Journal of Universal Computer Science, vol. 9, no. 11 (2003), 1277-1295
submitted: 2/6/03, accepted: 5/9/03, appeared: 28/11/03 © J.UCS

Automatically Generated CSP Specifications

Frantisek Scuglik
Brno University of Technology, Czech Republic
scuglik@fit.vutbr.cz

Miroslav Sveda
Brno University of Technology, Czech Republic
sveda@fit.vutbr.cz

Abstract: Two possibilities of automated CSP (Communicating Sequential Processes)
support are introduced in [11] and [10] using either behavioral diagrams or application
source code. While in the first approach a tool generates CSP specification from beha-
vioral diagrams, based on UML Composite States diagram, in the second approach an
application source code is translated directly into CSP specification using a compiler.
This paper reviews tools related to both techniques.

Key Words: CSP, Model, Formal Specification, UML, Translator, Grammar
Category: 1.6.4 Model Validation and Analysis

1 Introduction

At present day, widely used hardware and software systems occur in applications
where failure is unacceptable. These systems interact with us every day and we
often do not realize how much can a failure impact our lives. Airport control
systems, bank systems, medical instruments, and other examples provide a small
list of most critical applications where an error can cause human deaths. Clearly,
the need for reliable systems is critical. As the usage of such systems grows, the
need for their correctness is increasing. Moreover, with successful expansion of
Internet and embedded systems into cars, airplanes etc., these systems should be
even more reliable. Therefore, development of system verification tools represents
one of major topics in computer science and engineering, [3].

The first step in system verification consists in specifying which properties
should the system fit. For example concurrent system should fit the property that
it never reaches deadlock. After defining the system requirements, the second
step represents construction of the system’s formal model. To be able to verify
the model, the specification should include those properties which must the
system conform to be reliable. On the other hand, the model should abstract
those properties which don’t influence the correctness of verified system and
unnecessarily complicate the verification process. Although the formal model
construction and verification represents time-consuming process, these steps are
not exceptional in current practice due to high cost of system failures.

1278 Scuglik F., Sveda M.: Automatically Generated CSP Specifications

This contribution describes development of a special tool providing a user in-
terface for system developers. The user can utilize the developed tool to specify
system’s behavior and generate system’s formal model denoted in formal lan-
guage called Communicating Sequential Processes (CSP). The algebra of CSP
provides system’s formal description in an understandable and useful way. Two
ways how to generate CSP specifications are introduced using either behavioral
diagrams or application source code describing systems behavior. The behavioral
diagrams stem from UML Composite States diagrams, where each diagram gra-
phically describes a subsystem behavior. An n-ary tree is build for each diagram
and, by climbing down the tree and recording the visited nodes, a tool generates
the related CSP representation. The other way applies a special compiler on the
application source code. The compiler’s grammar describes acceptable program
structures such as condition, loop, function call. Whenever the compiler reaches
a terminal symbol in the grammar, the CSP specification of this terminal is
generated.

First part of this contribution focuses on the relevant subset of CSP algebra
used in the developed tool, second part introduces behavioral diagram notations
and the source code representation in CSP. Third part describes the automated
translation from behavioral diagrams and application source code to CSP spe-
cifications. Last part of this contribution includes a cash dispenser specification
case study utilizing the behavioral diagrams.

2 Representation of diagrams / source code

When generating the CSP specification, the developed technique utilizes only
small part of the CSP algebra. This section describes not only the utilized CSP
syntax, but also behavioral diagrams and basic program structures, and their
CSP representation.

2.1 Relevant subset of CSP syntax

Understanding, designing and building concurrent systems represent a major
challenge for computer science. The involved complications vary from the sequen-
tial programming problems, therefore the concurrent systems requires systematic
approaches.

Concurrent systems are all around us. They consist of independent, but com-
municating components. The familiar examples include:

— the network of bank cash machines
— the Internet

— the telephone system

Scuglik F., Sveda M.: Automatically Generated CSP Specifications 1279

— the components of a PC

The algebra of CSP provides a possibility for concurrent systems to be modeled
in more elementary and abstract way. It is supported by particular software tools
which offers system analysis and verification.

CSP describes processes - objects which exist independent on each other, but
may communicate. During their lifetime, processes can perform various actions
or events. These events represents the visible part of modeled processes. For
example, when describing a simple vending machine, two events may be interes-
ting:

1. coin - represents insertion of a coin
2. choc - represents appearance of a chocolate

The set of events used by the process to represent its behavior is called alphabet
or interface. During the process activity the events in the interface may occur
once, many times, or not at all. Which events should be included in the interface
depends on aspects of process behavior which are interesting. For example, when
specifying a lecture and interesting just for the beginning and the end of the
lecture then the interface of the process consists of two events - begin and end.

The simplest possible process behavior stands for do nothing written as
STOP. Whenever the behavior of a system reaches this process then deadlock
occurred. Non trivial processes are written by means of prefixing operator which
allows events to occur in sequence. So, when P is a process and a an event then
a — P represents a process which performs the event a and then behaves like
process P. Expressions of the type P — @ or a — b are not allowed. The prefix
operator defines only the relation between events and processes.

Except STOP another predefined process exists in CSP - SKIP. Like STOP,
it does nothing but ends correctly. Therefore, the SKIP process indicates the
correct termination of a process.

Utilizing predefined processes and the prefix operator only finite processes
can be created. But often have to be specified processes that run forever. To
achieve this goal recursion is included. For example, specification of a clock
using an event tick describes the following process:

CLOCK = tick - CLOCK

The process CLOCK performs the event tick repeatedly.

Specified processes often don’t just perform single sequence of events but
may have alternative behavior caused by their environment, for example. So, if
P and @ are processes and x and y are distinct events, then the process

r—Ply—Q

1280 Scuglik F., Sveda M.: Automatically Generated CSP Specifications

performs either the event z and then behaves like process P or performs the
event y and then behaves like process Q.

Modeled processes usually don’t appear isolated but interfere with other pro-
cess, for example with the process’s environment. Mutual interaction between
two or more processes means that these processes performs common events si-
multaneously. On which events the processes should synchronize specifies the
alphabet of events. For example, when describing the vending machine again,
the new process representing the customer interacts with the machine. Example
1 describes these interacting processes.

Example 1:

MACHINE = coin — (choc > MACHINE | cof fee = MACHINE)
CUSTOMER = coin — choc — SKIP
MACHINE 4||a CUSTOMER
A = {coin,choc,cof fee}

So far the utilized events were considered regardless of whether their represents
inputs or outputs. However, separated notation for input and output may be
useful for some cases. For this purpose a special event in the form c.v is defi-
ned, where ¢ stands for the communication channel name and v stands for the
message value send through the channel. Each channel has a type which simply
represents the set of events which can be transmitted among the channel. To
support sending and receiving of messages two operators are defined: process
clv — P sends a message v among the channel ¢ and then behaves like P, pro-
cess c?x : T — P(x) receives the message x of the type T and then behaves like
P(z). Until a message of the specified type appears on the input the receiving
process waits.

The complete algebra of CSP provides much more notations but for this
contribution purposes the presented subset fit the requirements. [1] describes
precisely the complete algebra of Communicating Sequential Processes, [2] pre-
sents more simplified version.

2.2 Failures Divergence Refinement - FDR

FDR facilitates verification of many finite system properties and analysis of sys-
tems which fail the test. It stems from the Communicating Sequential Processes
theory and utilizes refinement theory which provides huge range of correctness
requirements including the absence of deadlock and livelock. FDR includes also
requirements for general safety and liveliness properties.

FDR provides understandable and usable capabilities and extensive debu-
gging facilities to support system development. Therefore, FDR is suitable for

Scuglik F., Sveda M.: Automatically Generated CSP Specifications 1281

verification of systems with complex behavior. When an error occurs, FDR de-
scribes the state that lead to the failure as well as the sequence of events that
engaged in this state. At present day FDR can analyze extremely large state-
space (for example 721024) within few minutes on common desktop PCs.

FDR was specifically developed for analysis and verification of industrial
applications. It was successfully applied on VLSI circuits, embedded systems,
etc. Another major group of applications involve using FDR to check commu-
nications and communication protocols, specifically to detect security holes by
authentication key exchange.

2.3 Behavioral diagrams

Behavioral diagrams stems from UML Composite States diagrams. In the UML
specification, each diagram may have initial pseudostates and final states. A
transition to the enclosing state represents a transition to the initial pseudostate.
A transition to a final state represents the completion of activity in the enclosing
region. For this contribution, the initial state represents start of the process, and
the final state represents end of the process. The initial state is depicted as a small
solid filled circle, the final state is shown as a circle surrounding a small solid filled
circle. The object describing an event in the process behavior is represented as
a rounded rectangle with event description inside. The transitions representing
mutual relations between diagram elements are shown as an arrow optionally
with event description. Synchronization point and communication channel are
depicted as a rectangle and a named rectangle where the list of events represents
synchronization alphabet or the channel’s type. Figure 1 depicts all introduced
diagram elements.

® @ [
b) c)

a) d)

channel name
list of K
events list of
events
e) f)

Figure 1: Diagram elements: a) process start, b) process end, c) event, d) mutual
relation, e) synchronization, f) communication channel

1282 Scuglik F., Sveda M.: Automatically Generated CSP Specifications

Process start - this symbol denotes the start of the process behavior. Each
specified process behavior begins with this symbol. A name assigned to this
symbol specifies name of the process.

Process end - this symbol denotes the end of the current process behavior and
specifies which process follows. In case that the current process terminated
his behavior successfully and no other processes follow then the name of this
symbol will be SKIP.

Event - this symbol denotes the event performed by the process.

Mutual relation - this symbol denotes relation between particular events and
processes. In other words this symbol represents the prefixing operator. The
event in the specification, which’s presence is optional, serves to describe al-
ternative process behavior. The alternative process behavior can be specified
also using common events.

Synchronization - this object serves to describe interaction between processes.
Processes join this symbol direct from their start symbols and the list of
events inside the object specifies on which events have the joined processes
to synchronize. The synchronization symbol may be joined also to another
synchronization points. This joining denotes interaction between particular
groups of already synchronized processes. Synchronization of process groups
may be performed on other set of events than the events in particular groups.

Communication channel - similarly to the synchronization point, the com-
munication channel denotes relation between processes. The list of events
described inside the symbol represents the type of the channel, i.e. the set
of events which can be sent among the channel. To decide whether the pro-
cess sends the message or receives the message the mutual relation symbol
is used. This notation requires presence of the event in the relation and de-
fines which event will be sent among the channel or in which event will the
message be stored.

Now, when intuitively composing the presented symbols together into a diagram
the specification of particular processes is constructed. Utilizing these processes
and putting them in interaction the specification of the complete system arise.
Figure 2 shows the vending machine diagram, figure 3 depicts copying of a bit
via a communication channel with related CSP specification.

2.4 Basic program statements

The source code describes behavior of the system. The complete system behavior
description can be decomposed into basic program statements. Each statement

Scuglik F., Sveda M.: Automatically Generated CSP Specifications 1283

MACHINE

MACHINE
coin
choc MACHINE
coffee
o« . O
CUSTOMER SKIP

Figure 2: Vending machine diagram

& e

READ

bit
0,1
‘ write_bit.y 4@
WRITE

WRITE

READ = read_bitx — bitlx — READ
WRITE = bit?y — write_bity — WRITE

Figure 3: Copy bit specification

is represented in the CSP specification by a rewriting rule described bellow. Re-
composition of the CSP specifications of basic program statements represents
the resulting system behavior.

Basic program statements can be specified using CSP as follows.

Assignment :
T =y;
ASSIGNMENT = assignvalue — SKIP
- The event assignvalue represents assignment of a value to a variable and
then the process ends if no next statement follows.

Function call :
my-func(params);
START = process_params — MY _FUNC
- The event process_params represents the processing of the function input

1284 Scuglik F., Sveda M.: Automatically Generated CSP Specifications

parameters and then the function is called. If no more detailed description
of the function is required, then MY _FUNC = STOP.

Sequential composition :
COMPOSITION = endprocl — PROC?2
- The event endprocl indicates the end of process PROC1 and then the
process PROC? is initiated.

Conditional :
If (cond) procl(); else proc2();
CONDITIONAL = cond_hold — PROC1 | else - PROC?2
- The event cond_hold means that the condition is satisfied and the event
else means the opposite.

‘While :
While (cond) procl();
WHILE = cond_hold — DO_BODY | else — STOP
DO_BODY = body_done — WHILE
- The event cond_hold means that the condition in the while statement
holds and the event else means that the condition does not hold. The event
body_done indicates that the body of the while loop finished and the while
condition can be evaluated again.

3 Automated CSP specification

When using the behavioral diagrams or source code, CSP specifications can
be generated automatically. In the first case, utilizing behavioral diagrams and
their representation in CSP, an n-ary tree represents the diagram. In the second
case, the CSP specification is derived from an application source code directly.
A compiler uses a grammar, which describes exactly the acceptable program
structures, for generating the CSP specification of an application source code.
The following subsections discuss those automated translation tools.

3.1 Translation from Behavioral Diagrams

The automated translation from behavioral diagrams to CSP specifications stems
from n-ary tree representation. This tree describes exactly the diagram structure
and the mutual relations among particular diagram objects. Each node of the
tree represents either an event or a process in CSP, so that when browsing
the tree in correct order, the tool generates a CSP specification of the diagram
as discussed bellow. Another dynamic structure, a dynamic list, stands for the
synchronization points and communication channels.

Scuglik F., Sveda M.: Automatically Generated CSP Specifications 1285

3.1.1 The dynamic structures

The behavioral diagram consists of objects and mutual relations among the
objects. Each object is in relation with one or more other objects. An n-ary tree
provides the behavioral diagram representation in the tool’s run-time memory,
in which root node of the tree represents process start, while the leaf nodes
represent process ends. Nodes in between the root node and the leaf nodes stand
for particular events of the behavioral diagram. Each tree has only one root node,
but it may have more leaf nodes. Each process is described by a particular tree:
for instance when the system consists of three processes then its representation
contains three trees.

Each node is an object with particular information stored inside. Pointers
to other nodes belong to this information. When performing depth-first search
on the tree, the tool generates a CSP representation of the tree. Each node of
each tree contains the name of an event or the name of a process. By climbing
down all the trees and recording those names, the tool generates the related CSP
representation of the complete system.

Because the automated translation tool stores both the diagram and the
tree, it is useful to include the diagram information directly in the tree. Con-
currently, the positions of the graphical elements, i.e. process start, process end,
and events, have to be stored also. Moreover, when an event is assigned to a
mutual relation, it necessitates to store that event, too. The best way how to
manage this information is to divide the tree into levels, where each even level
represents process start, process ends or events, and each odd level represents
mutual relations. Figure 4 depicts an example of a divided tree.

Inclusion of the diagram structure directly in the tree increases amount of
information stored, because each node contains also the graphical position of
itself on the drawing area. Moreover, an object type, such as start, relation,
event, should be included.

The synchronization points are represented as dynamic lists. Each element of
the list contains the synchronization alphabet and pointers to processes which
should synchronize. A dynamic list represents also the communication channel
but each element contains only the type of the channel, without pointers. The
indication that a process communicates among the channel is stored directly in
the n-ary tree’s proper node.

3.2 Translation from application source code

The translation from application source code into CSP specification stems from
grammar-based compilers. The grammar exactly describes which source code
structures the compiler accepts. Applying corresponding syntax analysis, the
compiler transforms input source code into compiler’s inner variables. Using

1286 Scuglik F., Sveda M.: Automatically Generated CSP Specifications

Process start Level 1

. . relations Level 2

. . Level 4

Figure 4: Divided object tree

those variables together with the knowledge of their meaning, the compiler ge-
nerates the related CSP specification.

3.2.1 The Grammar

Each compiler grammar exactly defines which source code structures the com-
piler accepts. The grammar recognizes only basic program statements such as
function call, conditional, and cycle. Recursive statements are accepted also. To
simplify the grammar, some details of syntax are omitted. Standard rewriting
rules define the grammar, where symbols written with lowercase letters represent
terminals and symbols written with uppercase represent nonterminals.

The grammar:

S -> IF
| WHILE
| id IDCONT
IF -> if (condition) CODE IFCONT
IFCONT -> else CODE
| e
CODE -> S
| {BODY}
|

IDCONT -> = value;
|
BODY -> S BODY

WHILE -> while (condition) CODE

The compiler browses the input source code on-the-fly respecting the gram-
mar. When top-down parsing reaches a terminal symbol, the compiler generates

Scuglik F., Sveda M.: Automatically Generated CSP Specifications 1287
the related CSP specification of previously processed source code.

3.2.2 Generating CSP specification

The compiler performs syntax analysis of the source code on its input. Whenever

the compiler reaches a terminal symbol in the grammar, the CSP specification

of this terminal is generated. The symbols processed before are stored in com-

piler’s inner variables to support generating the CSP specification. Parsing the

source code, the compiler pushes each occurrence of a symbol on its stack. When

generating the related CSP code, the symbols are popped from the stack.
Generating CSP from terminal symbols:

Note: PROC1 stands for the process name popped from the stack, PROC?2
stands for the name of the process following the current process. This name

is pushed on the stack. If no more program statements occur in the input
source code, then PROC2 = SKIP

= wvalue; — PROC1 = assign_value — PROC2

(params); — PROC1 = process_params — MY _FUNC
MY _FUNC = end_of _function — PROC?2

— event end_of_function represents the end of a function stored by the id
terminal symbol processing

}|; = PROC1 = cond_hold — PROC'3

— PROC3 stands for the name of the process representing the BODY’; it
is popped from the stack

telse |;else — PROC1 = cond_hold — PROC3 | else — PROC?2

— PROCS3 stands for the name of the process representing the BODY’; it
is popped from the stack

— PROC?2 stands for the name of the process representing the BODY of
the else part; it is pushed on the stack

Other terminal symbols used in the grammar do not generate CSP specification
directly. These symbols initiate only pushing process names on the stack and
storing related variables into the symbol table.

1288 Scuglik F., Sveda M.: Automatically Generated CSP Specifications

4 Case study

The introduced case study describes cash dispenser’s formal specification utili-
zing behavioral diagrams to specify the system’s behavior. The complete spe-
cification consists of three parts: the cash dispenser, the bank, and the custo-
mer. Each of these parts contains particular processes which communicate with
other processes utilizing two communication channels. The first channel serves
to send messages from customer to the cash dispenser, the second to exchange
information between the cash dispenser and the clearing house. Except com-
munication channels, some processes synchronize on particular events. The syn-
chronization symbol in the diagram depicts this relation between processes and
also specifies the synchronization events. This section includes the behavioral
diagram specification of the system and the related CSP specification generated
by the developed tool.

4.1 The Cash Dispenser

This subsection describes the formal specification of the cash dispenser depic-
ted in figure 5. The specification consists of seven processes. These processes,
sequentially composed, represent the cash dispenser’s behavior. The following
paragraphs describe particular processes.

CASHMACHINE - this is the main process of the cash dispenser. The pro-
cesses denotes insertion of a credit card, language selection and finally the
process receives a message prom the customer representing the PIN related
to the inserted card. After receiving the message, the authorization process
starts.

AUTHORIZE - this process sends the from customer received PIN number
to the bank for authorization. If the authorization fails, the process activate
the CLOSE procedure, otherwise the process COMMAND is started.

COMMAND - the cash dispenser offers two choices to the customer: either to
ascertain his bank balance or to withdraw money. The events balance and
value synchronized with customer determine which action follows.

BALANCE - this process performs the event balance synchronized with the
bank and then receives the account balance. After printing out the balance
the process activates the procedure CONTINUE.

VALUE - this process receives a message from customer which specifies how
much money to withdraw. This value is then forwarded to the bank for
authorization. If the account provides enough money, then the cash dispenser
spends the requested amount to the customer, otherwise the user haves to
input lower request.

Scuglik F., Sveda M.: Automatically Generated CSP Specifications 1289

N e)

CASHMACHINE . AUTHORIZE(x)
0

customer

(o) @)
COMMAND

value BALANCE

(o)@
(J

VALUE

OMMAND
'b\i\\(\v

CLOSE

.—»[balance]—V[print_value]—f@

BALANCE CONTINUE

AUTHORIZE ?22.x

CONTINUE

)
CLOSE CASHMACHINE
(e} @)
CONTINUE

COMMAND

ST)

CLOSE

Figure 5: The cash dispenser specification

CONTINUE - after performing the requested command, the customer can
either input another command or end his activity with the cash dispenser.

CLOSE - this process represents the returning of the credit card and the cash
dispenser is ready to accept another customer.

4.2 The Bank

A single process with alternative behavior describes the formal specification of
the bank. The process utilizes the bank communication channel to exchange
information with the cash dispenser. The behavior of the process offers three
choices. The first choice receives the PIN from the cash dispenser, then checks
the PIN number and finaly sends a message to the cash dispenser whether the
PIN agree or not. The second choice denotes the account balance detection. The
process receives the requested amount of money, check the balance and sends
a message whether the account provides enough money or not. The last choice
synchronizes with the cash dispenser BALANCE process. The bank process finds

1290 Scuglik F., Sveda M.: Automatically Generated CSP Specifications

bank

pin
value
auth

auth.ERR

auth.oK

Figure 6: The bank specification

out the balance and then sends the value to the cash dispenser. After finishing,
all choices returns back to the BANK process and can perform other requests.
Figure 6 depicts the specification of the BANK process.

4.3 The Customer

The customer procedure consists of four processes and represents a sample be-
havior of a customer operating the cash dispenser. The customer procedure
communicates with the cash dispenser utilizing a communication channel and
synchronizes with other processes on particular events. The customer’s processes
are discussed bellow. Figure 7 depicts the customer procedure.

CUSTOMER - this process represents the main process of the customer pro-
cedure. The customer inserts his credit card, chooses language and enters
his PIN.

CUSTOMER_COMM - this process decides which command will be perfor-
med. Either the account balance will be printed, or cash will be withdrawed,

Scuglik F., Sveda M.: Automatically Generated CSP Specifications 1291

customer

pin in.x

value
.—{insertﬁcardj—'[choice_langj—@

CUSTOMER CUSTOMER_COMM

°
CUSTOMER_CONT
CUSTOMER_VALUE
() @)

CUSTOMER_VALUE
(o} @)
CUSTOMER_COMM
CUSTOMER_CO
[end]—»[return_card}—>@

CLOSE

S
/ CUSTOMER_CONT
°

CUSTOMER _VALUE

CUSTOMER _C€

return_card

SKIP

Figure 7: The customer specification

or he ends his operation and takes his card.

CUSTOMER_VALUE - the customer enters the requested value. If the cash
dispenser gives money to the customer then the customer can choose the
next behavior, otherwise he putted in too high amount and have to repeat
the input with lower request.

CUSTOMER_CONT - the customer can either continue operating the cash
dispenser and input new commands or take his card and finish his behavior.

4.4 The complete system

When composing these three subsystems into one complete system with commu-
nications and synchronizations then the behavioral diagram specifies the com-
plete system. Figure 8 shows the behavioral diagram of the complete system.
As noticeable from the diagram, when specifying more processes the diagram
becomes complicated. Therefore it is useful in further development to include

1292 Scuglik F., Sveda M.: Automatically Generated CSP Specifications

insert_card
choice_lang
[\nsenicard] [choice_lang] O

CASHMACHINE AUTHORIZE(x)

balance

BALANCE

customer

>
pin
value

CUSTOMER_COMM

CUSTOMER_CONT
() —~@)

CUSTOMER_VALUE

Cl
pin f CUSTOMER_VALUE

value
auth

au
b, © \ ”"OK
e, % 2
& \a 2 give_money
print_wait_msg CONTINUE
o
auth.ERR VALUE BALANCE CONTINUE
uth, o,
pin_OK
0.x
check_pin
8 : [o——
X pin_ERR return_card .
CLOSE CASHMACHINE
h
AN check_value| enoug .
BANK
balance
low pay_out
return_card
balance .
evaluate continue .
au’h'E/?R value.x COMMAND
CONTINUE
end E—
auth.oK CLOSE
balance

continue
oo

CUSTOMER_CONT

continue

@ CUSTOMER_COMM
CUSTOMER\CC = CUSTOMER_CON

T) (o ®)

CLOSE

Figure 8: The complete specification

identities in the behavioral diagrams. So can be specified single communication
channel on more places, for example.

After specifying the system utilizing the behavioral diagrams the tool gene-
rates the related CSP specification:

CASMACHINE = insert_card — chioce_lang — customer?pin.x

— AUTHORIZE(x)
AUTHORIZE = bank\pin.x —

Scuglik F., Sveda M.: Automatically Generated CSP Specifications 1293

CLOSE
COMMAND
VALUE

CONTINUE
BALANCE

BANK

CUSTOMER

CUSTOMER COMM

CUSTOMER_CONT

CUSTOMERVALUE

(bank?auth.OK — COMMAN D

| bank?auth. ERR — CLOSE)

return_card - CASHMACHINE

balance - BALANCE | pay-out — VALUE
customer?value.x — print_wait_-msg —

— banklvalue.x —

(bank?auth.OK — give_money

— CONTINUE

| bank?auth.ERR — VALUE)

continue — COMMAND | end — CLOSE
balance — bank?value.x — print_value —
— CONTINUE

bank?pin.x — check_pin —

(pinok — banklauth.OK — BANK

| pinerr — banklauth. ERR — BANK)

| bank?value.x — check_value —

(enough — banklauth.OK — BANK

| low — banklauth.ERR — BANK)

| balance — evaluate — banklvalue.x

— BANK

insert_card — choice_lang — customer!pin.x
— CUSTOMER.COMM

balance - CUSTOMER_CONT

| pay-out - CUSTOMERVALUFE

| return_card — SKIP

continue — CUSTOMER_-COMM

| end — return_card — SKIP
customerlvalue.x — (

give_money — CUSTOMER_CONT

| no_money — CUSTOMER_VALUE)

CASHMACHINE 4|4 CUSTOMER
CUSTOMER_CONT |z CONTINUE
BALANCE c¢| ¢ BANK
CUSTOMER.COMM p|p COMMANDp |p CLOSE

1294 Scuglik F., Sveda M.: Automatically Generated CSP Specifications

= {insert_card, choice_lang}

{continue, end}
{balance}

= {balance, pay-out, return_card}

O Qwm
|

5 Related work

Development of a front-end interface for generating formal models represents the
major part of the work. The work of Muan Yong Ng and Michael Butler [5], and
similarly, the work of Charles Crichton, Jim Davies, and Alessandra Cavarra [9]
are closely related to this contribution. In both publications the authors represent
UML statechart diagrams using CSP, but the synchronizations of processes and
communication channels are represented utilizing class diagrams. That appro-
ach strictly uses UML diagrams but the information about process concurrency
is remote and, therefore, the process interaction is not evident. Moreover, the
semantics of class diagrams have to be modified for this purpose.

Other approach was introduces by Christie Bolton and Jim Davies in [6]
presenting formal behavioral semantics for activity graphs. The paper illustrates,
using a simple example, how this semantics may be used to verify the final class
model description and its consistency.

6 Conclusions

First step in system verification consist in specifying requirements on the sys-
tem, second step represents creation of system’s formal model. To be suitable
for verification, the model has to fit system requirements that must be satisfied
for system correctness. On the other hand, the model should abstract those pro-
perties which don’t influence the system correctness to simplify the verification.
Although the verification process represents a time-consuming procedure, it is
applied in a great number of current systems because finding and eliminating of
consequent errors is much more expensive.

This contribution focuses on automated support for formal specifications
using the CSP algebra. Two approaches reviewed offer automated processing.
The first approach starts from behavioral diagrams, the second one from ap-
plication source code. In the first case, the developed tool represents a process
in the diagram as an n-ary tree. Depth-first search on this tree generates the
CSP specification for this diagram. In the second case, the developed compiler
translates an application source code into its CSP specification using a grammar
exactly defining acceptable program structures. Processing syntax analysis of
the source code, the compiler creates inner variables forming symbol table and
stack. Using those variables and rewriting rules of the grammar, the compiler

Scuglik F., Sveda M.: Automatically Generated CSP Specifications 1295

generates resulting CSP specifications. The first touch experience with the pro-
totype implementation of those translators seems promissing. The limitations of
the compiler can be reduced by re-designing the grammar.

When we extend the CSP algebra by state variables, the expressibility of this
formalism may grow, so that more precise specifications can be generated. On
the other hand, such extension requires to design more compound grammar and
a new implementation of the compiler.

Acknowledgement

The research has been supported in part by Grand Agency of the Czech Republic
in frame of the grant GACR 102/02/1032: Embedded Control Systems and their
Inter- Communication, and by the Research Intention No. JC MSM 262200022.

References

1. Hoare C.A.R.: Communicating sequential processes, Prentice-Hall 1985, ISBN 0-
13-153271-8
2. Schneider, Gay: Concurrent and real time systems,
http://www.cs.rhbne.ac.uk /books/concurrency /course/index.html, 2001
3. Clarke, E.M.,jr., Grumberg, O., Peled, D.A.: Model checking, The MIT Press,
London, 2000, ISBN 0-262-03270-8
4. K. Havelund, N. Shankar, Experiments in Theorem Proving and Model Checking,
Formal Methods Europe FME ’96, Springer-Verlag, Oxford, UK. March, 1996,
Pages 662681
5. Muan Yong Ng, Michael J. Butler: Tool Support for Visualizing CSP in UML.
ICFEM 2002: 287-298
6. Christie Bolton, Jim Davies, Activity Graphs and Processes, In W. Grieskamp, T.
Santen and W. Stoddart, editors, Proceedings of IFM 2000. Springer, 2000
7. Johan Lilius, Ivan Porres Paltor, The semantics of UML state machines, Technical
Report 273, Turku Centre for Computer Science TUCS, Turku, Finland, June 1999
8. M. Yanguo Liu, I. TRAORE, PVS Proof-Patterns for UML-Based Verification,
IEEE ECBS Conference, Workshop on Formal Specification of Computer-Based
Systems (FSBCS), April 8-11 2002, Lund, Swedden, pp 9-19
9. Charles Crichton, Jim Davies, Alessandra Cavarra, A Pattern for Concurrency in
UML, Oxford University Computing Laboratory, England, December 2001
10. Scuglik, F.: Formal specification and verification of already composed systems,
VUT Brno 2002, ISBN 80-214-2116-9
11. Scuglik Frantisek: Diagram Based Formal Specification using CSP, In: Proceedings
of the 9th Conference and Competition STUDENT EEICT 2003, Brno, CZ, FEKT
BUT, 2003, p. 629-633
12. Scuglik Frantisek: Comparing CSP representation and First order logic, In: Proce-
edings of the 9th Electronic Devices and Systems Conference EDS’02, Brno, CZ,
BUT, 2002, p. 341-344

