution to these problems is to use both the source and target meta-
models to explicitly specify the temporary vertices and edges. This creates a
unified meta-model that incorporates temporary objects. The advantage of this
approach is that we can then treat the source model, target model and temporary
objects as a single graph. Standard graph-based techniques can then be used to
specify the transformation.

In our approach, a transformation is built from elementary rewriting rules.
Each rule contains a pattern graph and each pattern object’s type conforms to
a class or association in the unified metamodel. Only rules that do not violate
the unified metamodel are allowed. At execution time, after finishing he trans-
formation, the temporary objects are removed and the resulting model conforms
exactly to its own meta-model. The transformation language is inspired by many
previous efforts, such as [7][8][9][17][18].

The transformation algorithm is specified in the form of a partially ordered
set of transformation rules. A simple transformation rule (an shown in Figure 3)
contains a pattern graph that consists of pattern vertices and edges, called the
pattern objects. These pattern objects conform to specific types introduced in
the metamodel. Each pattern object has a qualifier attribute called Action that
specifies the role it plays in the transformation. A pattern object can play three
different roles as follows:

1. Bind: Match object(s) in the graph.

2. Delete: Match object(s) in the graph, then remove the matched object(s)
from the graph.

3. New: Create new object(s) (provided the pattern matched successfully).

The execution of a rule involves matching every pattern object with the roles
bind or delete. If the pattern matcher is successful in finding matches for the
pattern, then for each match the pattern objects marked delete are deleted, and

Rule - 57| Guard
<<ModelProxy>> |e- T | =<Atom=>
. -
0.* 0.+
{‘:RP?“EFHVTJHEX fere PatternEdge
elerencerroxy==> g, ==Connection>> AttributeMapping

::Iamg : ?e:: Name : field 0.1 <<Atoma>>

ype 1o gt Type : field

Action : field 5+ Action - field

”

Figure 3: Simplified metamodel for Rule

1304 Karsai G., Agrawal A., Shi F., Sprinkle J.: On the Use of Graph Transformations ...

Attributehapping

State Siatetlew

Lilia
[

e -
OrSlate !
o e o
In f : ot
OrSiate 1 Attribute Adribuie
1 v
® " 1 old © Sting nesw : Siring
1
1
T
1

A

Figure 4: An example rule in the GReAT visual langauge

then the objects marked new are created. Sometimes the patterns by themselves
are not sufficient to specify the exact graph parts to match and we need other,
non-structural constraints in the pattern. An example for such a constraint is:
”the value of an integer attribute of a particular vertex should be within a specific
range.” These constraints are expressed using the Object Constraint Language
(OCL)[19]. There is also a need to provide values for attributes of newly created
objects and/or modify attributes of existing objects. These needs are addressed
by the ”attribute mapping” language, which is based on a restricted set of the
C language.

An example rule is shown in Figure 4. All objects on the left hand side of
the dashed line have the role ”bind”, while the objects on the right hand side
have the action of create. The rule specifies that starting from an OrState the
matcher must find a child OrState that also has a child State. For each such
match a new state StateNew must be created as a child of the original OrState.

4.2 Controlled Graph Rewriting and Transformation

In order to increase the effectiveness of the transformation language it is essential
to have efficient implementations for the rule execution. The pattern matcher
being the most time consuming operation needs to be made as efficient as pos-
sible. In order to make the search algorithm less time consuming, the matcher
doesnt search the pattern in the entire graph but only within a context. The
context is specified by an initial set of bindings for some of the pattern vertices
and edges in a rule, reducing the time complexity of the search. The initial set of
bindings is established by using PORT objects in the rewriting rules that form
the interface of the rewriting rule.

The next concern is the application order of rewriting rules. Classical graph
grammars can apply any feasible production, i.e. they are based on nondeter-
ministic choice. This technique is good for generating and matching languages,
but model-to-model transformations often need to follow an algorithm that re-

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1305

Unif
<<Model>> =
[] L
PrimitivelUnit Test CompoundUnit Transformation
<<Model>> =<Model>> <<Model>> =<Folder=>

ForEach : bool

- T

Rule Case Block
<<Model=> <<Model=> <<Model>>
ForBlock
<<Model>>

Figure 5: The GReAT Object Hierarchy

quires strict control over the execution of rules. Furthermore, by specifying a
rule execution sequence the implementation can be made more efficient. There
is a need for a high-level control flow language that can control the application
of the productions and allow the user to manage the complexity of the transfor-
mation. This prompted us to add a high-level control flow language to GReAT.
The control flow language supports the following features:

— Sequencing: rules can be sequenced to fire one after another.

Non-determinism: rules can be specified to be executed ”in parallel”, where
the order of firing of the parallel rules is unspecified.

— Hierarchy: Compound rules can contain other compound rules or primitive
rules.

Recursion: A rule can call itself.

— Test/Case: A conditional branching construct that can be used to choose
between different control flow paths.

Figure 5 shows the conceptual hierarchy of GReAT. The CompoundUnit is
used for Hierarchy and recursion. Test and Case is for conditional branching. Se-
quencing and non-deterministic execution are achieved with the help of sequenc-

1306 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

ing connections (not shown in figure). These connections (implicitly) specify the
order of execution for the rules.

4.3 Formal Semantics of GReAT

A formal specification of the GReAT execution semantics is described in this
section. We use the Object-Z notation [40] for the specification. The specification
starts with the definition of a graph.

VERTEX EDGE
name : NAME name : NAME
type : TYPE type : TYPE
src: VERTEX
dst : VERTEX
_ GRAPH

vertices : P VERTEX
edges : P EDGE

YV edge : EDGE € edges
e edge.src € vertices N edge.dst € vertices

Vertices and edges both have a type associated with them. These types must
conform with the respective metamodels of the graphs. Both host graphs and
pattern graphs are defined by the same data structure. The additional attributes
of the pattern graph, like actions are captured separately using maps.

The MATCH class is a data structure that associates pattern graph elements
with host graph elements. (The host graph is the graph in which we search for a
match.) It contains a partial function from host vertices to pattern vertices and
another partial function that maps host edges to pattern edges.

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1307

— MATCH

hostGraph : GRAPH

patternGraph : GRAPH

vertexBinding : [VERTEX - VERTEX]
edgeBinding : [EDGE - EDGE]

V(hv, pv) € vertezBinding e

hv € hostGraph.vertices N\

pv € patternGraph.vertices
V(he, pe) € edgeBinding e

he € hostGraph.edges N

pe € patternGraph.edges N
I(hvs, pvs), (hvd, pvd) € vertexBindings e

he.src = hvs N pe.src = pus
he.dst = hvd A pe.dst = puvd

Apart from the pattern graph, a rule also contains ports that allow it to
interface with other rules. A port is simply used to connect with another rule. A
non-empty set of ports form an interface. Each rule must contain an input and
an output interface. The interface is used to pass along host graph elements.
These elements are mapped to the ports of an interface to form a packet. A
PACKET contains a partial function that maps ports to host vertices.

_PORT INTERFACE
name : NAME ports : P PORT
_ PACKET
p2vMAP : (PORT — VERTEX)

The base class for all elements in the GReAT language that describes some
operation on the graph is called UNIT. A UNIT consists of (1) a (reference to
the) host graph, (2) an input interface and (3) an output interface, (4) a set of
input packets, and (4) a set of output packets. UNIT is then specialized into
PRIMITIVE_UNITand COMPOUND_UNIT. PRIMITIVE_UNIT is special-
ized to RULE and CASE. These classes form the atomic building blocks of the
GReAT langauge. The RULE performs an elementary transformation operation
while CASE is used to check for matches (alternatives).

1308 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

_ UNIT

hostGraph : GRAPH
inputinterface : INTERFACE
outputInterface : INTERFACE
inPackets : P PACKET
outPackets : P PACKET

PRIMITIVE_UNIT contains a pattern graph, binding of input ports to pat-
tern elements and binding of pattern elements to output ports. It also contains
many operations that are used by RULE and CASE. The most important op-
eration is PatternMatcher. This operation takes an input a partial match of
the pattern on the host graph and generates the set of all possible, complete
matches between the pattern and the host graph. This matcher algorithm im-
plements the core activity performed during the execution of GReAT programs.
The other operations include: MakelnitialPartialMatch, that takes a single input
packet and converts it into a partial match using the input binding information,
and FvaluateGuard that is used to evaluate an OCL expression on the matches
returned by the matcher. All matches that fail the guard are discarded. For the
sake of brevity the EvaluateGuard function is described in English.

— PRIMITIVE_UNIT

UNIT

patternGraph : GRAPH
inBindings : [PORT + VERTEX]
outBindings : [PORT + VERTEX]
matches : P MATCH

guard : OCL_.EXPRESSION

V port € dom(inBinding) e port € inputInterface.ports
V port € dom(outBinding) e port € outputInterface.ports
Y vertex € range(outBinding) V range(inBinding) e
vertex € patternGraph.vertices

_ MakelnitialPartialMatch
itialPartialMatch! : MATCH

inPackets’ = inPackets — inPacket
Y(p, hv) € inPacket.p2vMap @ I(p, pv) € inBinding e
(hv, pv) € initialPartialMatch.vertexBinding

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1309

— PRIMITIVE_UNIT _contd...

__ PatternMatcher
hostGraph? : GRAPH
patternGraph? : GRAPH
initialPartialMatch? : MATCH

V' 'm € matches @ m DO initialPartialMatch
Vv € patternGraph.vertices e
A(hv, pv) € m.vertexBinding A\ hv = v
Ve € patternGraph.edges o
3(he, pe) € m.edgeBinding N\ he = e
V'ml, m2 € matches @ m1 # m?2

__ BvaluateGuard
guard? : OCL_EXPRESSION

V¥ match € matches o

Evaluate guard expression on match. If evaluation results false then
remove match from matches.

— PackageResult
match? : MATCH
outPacket! : PACKET

YV p € outputInterface.ports e
I(p, pv) € outBinding A I(hv, pv) € match
outPacket’ = outPacket ® p — hv
outPackets’ = outPackets U outPacket

MakelnitialPartialMatches = MakelnitialPartialMatchg
Makelnitial PartialMatches

[
[inPackets = {}]
PackageResults = PackageResult § PackageResults

[
[matches = {}]

A CASE is the simplest of all GReAT components. The Execute function
of the case takes each input packet and calls the pattern matcher. The matches
returned by the pattern matcher are then filtered using the guard expression. All
successful matches are again packaged to form the output packets. The CASE
is used only within a TEST component. TEST and CASE together are used
together, to form a conditional execution and branching construct.

1310 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

CASE

PRIMITIVE_UNIT

Execute = Makelnitial PartialMatches g PatternMatchers
EvaluateGuard § PackageResults

[inputPackets = {}]

The execution of a RULF is similar to that of a CASFE. The exception is that
in a RULE, after the matches are filtered using the guard, the matches are used
to perform actions on the host graph. These actions can create and/or delete
vertices and edges. After these actions are performed, the attribute mapping
specification is used by PerformAttributeMapping operation to fill in and/or
modify the attributes of graph vertices and edges. Again, for the sake of brevity,
PerformAttributeMapping is described in English.

— RULE
PRIMITIVE_UNIT
ACTION == {bind, create, delete}

vertezAction : [VERTEX -+ ACTION]
edgeAction : [EDGE + ACTION]
attributeMapping : P ASSIGNMENT_STATEMENTS

__ PerformAction

YV match € matches
V(v, a) € vertexAction ¢ ACTION = create
hostGraph.vertices’ = hostGraph.vertices U new_v : VERTEX
N new_v.name = v.name N\ new_v.type = v.type
Y(e, a) € edgeAction ¢ ACTION = create
hostGraph.edges’ = hostGraph.edges U new_e : EDGE N
new_e.name = e.name N\ new_e.type = e.type
Y(v, a) € vertexAction ¢ ACTION = delete
hostGraph.vertices’ = hostGraph.vertices — v
Y(e, a) € edgeAction ¢ ACTION = delete
hostGraph.edges’ = hostGraph.edges — e

__ PerformAttribute Mapping

Y match € matches o

Apply attribute matching statements on the match.

Execute = Makelnitial PartialMatches g PatternMatchers
EvaluateGuard § PerformActiong
PerformAttributeMapping § PackageResults

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1311

Sequential execution of expressions is expressed using the SEQUENCE class.
This class maps ports of one UNIT to ports of another UNIT. SEQUENCE is
usually used to map from the output interface of a UNIT to the input interface
of another UNIT. However, we will see that in compound units SEQUENCE is
also used to map the input interface of the compound unit to the input interface

of contained units.
_ SEQUENCE

inputinterface : INTERFACE
outputinterface : INTERFACE
in2out : P[PORT + PORT)]

Vi € dom(in2out) e i € inputinterface
Vi € range(in2out) e i € outputinterface

—_ PassAllongPacket
srcPackets? : P PACKET
dstPackets! : P PACKET

dstPackets = {dstPacket : PACKET |V srcPacket € srcPackets
ddstPacket o
V(psre, pdst) € in2out A (psre, hv) € srcPacket o
(pdst, hv) € dstPacket}

_ TEST
UNIT

cases : seqCASE

_ GetNezxtSequece

case! : CASE

sequence! : SEQUENCE
srcPackets! : P PACKET

cases’ = cases "~ {case!)
dsequence! € sequences o
sequencel.inputinterface = case.inputinterface A
sequence!.outputinterface = case.outputinterface
srcPackets = inputPackets

Execute = GetNextSequence § sequence. PassAllongPacket § case. Execute

[
[cases = {}]

TEST is a UNIT that provides the language with a conditional execution
and branching construct. A TEST contains an ordered sequence of CASE-es.

1312 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

The execution semantics of the TEST is that each CASE within a TEST is
executed in order, starting from the first case in the sequence.
COMPOUND_UNIT is the base class of the two compound objects in GReAT:
(1) BLOCK and (2) FOR_BLOCK. These blocks are useful for encapsulating
complex rule sequences. The only difference between a block and for block is
in their execution semantics. The compound expressions use a stack machine
semantics and thus have a readyUnitStack with push and pop operations.

— COMPOUND_UNIT

UNIT

subExpressions : P EXPRESSION
sequences : P SEQUENCE
readyUnitStack : SeqUNIT

__ PushUnit
readyUnit? : UNIT

readyUnitStack’ = readyUnitStack ™ (readyUnit)

__ PopStack
readyUnit! : UNIT

readyUnitStack = readyUnitStack’ ™ (readyUnit)

The BLOCK is the simplest compound unit. It encapsulates a set of units
along with their sequencing. The execution of the block starts with the StartBlock
function that finds all the units that have a sequence from the input interface of
the BLOCK. All these units are added to the ready UnitStack along with a copy
of the input packets set of the BLOCK. The execution is then defined to pop
the top of the stack, execute the unit with the input packets, use the sequence
from the current rule to get the new ready-to-fire units, and add these to the
stack. This process is repeated until the readyUnitStack is empty. Whenever a
unit that has executed is connected to the output interface of the BLOCK, the
outputs are copied to the output of the BLOCK.

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1313

— BLOCK
UNIT

tempSequence : P SEQUENCE
tempUnits : P UNIT
tempPackets : P PACKET

__StartBlock
srcPackets! : P PACKET

srcPackets! = inputPackets

— GetNextReadyUnits
interface? : INTERFACE

tempSequence’ = {sequence : SEQUENCE |
sequence.inputInterface = interface}
tempUnits’ = {unit : UNIT |V seq € tempSequence

— MakeReady Unait
readyUnit! : UNIT
sequence! : SEQUENCE
srcPacket! : PACKET

temp Units = temp Units’ ™ (readyUnit)
tempSequence = tempSequence’ ™~ (sequence)
srcPackets = tempPackets

PushReadyList = MakeReadyUnit § PushUnitg
sequence.PassAllongPacket

[temp Units = {}]
Iteration = PopUnitg
unit. Execute[tempPackets [unit.output Packets,

interface /unit.outputInterface]s
GetNextReadyUnits § PushReadyList

[readyUnitStack = ()]
Ezecute = StartBlock § GetNextSequencelinputInterface [interface]
slteration

The FOR_BLOCK is similar to the BLOCK with a subtle difference. The
execution of the FOR_BLOCK starts the unit execution stack with only the
first input packet. When the stack is empty the process is repeated with the
next packet until all packets are exhausted. The FOR_BLOCK provides a depth
first execution of all the contained units while the BLOCK provides a breadth
first execution.

1314 Karsai G., Agrawal A, Shi F., Sprinkle J.: On the Use of Graph Transformations ...

— FOR_BLOCK
BLOCK

__StartForBlock
srcPackets! : P PACKET

inputPackets’ = inputPackets — inputPacket N
srcPacket! = {inputPacket}

Ezecute = StartForBlock § GetNextSequencelinputinterface /interface]
slteration

[inputPackets = {}]

5 The run-time system architecture of GReAT-E

The Graph Rewrite and Transformation Engine (GReAT-E) is an experimental
testbed developed for testing the transformation language and to validate that
the language is powerful enough to express common transformation problems.
The GReAT-E system takes the input graph, applies the transformations to
it, and generates the output graph. Inputs to the GReAT-E are (1) the UML
class diagrams for the input and output graphs (i.e. the metamodels), (2) the
transformation specification and (3) the input graph, with the appropriate initial
match(es) selected. GReAT-E executes the rules according to the sequencing and
produces an output graph based upon the actions of the rules.

The architecture of the run time system is shown in Figure 6. GReAT-E
accesses the input and output graph with the help of a common API that allows
the traversal of the input and the construction of the output graph using a high-
level API. The rewrite rules are stored using a common data structure, which is
constructed from the visual models of transformation steps and can be accessed
using yet another common API. The GReAT engine is metamodel-driven, and
uses a reflective/persistent data structure package, called UDM]30].

GReAT-E is composed of two major components, (1) Sequencer, (2) Rule Ex-
ecutor (RE). The Rule Executor is further broken down into (1) Pattern Matcher
(PM) and (2) Effector (or ”Output generator”). The Sequencer determines the
order of execution for the rules from the specification of the transformation, and
for each rule it calls the RE. The RE internally calls the PM with the ”pattern”
portion of the rule. The matches found by the PM are used by the Effector to
manipulate the output graph by performing the actions specified in the rules.
The Sequencer traverses the transformation rules according to the sequencing
information to determine the next rule to execute. It also has to evaluate test
cases (if they are used) to determine the next rule for execution.

The Pattern Matcher finds the subgraph(s) in the input graph that are iso-
morphic to the pattern specification. In case of a match, it binds a vertex/edge

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1315

-l AL)

i ; :

I | — 5 i
= eta . g
g I“%';ﬂt Graph Rewrite (GR) API g

! S Q | Sequencer | 5 v

S — Hpeuy
@ = &

@ % I Rule Executor | g s
Tnput Graph E j"’ SR iy “"i 'é Output Graph
T | Matcher ecter | B
GReAT

Figure 6: The GReAT Engine

in the pattern to a corresponding vertex/edge in the input graph. The matcher
starts with an initial binding supplied to it by the Sequencer. Then it incre-
mentally extends the bindings until there are no unbound edges/vertices in the
pattern. At each step it first checks every unbound edge that has both its ver-
tices bound and tries to bind these. After it succeeds in binding all such edges,it
then finds an edge with one vertex bound and binds the edge and its unbound
vertex. This process is repeated until all the vertices and edges are bound.

The output generator, which is called after the matches are found, creates and
extends the output graph corresponding to each rule. The generator determines
whether new objects should be created, or existing objects referenced, whether
there is a need to insert new associations, and how attributes of output objects
and associations have to be calculated.

6 An Example

The creation of a CBS rarely occurs in one step. Rather, several design iterations
take place, and different tools are used at different stages of the design. Design
tools that can interoperate can increase the productivity of designers by not
requiring them to perform the manual entry of the system models for each tool,
but rather using the same models for all design tools. This necessitates the use
of model transformations in a tool chain.

The benefits of a working tool chain can be demonstrated in a design problem
as follows. Suppose we design a system that requires the canonical client/server

1316 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

relationship to implement a data publishing/subscription service. The exact im-
plementation is not important to the client (e.g., the user does not care that the
mailing list to which he is subscribed is hosted on one machine or several), but
the implementation may be important to the designers, who are interested in
the performance of the system, as well as robustness, access control, and others.

** GME2000 - PIM |_ o] x|
Eie Edt Vew Wndow Hep

[vi@EReXx[oc|[td.0s B ETM=E02

3
=
=
.@ " Server
Client |cupsoime pobiieh
& 0. 77| subA - method
== subB : method
I;I
4| Ix
¥ PSM I [=] B3
T MName: [PSM [ClassDisgram #spect|UML | Base: [Maa
-
Server
Client |supasrne ﬁ#
1
" | |
oubssn| SEMVEIA servers
" subA: method “| subB : method
wchedulsd |0."
Scheduler -
=
Ready [EDIT [100% [UMLModelMigrator [05:34 PM 2

Figure 7: A sample input and output graph for the Publish/Subscribe problem

Figure 7 shows two different models of a client/server framework. The top is
the interface model - the information important to a subscriber. The subscriber
can subscribe to one or more publishers, and the publisher must be able to notify
zero or more subscribers when updates are available. According to this diagram,
the only players in the CBS are a publisher and subscriber. The bottom model

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1317

shows a more advanced design of the same CBS. In this design, the subscriber
can still subscribe to one or more publishers, but the publisher does not directly
notify the subscribers in the event of an available update. Instead, the publisher
server delegates this responsibility to a different machine, which in turn publishes
the available data, as determined by a scheduler.

An observant designer of CBS will notice the similarities of the second design
with the first. It is possible to use a graph transformation technique to transform
models that were built using the first formal specification into models that use
the second formal specification. In this way the design is specialized, and the
design artifacts produced in previous evolutions are modified to pass down the
tool chain. The algorithm for migrating from the first to the second design is as
follows:

1. For each server, create two servers, one of type A, and one of type B

2. Create a scheduler that will be in charge of executing server A when data
becomes available for publication

3. Create a new client that replaces the old one

Package
/' ; ™\
In Cut

Method Class Method
name := "Publish" [™ name = "Server" ¥ hame = "Subscribe"
2) 2

super‘
r
Inheritance 4
g &
’ ¥
T Guard
f £
sub sub
Class Class

\ name = "PublishServer" name = "SubscribeServer” /
[4 2 S

Figure 8: CreateServers: A rule to Convert a publish and subscribe server into

to derived servers

The formal description of this algorithm is found in Figure 8 and Figure 9.
The sequence of the algorithm is shown in the top of the figure (the connected

1318 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

‘un = Outlll [»[]m == OutD] [uln = outld

CreateServers CreateScheduler CreateClients

Figure 9: A sequence of rules that solve the Publish/Subscribe problem

rewriting rules). Each of these rewriting rules contains a specification that for-
malizes exactly how models are to be transformed. The bottom portion of Figure
8 shows how the two servers are created. A metamodel of UML is used to spec-
ify these transformation rules. The rule states that for a given package find all
server classes that have both a subscribe and publish methods. For each such
server class, two new classes called SubscribeServer and PublishServer are cre-
ated. The newly created classes are derived from the original class. The publish
and subscribe methods are removed from the original class and added to the
respective classes. Then any vertex or edge with the ”X” mark or with no mark
will be matched. Then the objects with ”tick” mark will be created and those
with X will be removed.

This example shows that when a design evolution occurs, models created
in earlier stages of the design need not be abandoned or rebuilt simply due to
the complexities of transforming the models. GReAT-E can be used to rapidly
produce a translation that will enable multiple design evolutions throughout the
development of a CBS.

7 Conclusions

In this paper we have illustrated how a metamodel-based graph transformations
can be used in the construction of CBS. We have also shown the formal semantics
of the a graph transformation language that can be used to express model trans-
formation algorithms. We claim that the design transformation process specified
this way is formal, and it assigns a semantics to the input models in terms
of the target domain. We believe that one can also formally reason about the
transformation programs, prove interesting properties about them, and verify
their correctness with respect to some criteria. These types of formally-specified
model transformations are also useful in various other steps, for instance when
transforming models into artifacts suitable for verification.

Currently we have a well-defined method for building model transformers,
and we have created a set of tools that allow experimentation with the approach.
In the next stage, we will look into addressing the performance aspect of the

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1319

transformations, and try to generate code from the transformation specs (thus
bypassing the need for the GReAT-E-like interpreter).

Formally specified transformations on models are a fruitful area of research.
Graph transformations, in addition to providing a very high-level programming
language for specifying complex manipulations, offer the opportunity to reason
about those algorithms. One of the goals of applying formal techniques in CBS
is to achieve the ”correct-by-construction” property. It is conceivable that if the
constructions steps are formally specified, then the correctness of a design can
be verified based on the correctness of the steps. We believe that the technique
we have described in this paper provides the first steps in this direction, but
further research is necessary to provide a full solution.

References

[1] Karsai G., Nordstrom, G., Ledeczi A., Sztipanovits J.: “Towards Two-Level Formal
Modeling of Computer-Based Systems, Journal of Universal Computer Science”;
Vol. 6, No. 11, pp. 1131-1144, November, 2000.

2] Matlab/Simulink/Stateflow tools from Mathworks,Inc.
3] “POLIS: A Framework for Hardware-Software Co-Design
of Embedded Systems”; available from http://www-

cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html

RHAPSODY, available from http://www.ilogix.com

McMillan K. L.: “Symbolic Model Checking: an approach to the state explosion

problem”; CMU Tech Rpt. CMU-CS-92-131.

KRONOS, available from http://www-verimag.imag.fr/TEMPORISE /kronos/

Maggiolo-Schettini A., Peron A.: “Semantics of Full Statecharts Based on Graph

Rewriting”; Springer LNCS 776, 1994, pp. 265-279.

[8] Sztipanovits J. and Karsai G.: “Model-Integrated Computing”; Computer, Apr.
1997, pp. 110-112

[9] Ledeczi A., et al. : “Composing Domain-Specific Design Environments”; Computer,
Nov. 2001, pp. 44-51.

[10] Rumbaugh J., Jacobson I., and Booch G.: “The Unified Modeling Language Ref-
erence Manual”; Addison-Wesley, 1998.

[11] “The Model-Driven Architecture”; http://www.omg.org/mda/ , OMG, Needham,
MA, 2002.

[12] “Request For Proposal: MOF 2.0 Query/Views/Transformations”; OMG Docu-
ment: ad/2002-04-10, 2002, OMG, Needham, MA.

[13] Agrawal A., Levendovszky T., Sprinkle J., Shi F., Karsai G.: “Generative Program-
ming via Graph Transformations in the Model-Driven Architecture”; Workshop on
Generative Techniques in the Context of Model Driven Architecture, OOPSLA |,
Nov. 5, 2002, Seattle, WA.

[14] Rozenberg G. (ed.): “Handbook on Graph Grammars and Computing by Graph
Transformation: Foundations”; Vol.1-2. World Scientific, Singapore, 1997

[15] Blostein D., Schiirr A.: “Computing with Graphs and Graph Transformations”;
Software - Practice and Experience 29(3): 197-217, 1999.

[16] Assmann U.: “How To Uniformly Specify Program Analysis and Transformation”;
in: 6th Int. Conf. on Compiler Construction (CC ’96), T. Gyimthy (rd.), Lect. Notes
in Comp. Sci., Springer-Verlag, Linkping, Sweden, 1996.

[17] Schirr A.: “PROGRES for Beginners”; RWTH Aachen, D-52056 Aachen, Ger-

many.

IS

~

1320 Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ...

[18] Taentzer G.: “AGG: A Tool Enviroment for Algebraic Graph Transformation”;
Proc. of Applications of Graph Transformation with Industrial Relevance, Kerkrade,
The Netherlands, LNCS,Springer, 2000.

[19] Maggiolo-Schettini A., Peron A.: “Semantics of Full Statecharts Based on Graph
Rewriting”; Springer LNCS 776, 1994, pp. 265—-279.

[20] Kiczales G., Lamping J., Lopes C. V., Maeda C., Mendhekar A., Murphy G.:
“Aspect-Oriented Programming”; ECOOP’97, LNCS 1241, Springer. (1997)

[21] Simonyi C.: “Intentional Programming: Asymptotic Fun?”’; Position Pa-
per, SDP Workshop Vanderbilt University, December 13 - 14, 2001.
http://isis.vanderbilt.edu/sdp

[22] Milicev D.: “Automatic Model Transformations Using Extended UML Object Di-
agrams in Modeling Environments,”; IEEE Transaction on Software Engineering,
Vol. 28, No. 4, April 2002, pp. 413-431

[23] Wai-Ming Ho, Jean-Marc Jzquel, Alain Le Guennec, and Franois Pennaneac’h.:
“UMLAUT: an extendible UML transformation framework,”; Proc. Automated
Software Engineering, ASE’99, Florida, October 1999.

[24] David H. Akehurst: “Model translation: A uml-based specification technique and
active implementation approach”; PhD thesis, Computer Science at Kent University
(UK), December 2000.

[25] Tony Clark, Andy Evans, Stuart Kent: “Engineering Modelling Languages: A
Precise Meta-Modelling Approach”; FASE 2002: 159-173

[26] Tony Clark, Andy Evans, Stuart Kent: “The Metamodelling Language Calculus:
Foundation Semantics for UML”; FASE 2001: 17-31.

[27] Lemesle, R.: “Transformation Rules Based on Meta-Modeling EDOC”; ’98, La
Jolla, California, 3-5, November 1998, pp.113-122.

[28] Heckel, R. and Kster, J. and Taentzer, G.: “Towards Automatic Translation of
UML Models into Semantic Domains”; Proc. of APPLIGRAPH Workshop on Ap-
plied Graph Transformation (AGT 2002), Grenoble, France, 2002, pp. 11 - 22.

[29] Karsai G.: “Tool Support for Design Patterns”; New Directions in
Software Technology 4 Workshop, December, 2001. Available from
http://www.isis.vanderbilt.edu.

[30] Bakay A, Magyari E.: “The UDM Framework”;
www.isis.vanderbilt.edu/Projects/MoBIES/.

[31] U. Assmann,: “How to Uniformly specify Program Analysis and Transformation”;
Proceedings of the 6 International Conference on Compiler Construction (CC) 96,
LNCS 1060, Springer, 1996.

[32] A. Maggiolo-Schettini, A. Peron: “A Graph Rewriting Framework for Statecharts
Semantics”; Proc. 5th Int. Workshop on Graph Grammars and their Application to
Computer Science, 1996.

[33] A. Radermacher :“Support for Design Patterns through Graph Transformation
Tools”; Applications of Graph Transformation with Industrial Relevance, Monastery
Rolduc, Kerkrade, The Netherlands, Sep. 1999.

[34] A. Bredenfeld, R. Camposano: “Tool integration and construction using generated
graph-based design representations”; Proceedings of the 32nd ACM/IEEE confer-
ence on Design automation conference, p.94-99, June 12-16, 1995, San Francisco,
CA.

[35] U. Assmann: “Aspect Weaving by Graph Rewriting”; Generative Component-
based Software Engineering (GCSE), p. 24-36, Oct 1999.

[36] H. Gottler: “Attributed graph grammars for graphics”; H. Ehrig, M. Nagl, and G.
Rosenberg, editors, Graph Grammars and their Application lo Computer Science,
LNCS 153, pages 130-142, Springer-Verlag, 1982.

[37] H. Gottler: “Diagram Editors = Graphs + Attributes + Graph Grammars”; In-
ternational Journal of Man-Machine Studies, Vol 37, No 4, Oct. 1992, pp. 481-502.

[38] J. Loyall and S. Kaplan: “Visual Concurrent Programming with Delta-
Grammars”; Journal of Visual Languages and Computing, Vol 3, 1992, pp. 107-133.

Karsai G., Agrawal A., Shi F., Sorinkle J.: On the Use of Graph Transformations ... 1321

[39] D. Blostein, H. Fahmy, and A. Grbavec: “Practical Use of Graph Rewriting”;
5th Workshop on Graph Grammars and Their Application To Computer Science,
Lecture Notes in Computer Science, Heidelberg, 1995.

[40] Roger Duke, Gordon Rose and Graeme Smith: “Object-Z: a Specification Lan-
guage Advocated for the Description of Standards”; TR 94-95, December 1994,
Software Verification Research Centre, Department Of Computer Science, The Uni-
versity Of Queensland, Queensland 4072, Australia.

[41] Agrawal A., Karsai G., Ledeczi A.: An End-to-End Domain-Driven Soft-
ware Development Framework, 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Domain-Driven Development Track, Anaheim, CA, October, 2003.

