
Relativizing Function Classes

Christian Glaßer
Institut für Informatik,

Julius-Maximilians-Universität Würzburg,
97072 Würzburg, Germany

glasser@informatik.uni-wuerzburg.de

Gerd Wechsung
Institut für Informatik,

Friedrich-Schiller-Universität Jena,
07743 Jena, Germany

wechsung@minet.uni-jena.de

Abstract: The operators min·, max·, and #· translate classes of the polynomial-time
hierarchy to function classes. Although the inclusion relationships between these func-
tion classes have been studied in depth, some questions concerning separations re-
mained open.

We provide oracle constructions that answer most of these open questions in the rel-
ativized case. As a typical instance for the type of results of this paper, we construct
a relativized world where min·P �⊆ #·NP, thus giving evidence for the hardness of
proving min·P ⊆ #·NP in the unrelativized case.

The strongest results, proved in the paper, are the constructions of oracles D and E,
such that min·coNPD ⊆ #·PD ∧ NPD �= coNPD and UPE = NPE ∧ min·PE �⊆ #·PE .

Key Words: Polynomial-time hierarchy, Function classes, Oracle separations

Category: F.1.3

1 Introduction

Until recently it has been common practice to study the complexity of com-
putational problems by focusing on decision problems alone. The complexity
of computing functions has gained much less attention in the literature. How-
ever, most of the known computational problems are more naturally thought of
as functional computation problems. We do not care to know only whether a
solution exists, but we want a solution to be the output.

Therefore, one started to study the complexity of computational problems
exactly, without limiting attention to decision problems. Motivated by these
ideas the study of function classes has become an increasingly active area of
research in the last few years.

With help of so-called operators one can derive natural classes of functions
from existing classes of languages. For example, assume that we are given a lan-
guage L that contains pairs of words. Then, given some word x, it is a functional
problem to determine the smallest word y such that (x, y) ∈ L. We describe this
translation from languages to functions with the operator min·. Analogously one

Journal of Universal Computer Science, vol. 9, no. 1 (2003), 34-50
submitted: 16/8/02, accepted: 24/1/03, appeared: 28/1/03 J.UCS

obtains operators max· (resp., #·) when looking (in a certain range) for the max-
imal word y (resp., for the number of words y) such that (x, y) ∈ L. For exact
definitions of these operators the reader is referred to Section 2.

As early as 1979, Valiant [Val79a] introduced the famous class #P, which
turned out to be #·P. Along this line, Köbler, Schöning, and Torán [KST89,
Köb89] considered a class spanP, which has been identified to be #·NP, and
furthermore classes #·coNP and #·∆P

2 . The study of optimization problems by
Krentel [Kre88, Kre92] gave rise to classes max·NP and min·NP. These classes
have been also investigated by Köbler, Schöning, and Torán [KST89, Köb89],
and by Vollmer and Wagner [Vol94, VW95]. Closure properties of these and
other function classes have been studied by Ogiwara and Hemachandra [OH93].
So in view of certain classes of the polynomial-time hierarchy, the operators min·,
max·, and #· have gained much interest.

When we apply these operators to all classes of the polynomial-time hierar-
chy, we obtain corresponding hierarchies of function classes. Hempel and Wech-
sung [HW97] investigated how these hierarchies are interrelated. After revealing
the inclusion structure they concentrated on finding evidences for the separation
of certain function classes. For many classes it turned out that the problem of
their separation is equivalent to the problem of separating certain complexity
classes, e.g., P �= NP. However, in some cases, no such satisfactory result could
be found. Figure 1, which is a copy from [HW97], shows all known results (see
[HW97] for a discussion of attribution). Mainly three kinds of results exist:

1. Inclusions between function classes like min·NP ⊆ #·coNP.

2. Inclusions between function classes that are equivalent to inclusions between
complexity classes. For example, #·coNP ⊆ min·coNP ⇐⇒ PP ⊆ NP.

3. Inclusions between function classes that imply inclusions between complexity
classes. For example, min·coNP ⊆ #·P =⇒ NP ⊆ UP.

Whereas the results of type 1 and 2 are fully satisfactory, the results of type 3
raise questions: Is it possible to prove the reverse direction? Can one show the
implication above for a strengthened right-hand side (e.g., UP = coNP)? What
is the weakest right-hand side that implies min·coNP ⊆ #·P? In addition, as
an exceptional case from [HW97], we mention that neither was it possible to
prove min·P ⊆ #·NP nor was it possible to find an equivalent condition or a
consequence.

Our attention is on the results of type 3 on one hand, and on the inclusion
min·P ⊆ #·NP (i.e., the exceptional case from [HW97]) on the other hand.

We show that the results of type 3 fail to be equivalences in suitable rela-
tivized worlds. Even if we strengthen the right-hand sides (e.g., to UP = coNP)
we do not obtain an equivalence in certain relativized worlds. As a consequence,

35Glasser C., Wechsung G.: Relativizing Function Classes

max ��
p

�
� � coNP � � ��

p

�
min ��

p

�

max � coNP � �NP min � coNP

min �NP max �NP

min � P max �P

FP

� � P P�PPP�PP

�
p

�
� �P�

p

�
� �P

P�PP

NP�PP NP�PP

P�PP

NP�PP

�
p

�
� �PNP

NP�coNP

NP�PP

UP�NPUP�coNP

P�PP

�
p

�
� �PNP

NP�PP

NP�PP

PP � �
p

�

NP�PP

P�PP

PP � �
p

�

NP�PP

UP�NP

UP�NP
UP�coNP

P�PP

NP�coNP

NP�PPNP�PP

NP�coNP �
p

�
� �PNP

Figure 1: Inclusions between Function Classes [HW97]

– a bold line indicates that the upper class includes the lower class

– F1
α

- - - → F2 means F1 ⊆ F2 =⇒ α

– F1

α−−−→ F2 means F1 ⊆ F2 ⇐⇒ α

each proof for such an equivalence does not relativize. This gives evidence for the
difficulty of solving the results of type 3 in a satisfactory way. Furthermore, our
oracle constructions suggest that in the unrelativized case the separation ques-
tions of type 3 are not equivalent to separations of known complexity classes.
So the inclusion structure of function classes reveals problems that differ from
separation problems for classes of the polynomial-time hierarchy.

Concerning the exceptional case from [HW97], we show that min·P �⊆ #·NP

36 Glasser C., Wechsung G.: Relativizing Function Classes

in a suitable relativized world. Using a different approach, Kosub, Schmitz,
and Vollmer [KSV98] constructed a similar oracle. However, our construction
additionally reaches UP = NP. This shows that even under the assumption
UP = NP, we cannot prove min·P ⊆ #·NP in a relativizable way. Moreover, we
show that from min·P ⊆ #·NP one cannot derive consequences like NP = coNP,
UP = NP, or UP = coNP, unless the corresponding proofs do not relativize.

In order to obtain the relativized worlds mentioned above we have to cope
with the difficulty of constructing oracles that collapse certain classes while si-
multaneously separating other classes. For this we generalize Rackoff’s technique
[Rac82] which goes back to Baker, Gill and Solovay [BGS75]. It allows us to con-
struct an oracle D such that UPD = NPD �= coNPD and additional properties
hold. This strengthens Rackoff’s oracle E where UPE = NPE �= PE [Rac82].
The strongest results of our paper are the constructions of oracles D and E such
that min·coNPD ⊆ #·PD ∧NPD �= coNPD and UPE = NPE ∧min·PE �⊆ #·PE.

The paper is organized as follows. After the preliminaries, we start in Sec-
tion 3 with the construction of the oracles D and E. From these oracles and from
oracles in the literature we derive all following results. Section 4 deals with ora-
cles that separate certain classes shown in Figure 1. In particular, we provide a
relativized world where min·P �⊆ #·NP. In Section 5 we consider the implication
min·coNP ⊆ #·P =⇒ UP = NP and we show that it cannot be strengthened to
an equivalence. Finally, in Section 6 we look again at the open separation ques-
tion min·P �⊆ #·NP. We prove that min·P ⊆ #·NP does not imply consequences
like UP = NP or NP = coNP, unless the proofs do not relativize. So a solution
of this question is not soon forthcoming.

2 Preliminaries

We summarize some notations. Pol denotes the set of all polynomials with nat-
ural coefficients. We use NPM (resp., NPOM) as an abbreviation for nondeter-
ministic polynomial-time bounded (oracle) Turing machine. For any NPOM M

and any oracle C, MC(x) denotes the computation (computation tree) of M on
input x where queries are answered according to C. The number of accepting
paths of the computation MC(x) is denoted by #MC (x). Similarly, we define
M(x) and #M (x) for any NPM M . Valiant [Val79a] defined #P to be the class
of all functions f such that f = #M for a suitable NPM M . Moreover, UP
[Val79b] is the class of all languages L such that there exists an NPM M that
accepts L and for all x, if #M (x) > 0 then #M (x) = 1.

Throughout the paper, we fix the alphabet Σ = {0, 1}. We use the one-
one correspondence between natural numbers and Σ∗. This means that any
natural number is identified with their corresponding dyadic representation. As
a consequence, we consider Σ∗ to be ordered such that ε < 0 < 1 < 00 < 01 < . . .

(i.e., levelwise, and lexicographic within each level, ε being the empty word).

37Glasser C., Wechsung G.: Relativizing Function Classes

The cardinality of a set X is denoted by #X or |X |. For an NPOM M

and an oracle C, the language that is accepted by MC in the sense of coNP is
defined as LcoNP(MC) df=

{
x : MC(x) rejects

}
. Σ≤i (resp., Σi, Σ≥i) denotes the

set of words of lengths ≤ i (resp., = i, ≥ i). We use a standard pairing function
〈x, y〉 that is polynomial-time computable and polynomial-time invertible. For
v, w ∈ Σ∗, v � w means that v is a prefix of w. A denotes the complement of
A ⊆ Σ∗.

This paper investigates classes of the form max·C, min·C [HW97], and #·C
[Tod91] where C belongs to the polynomial-time hierarchy.

Definition 1 [HW97, Tod91]. Let C be an arbitrary complexity class.

f ∈ max·C df⇐⇒ (∃A ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)

[f(x) = sup{y ∈ Σ≤p(|x|) : 〈x, y〉 ∈ A}]
f ∈ min·C df⇐⇒ (∃A ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)

[f(x) = inf{y ∈ Σ≤p(|x|) : 〈x, y〉 ∈ A}]
f ∈ #·C df⇐⇒ (∃A ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)

[f(x) = #{y ∈ Σ≤p(|x|) : 〈x, y〉 ∈ A}]

Note that sup ∅ = 0 and define inf ∅ = 2p(|x|)+1.

Proposition2 [Val79a, Tod91]. #P = #·P

3 Oracle Constructions

Rackoff [Rac82] constructed an oracle E such that UPE = NPE �= PE. We
generalize this construction and obtain the following stronger result.

Theorem3. There exists an oracle D such that

min·coNPD ⊆ #·PD and NPD �= coNPD.

The idea of the proof is the following. We define a function mD which is
complete for min·coNPD, and a set LD df= {x : ∃y(|x| = |y| ∧ y ∈ D)} which is
in NPD. We construct D such that mD ∈ #·PD and LD /∈ coNPD. The first
property requires coding, while the second property requires separation. Coding
is done in all oracle stages that contain words of length 4n. Separation is done
in some of the remaining stages.

We focus on the difficult case for separations. Di denotes the oracle con-
structed so far such that Di satisfies all coding requirements up to words of
lengths ≤ i and 0i /∈ LDi . For some NPOM M , we want to make sure that
0i ∈ LD if and only if MD(0i) accepts (separation requirement). Suppose that

38 Glasser C., Wechsung G.: Relativizing Function Classes

MDi(0i) rejects. Now we extend Di to some Dj , j > i, such that Dj contains all
coding requirements up to words of lengths ≤ j and 0i /∈ LDj . Unfortunately,
this extension may result in the acceptance of 0i by MDj (since the machine
asks for words that came into the oracle during the coding part).

We show that if this happens, then we can add some word of length i to
the oracle (thus making 0i an element of LD) such that M(0i) still accepts.
Let α be an accepting path of MDj (0i). It is not enough to fix all queries on
α and to add some other word of length i to the oracle, since this could effect
coding requirements. Therefore, if we want to fix a query on α, then we have
to make sure that at the same time we fix all coding requirements that depend
on this query. This causes new words to fix which in turn causes new coding
requirements to fix, and so on. We show that this recursion does not fix too
many words. So we find a word of length i that can be added to the oracle.

Proof. Let M1, M2, . . . be an effective enumeration of all NPOM and let pi be
the running time of Mi (independent of the oracle). We may assume pi(j) < ji

for all i and j. For an arbitrary D ⊆ Σ∗, let

LD df= {x : ∃y(|x| = |y| ∧ y ∈ D)} ,

mD(w) df= inf

y : |y| ≤ l and MD

j (〈x, y〉) has no
path accepting within k steps

 if w = 0j10k10l1x, and

mD(w) df= 0 otherwise,

where inf ∅ df=2l+1 in the second line. Depending on the context we consider mD

either as word function mD : Σ∗ −→ Σ∗ or as function of natural numbers
mD : N −→ N.

For functions f and g we write f≤p
mg if there exists a polynomial-time com-

putable function h such that f(w) = g(h(w)) for all w. If F is a function class,
then g ∈ F is called ≤p

m -complete in F , if f≤p
mg for all f ∈ F . The following is

obvious.

Fact 1 LD ∈ NPD and mD is ≤p
m-complete for min·coNPD.

We construct D in such a way that it satisfies two conditions.

1. LD /∈ coNPD.

2. For all w ∈ Σ∗, there exist exactly mD(w) words z such that |z| = 3 · |w|
and wz ∈ D.

Condition 1 implies NPD �= coNPD. Condition 2 implies mD ∈ #·PD and there-
fore, min·coNPD ⊆ #·PD: To see this, consider an arbitrary f ∈ min·coNPD.
By definition, there exist an NPOM Mj and a q ∈ Pol such that f(x) =

39Glasser C., Wechsung G.: Relativizing Function Classes

inf
{
y : |y| ≤ q(|x|) ∧ 〈x, y〉 ∈ LcoNP(MD

j)
}
. Let pj be the running time of Mj.

The function f belongs to #·PD, since f = #M for the machine M that is de-
fined as follows. On input x, M first computes the word w = 0j10pj(|x|)10q(|x|)1x.
Then in a nondeterministic way it generates all words z such that |z| = 3·|w|. For
each generated z, the machine queries wz and accepts if the answer is positive.
By the construction of D, the number of accepting paths is mD(w) = f(x).

We identify oracles with the sequences of values of their characteristic func-
tions cD (w.r.t. the fixed ordering of Σ∗). An initial segment D′ of D extends
up to level n, if D′ = (cD(ε), cD(0), . . . , cD(1n)).

We define D by constructing a sequence (Di)i∈N of its initial segments such
that D0 = ∅, Di extends up to level i, and Di � Di+1. If Di is used as oracle
for a machine that queries words longer than i, then the machine gets negative
answers on these queries.

During step i it may happen that words of lengths greater than i must be put
into D. Since in this step, D is constructed only up to level i, we shall consider
those words to be frozen, which means that they are reserved for the complement
of D. Let Fi be the set of words from Σ≥i that are frozen at the beginning of
step i. F0

df= ∅. We maintain the following condition.
|Fi| ≤ 2

i
4 (∗)

We keep a list L of natural numbers (indices of machines) which is initially
empty. If r ∈ L, then LD �= LcoNP(MD

r) is guaranteed. We describe step i of the
construction of D (i.e., the construction of Di).
i ≡ 0(mod 4) — In this case, we contribute to satisfy condition 2. For each
w ∈ Σ

i
4 we determine mD(w). This can be done as follows: If w = 0j10k10l1x,

then we determine the least y such that |y| ≤ l and M
Di−1
j (〈x, y〉) has no path

accepting within k steps. Since only words of lengths ≤ k < i can be queried,
we can use Di−1 instead of D.

Note that mD(w) ≤ 2
i
4 . Because of (∗), there are at least 2

3i
4 − 2

i
4 words of

lengths i with prefix w that are not frozen. Hence, for every w we find mD(w)
words z such that wz is not frozen and |wz| = i. We obtain Di by adding for
every w exactly mD(w) such words to Di−1. In this step, no new words are
frozen. Hence, condition (∗) is maintained.
i �≡ 0(mod 4) — Let r be the smallest number not in L.
Case 1. — Fi �= ∅ or 2 · pr(i)2 ≥ 2

i
4 .

Let Di = Di−1. No new words are frozen. Hence, condition (∗) is maintained.
If Case 1 happens, then after a finite number of steps we reach an i such that
the condition of Case 2 is satisfied.
Case 2. — Fi = ∅ and 2 · pr(i)2 < 2

i
4 .

We contribute to satisfy condition 1. We want to achieve LD �= LcoNP(MD
r).

Case 2.1. — M
Di−1
r (0i) accepts.

Fix an accepting path α. We extend Di−1 such that α is preserved. M
Di−1
r

40 Glasser C., Wechsung G.: Relativizing Function Classes

on input 0i runs at most pr(i) < 2i/4 steps. Thus, α contains no more than
2i/4 queries. Since Fi = ∅, we can choose a word w of length i such that w is
not queried on α. Let Di = Di−1 ∪ {w} and freeze all queries on α that are
of lengths ≥ i (these are negative queries). This guarantees LD �= LcoNP(MD

r),
since 0i ∈ LD, but 0i /∈ LcoNP(MD

r). Add r to L. Note that condition (∗) is
satisfied.
Case 2.2. — M

Di−1
r (0i) rejects.

We continue the construction of oracle segments D′
i, D

′
i+1, . . . , D

′
pr(i) where

all steps i′ �≡ 0(mod 4) are skipped. The reason for this tentative construction
phase is that D′

pr(i) is large enough to answer all queries of Mr on input 0i.

Case 2.2.1. — M
D′

pr(i)
r (0i) rejects.

Let Dpr(i) = D′
pr(i). We claim that MD

r (0i) rejects. This holds, since Mr

on input 0i asks queries of lengths ≤ pr(i). Thus, any extension of Dpr(i) will
have no influence on the computation of Mr on input 0i. During the tentative
construction phase we added no words of length i. Hence 0i /∈ LD and therefore,
LD �= LcoNP(MD

r). Add r to L. No words are frozen, (∗) is satisfied. The next
step pr(i) + 1 can be carried out.

Case 2.2.2. — M
D′

pr(i)
r (0i) accepts.

Fix an accepting path α. We will construct a new oracle Dpr(i) such that
w ∈ Dpr(i) for some w ∈ Σi, α remains an accepting path, and condition 2
remains satisfied. The remainder of the proof makes sure that this is possible.
This shows LD �= LcoNP(MD

r).
F−

1 (resp., F+
1) denotes the set of words of lengths ≥ i that are queried

on α and that are answered negatively (resp., positively). In order to preserve
α under oracle Dpr(i) we have to make sure that all queries are answered the
same way as under D′

pr(i). Queries in F−
1 must be frozen, while for queries in

F+
1 an additional argument is needed. This will make sure that F+

1 ⊆ Dpr(i),
F−

1 ⊆ Dpr(i), and Dpr(i) satisfies condition 2.
If F+

1 = ∅, then let F− = F−
1 and F+ = ∅. In this case we skip the following

procedure and go directly to equation (∗∗) below.
Otherwise, F+

1 �= ∅. During the tentative construction we skipped the steps
i′ �≡ 0(mod 4). Therefore, queries in F+

1 are of the form q = 0j10k10l1xy such
that 3 · |0j10k10l1x| = |y|. Call 0j10k10l1x the prefix of q. We partition F+

1

into classes [v] of words that have the same length and the same prefix. Let
F+

1 = [v1] ∪ . . . ∪ [vs]. For a finite set of words E, let �(E) df=
∑

v∈E |v|. Observe
that �(F−

1) + �(F+
1) ≤ pr(i).

Let u1 be the largest word (w.r.t. our fixed ordering) in F+
1 , let n1 = #[u1],

and let w = 0j10k10l1x be its prefix. Since D′
pr(i) satisfies condition 2, there

exist exactly mD′
pr(i)(w) words z such that |z| = 3 · |w| and wz ∈ D′

pr(i). From

[u1] ⊆ F+
1 ⊆ D′

pr(i) it follows that n1 = #[u1] ≤ mD′
pr(i)(w). Therefore, the

41Glasser C., Wechsung G.: Relativizing Function Classes

computations

M
D′

pr(i)
j (〈x, 0〉), . . . , MD′

pr(i)
j (〈x, n1 − 1〉)

have accepting paths α0, . . . , αn1−1, respectively. The lengths of these paths are
≤ k.

In order to achieve [u1] ⊆ Dpr(i) it suffices to preserve the accepting paths
α0, . . . , αn1−1. For this we have to preserve several things. First of all, we have
to freeze all words of lengths ≥ i that are queried on α0, . . . , αn1−1 and that
are answered negatively. F−

2 denotes the set of these words. Similarly, let P+ be
the set of words of lengths ≥ i that are queried on α0, . . . , αn1−1 and that are
answered positively. Let F+

2 = (F+
1 − [u1]) ∪ P+. Since the lengths of the paths

α0, . . . , αn1−1 are ≤ k < |u1|/4 it holds that �(P+) < n1 · |u1|/4 = �([u1])/4.
Therefore, �(F+

2) < �(F+
1).

Now F+
2 is treated similar to F+

1 , i.e., we determine the largest u2 ∈ F+
2 and

obtain sets F+
3 and F−

3 such that �(F+
3) < �(F+

2). We continue this procedure
until F+

ν = ∅ for some ν > 1. Observe the following.

1. For every µ ≥ 1 we have |uµ| > max
{|v| : v ∈ F+

µ+1 − F+
µ

}
. Therefore, |u1| ≥

|u2| ≥ |u3| ≥ · · · and these words have pairwise different prefixes. Hence, for
all µ ≥ 1 and all ν > µ it holds that F+

ν does not contain any words that
have the same prefix as uµ.

2. For every µ ≥ 1, in order to reach [uµ] ⊆ Dpr(i) in step µ, it suffices to ensure
F+

µ+1 ⊆ Dpr(i) and F−
µ+1 ⊆ Dpr(i).

3. Since pr(i) ≥ �(F+
1) > �(F+

2) > . . . is a strictly decreasing sequence, the
procedure stops after at most pr(i) steps with an empty F+

ν .

Altogether we obtain sets F− = F−
1 ∪F−

2 ∪ . . . and F+ = F+
1 ∪F+

2 ∪ In each
of the at most pr(i) steps we add at most pr(i) words to F− as well as to F+.
So it holds that

|F−| + |F+| ≤ 2 · pr(i)2 < 2
i
4 . (∗∗)

Now we actually redo the steps of the tentative phase (again, we skip the
steps i′ �≡ 0(mod 4)). We achieve

– 0i ∈ LDpr(i) and

– 0i /∈ LcoNP(MDpr(i)
r) by maintaining the path α.

By (∗∗), we find a word w ∈ Σi that does not belong to F−. Let Di = Di−1∪{w}.
Since |w| �≡ 0(mod 4), this does not injure condition 2. This yields 0i ∈ LDi . For
maintaining α we need the following consequence of (∗∗).

|F−| < 2
i
4

42 Glasser C., Wechsung G.: Relativizing Function Classes

In any step i′ where i′ ≡ 0(mod 4), words of the form w′ = 0j10k10l1x with
|w′| = i′

4 will be treated w.r.t. F− and F+. This means, if we have to add n

words with prefix w′ to the oracle, then first we choose words in F+ that have
prefix w′, and then words not in F−. Since |F−| < 2i/4, such words always exist.
Note that w does not influence any of those words and paths that have been fixed
(via F− and F+) during the tentative phase. It follows that F+

1 ⊆ F+ ⊆ Dpr(i)

and F−
1 ⊆ F− ⊆ Dpr(i). Hence M

Dpr(i)
r (0i) has the accepting path α. Since

F− contains only words of lengths ≤ pr(i) we have no frozen words of lengths
≥ pr(i)+ 1. Therefore, Fpr(i)+1 = ∅ and condition (∗) is maintained. Finally, we
add r to L. The next step pr(i) + 1 can be carried out. ��

Figure 1 shows that min·coNP ⊆ #·P implies UP = NP. Since the proof is
relativizable, we obtain the following.

Corollary 4. Relative to oracle D from Theorem 3 it holds that UP = NP and
NP �= coNP.

Hence UP = NP and min·coNP ⊆ #·P relative to the oracle from Theorem 3.
However, the second condition is not necessary to reach UP = NP. Even more,
the following theorem shows that min·P ⊆ #·P is not necessary to reach UP =
NP.

Theorem5. There exists an oracle D such that

UPD = NPD and min·PD �⊆ #·PD.

The idea of the proof is as follows. We use an NP-complete set KD and a
function fD(x) = inf{y : the (y + 1)-st word of length |x| belongs to D} which
is in min·PD. We construct D such that KD ∈ UPD and fD /∈ #PD. The first
property requires coding, while the second property requires separation. Coding
is done in all oracle stages that contain words of even lengths. Separation is done
in some of the remaining stages.

Di denotes the oracle constructed so far such that Di satisfies all coding
requirements up to words of lengths ≤ i, and Di does not contain any words of
length i. For some NPOM M , we want to make sure that fD(0i) �= #MD (0i)
(separation requirement). Assume that this is not possible. Hence, for any ex-
tension Dj of Di, if Dj satisfies all coding requirements up to words of lengths
≤ j, then fDj (0i) = #MDj (0i).

Let Dj be an extension of Di, and let α be an accepting path of MDj (0i).
In the proof we show that in order to keep α accepting, it suffices to fix a small
set of words in Dj. Hence, every path depends on a small number of words.
However, from our assumption fDj (0i) = #MDj (0i) it follows that there exist
paths that depend on a large number of words. This is a contradiction. So we
find an appropriate extension Dj .

43Glasser C., Wechsung G.: Relativizing Function Classes

Proof. Let M1, M2, . . . be an effective enumeration of all NPOM and let pi be
the running time of Mi (independent of the oracle). We may assume pi(j) < ji

for all i and j. For an arbitrary D ⊆ Σ∗, let

AD df=
{
(x, y) : y + 2|x| − 1 ∈ D

}
,

fD(x) df= inf
{
y : |y| ≤ |x| ∧ (x, y) ∈ AD

}
where inf ∅ df=2|x|+1, and

KD df=
{
0j10k1x : MD

j (x) accepts within k steps
}

.

The following fact is obvious.

Fact 2 AD ∈ PD, fD ∈ min·PD and KD is ≤p
m -complete for NPD.

We construct D such that it satisfies the following conditions.

1. fD /∈ #PD.

2. For every x ∈ KD there exists exactly one z such that |x| = |z| and xz ∈ D,
and for every x /∈ KD there is no z such that |x| = |z| and xz ∈ D.

By Proposition 2, the first condition implies min·PD �⊆ #·PD. Condition 2 im-
plies KD ∈ UPD and therefore, UPD = NPD.

Similar to the proof of Theorem 3 we consider Σ∗ to be ordered and we
identify oracles with their characteristic sequences. Moreover, we define D by
constructing a sequence (Di)i∈N of its initial segments such that D0 = ∅, Di

extends up to level i, and Di � Di+1. If Di is used as oracle for a machine that
queries words longer than i, then the machine gets negative answers on these
queries. Let Fi be the set of words from Σ≥i that are frozen at the beginning of
step i. F0

df= ∅. We maintain the following condition.
|Fi| < 2

i
2 (∗)

Let L be a list of natural numbers (indices of machines) which is initially
empty. If r ∈ L, then fD �= #MD

r
is guaranteed. We describe step i of the

construction of D.
i ≡ 0(mod 2) — In this case, we contribute to satisfy condition 2. For each x ∈
Σi/2 we find out whether x ∈ KD. This can be done as follows: If x = 0j10k1y,
then we simulate M

Di−1
j on input y for k steps. The oracle Di−1 can be used

instead of D, since only words of lengths ≤ k < i are queried. By (∗), for every
x ∈ KD ∩ Σi/2 there exists at least one z ∈ Σi/2 such that xz is not frozen. Fix
such a zx for each x ∈ KD ∩ Σi/2 and let Di = Di−1 ∪ {xzx : x ∈ KD ∩ Σi/2}.
In this step, no new words are frozen. Hence, (∗) is maintained.
i ≡ 1(mod 2) — Let r be the smallest number not in L.
Case 1. — Fi �= ∅ or 8 · pr(i)2 ≥ 2

i
2 .

Let Di = Di−1. No new words are frozen. Hence, (∗) is maintained. If Case 1
happens, then after a finite number of steps we reach an i such that the condition
of Case 2 is satisfied.

44 Glasser C., Wechsung G.: Relativizing Function Classes

Case 2. — Fi = ∅ and 8 · pr(i)2 < 2
i
2 .

We contribute to satisfy condition 1, i.e., we want to reach fD(0i) �=
#MD

r
(0i). Let m

df=8 · pr(i)2 and let wa denote the (a + 1)-st word of length
i, i.e., wa = a + 2i − 1.

We consider all continuations of the construction (i.e., segments
D′

i, D
′
i+1, . . . , D

′
pr(i)) such that in step i we add at most m/2 words to the oracle

and skip all odd steps > i. In even steps, there are several possibilities to choose
the words zx. We show that among these oracles there exists an E

df= D′
pr(i) such

that E extends up to stage pr(i) and fE(0i) �= #ME
r

(0i).

Assumption: fE(0i) = #ME
r

(0i) for all continuations D′
i, D

′
i+1, . . . , D

′
pr(i) = E.

We will derive a contradiction. Choose a continuation such that D′
i = Di−1∪

{wm}. By assumption, fE(0i) = #ME
r

(0i) = m. Denote the accepting paths of
the computation ME

r (0i) by q1, . . . , qm.
In the following we want to preserve these paths. For this we have to fix the

positive and negative answers on these paths. Before we do this, let us compare
the methods of Theorem 3 and of this theorem.

In the proof of Theorem 3 we are not able to fix single words, but we are able
to fix groups of words that have the same prefix. To fix such a group (say of size
n′ and with prefix p′) we have to guarantee that the min·coNP-function induced
by p′ has a value ≥ n′. We do this by preserving n′ paths of n′ different rejecting
coNP-computations. For a single word w′ with prefix p′ we cannot determine
the set of words that w′ depends on; for this we need all words with prefix p′.
Consider the following example.

– If u′ is the only word with prefix p′ that we want to fix, then it suffices to
guarantee that the min·coNP-function induced by p′ has a value ≥ 1. Hence
u′ depends on path α′

0.

– If v′, v′′ are the only words with prefix p′ that we want to fix, then it suffices
to guarantee that the min·coNP-function induced by p′ has a value ≥ 2.
Thus either v′ or v′′ depends on path α′

1.

Hence, for one word w′ (either v′ or v′′) we cannot determine the set of words
that w′ depends on.

In contrast to Theorem 3, in this proof we are able to determine this set for
a single word w′. We show that other words that we have to fix do not change
this set. Therefore, the set of words that w′ depends on is well defined.

The difference between these methods is important. Otherwise it would be
possible to apply the method of Theorem 5 to Theorem 3. This would result in
an oracle D′ such that min·coNPD′ ⊆ #·PD′

and min·PD′ �⊆ #·PD′
. This is not

possible.

45Glasser C., Wechsung G.: Relativizing Function Classes

We use the following method to fix words. Consider a w ∈ E of length > i.
Thus w is of the form w = 0j10k1xy where |y| = |w|

2 . Hence, ME
j (x) accepts

within k steps, say on path α. Therefore, if we want to keep w in the oracle,
we have to preserve α. Note that the length of α is ≤ k < |w|

2 . Nw denotes the
set of negatively answered queries. We freeze all queries that are in this set. Pw

denotes the set of positively answered queries. The sum of lengths of words in
Pw ∪ Nw is smaller than |w|

2 . We use this argument inductively to fix the words
of Pw. Therefore, we can guarantee w ∈ E by fixing at most |w| words of lengths
≤ |w|.

Consider a path q of ME
r (0i). Note that the length of q is ≤ pr(i). Thus

along q, at most pr(i) words of lengths ≤ pr(i) can be queried. F+ (resp., F−)
denotes the set of positive (resp., negative) words that have to be fixed in order
to preserve q.

|F−| + |F+| ≤ 2 · pr(i) < 2
i
2 (∗∗)

For 1 ≤ k ≤ m, F+
qk

(resp., F−
qk

) denotes the set of positive (resp., negative)
fixed words that preserve path qk. We make a list that contains the following
statements.

1. For all paths q ∈ {q1, . . . , qm} we have w0 ∈ F−
q ∪ F+

q . Otherwise let l1 ∈
{q1, . . . , qm} be a path such that w0 /∈ F−

l1
∪ F+

l1
. So we can add w0 to the

oracle while preserving path l1 (via F+
l1

and F−
l1

). Hence, f(0i) = 0, but
#Mr (0i) > 0. This contradicts our assumption.

2. For at least m− 1 paths q ∈ {q1, . . . , qm} we have w1 ∈ F−
q ∪F+

q . Otherwise
let l1, l2 ∈ {q1, . . . , qm} be different paths such that w1 /∈ F−

l1
∪F+

l1
∪F−

l2
∪F+

l2
.

So we can add w1 to the oracle while preserving the paths l1 and l2 (via F+
l1

,
F−

l1
, F+

l2
, and F−

l2
). Hence, f(0i) = 1, but #Mr (0i) > 1. This contradicts our

assumption.

We continue this list of statements and consider the first m
2 of them. From

statement k where k ∈ {
1, . . . , m

2

}
we obtain the following weakened statement:

For at least m
2 paths q ∈ {q1, . . . , qm} we have wk ∈ F−

q ∪ F+
q . A pigeon hole

argument shows that there exists a path q̃ ∈ {q1, . . . , qm} such that w ∈ F−
q̃ ∪F+

q̃

for at least m
4 different words w ∈ {w0, . . . , wm

2 −1}. Together with (∗∗) this
implies

2 · pr(i)2 =
m

4
≤ |F−

q̃ ∪ F+
q̃ | ≤ |F−

q̃ | + |F+
q̃ | < 2 · pr(i)2.

This is a contradiction. Therefore, the assumption is false, i.e., there exists a
continuation D′

i, D
′
i+1, . . . , E such that fE(0i) �= #ME

r
(0i). We have no frozen

words of lengths ≥ pr(i) + 1 and therefore, Fpr(i)+1 = ∅. Hence, condition (∗) is
maintained. We add r to L. The next step pr(i) + 1 can be carried out. ��

46 Glasser C., Wechsung G.: Relativizing Function Classes

4 Separations between #·-classes and min·-max·-classes
We apply the oracles constructed in Section 3. In order to treat the open separa-
tion questions between #·-classes and min·-max·-classes (Figure 1), it suffices to
restrict ourselves to the strongest questions. If, for instance, max·coNPA ⊆ #·PA

for some oracle A, then CA ⊆ DA for all classes C and D from Figure 1 such that
C ⊆ max·coNP and #·P ⊆ D. So we have to focus on the following separations.

1. #·P �⊆ max·coNP and #·P �⊆ min·coNP

2. max·P �⊆ #·P
3. min·P �⊆ #·NP

Note the slight asymmetry in the behavior of max·P and min·P. It is caused by
the fact that max·P ⊆ #·NP, which is not known for min·P. We show that the
separations above are possible in suitable relativized worlds.

Theorem6. There exists an oracle D such that

#·PD �⊆ max·coNPD and #·PD �⊆ min·coNPD.

Proof. Yao [Yao85] constructed an oracle D such that PHD does not collapse.
Assume #·PD ⊆ max·coNPD or #·PD ⊆ min·coNPD. This implies PPD ⊆
ΣP

2
D (Figure 1, the proofs are relativizable). By Toda’s theorem [Tod89], PHD

collapses. ��
Torán [Tor91] constructed an oracle E such that NPE �⊆ ⊕·PE. By Figure 1,

NPD ⊆ ⊕·PD for every oracle D such that either min·PD ⊆ #·PD or max·PD ⊆
#·PD. Therefore, the oracle from [Tor91] shows the following.

Theorem7. There exists an oracle E such that

min·PE �⊆ #·PE and max·PE �⊆ #·PE .

Since max·P ⊆ #·NP is relativizable, max·PD �⊆ #·PD implies #·PD �=
#·NPD. Hence, for the oracle in Theorem 7 it holds that #·PE �= #·NPE .
However, min·PD �⊆ #·PD is compatible with #·PD = #·NPD.

Theorem8. There exists an oracle D such that

min·PD �⊆ #·PD = #·NPD and UPD = NPD �= coNPD.

Proof. This follows from Theorem 5. The proofs for UP = NP =⇒ #·P = #·NP
and NP = coNP =⇒ min·P ⊆ #·NP are relativizable (Figure 1). ��

This shows that statement 3 (and in particular min·coNP �⊆ #·NP) is reach-
able in some relativized world.

47Glasser C., Wechsung G.: Relativizing Function Classes

5 Collapse Consequences of min·coNP ⊆ #·P

From [HW97] the following implications are known.

– min·coNP ⊆ #·P =⇒ UP = NP

– min·coNP ⊆ #·P ⇐= UP = coNP

We would like to find a statement that is equivalent to min·coNP ⊆ #·P. How-
ever, none of these right-hand sides is likely to serve this purpose. The following
theorems show that the implications

min·coNP ⊆ #·P =⇒ UP = coNP

UP = NP =⇒ min·coNP ⊆ #·P

are not relativizable.

Theorem9. There exists an oracle D such that

min·coNPD ⊆ #·PD and UPD = NPD �= coNPD.

Proof. This follows from Theorem 3, since min·coNP ⊆ #·P =⇒ UP = NP is
relativizable. ��

Theorem10. There exists an oracle D such that

min·coNPD �⊆ #·PD and UPD = NPD �= coNPD.

Proof. This follows from Theorem 5 and the relativizable facts min·P ⊆
min·coNP and UP = coNP =⇒ min·NP ⊆ #·P. ��

6 Collapse Consequences of min·P ⊆ #·NP

The relationship between min·P and #·NP is left open in [HW97]. In Section 4 we
proved that there exists an oracle relative to which min·P �⊆ #·NP (Theorem 8).
This explains why it is hard to transfer the known proof for max·P ⊆ #·NP to
the inclusion min·P ⊆ #·NP.

It is also hard to find an implication of the form min·P ⊆ #·NP =⇒ α. At
least three possible statements α, that come to mind when considering Figure 1,
are not likely to be necessary for min·P ⊆ #·NP. More precisely, the following
statements are not relativizable.

48 Glasser C., Wechsung G.: Relativizing Function Classes

– min·P ⊆ #·NP =⇒ NP = coNP

– min·P ⊆ #·NP =⇒ UP = NP

– min·P ⊆ #·NP =⇒ UP = coNP

The first statement follows from Theorem 9, while the last two statements follow
from the next theorem.

Theorem11. There exists an oracle D such that

min·PD ⊆ #·NPD and UPD �= NPD = coNPD.

Proof. Since NP = coNP =⇒ min·P ⊆ #·NP is relativizable (Figure 1), it suf-
fices to construct an oracle for UPD �= NPD = coNPD. Ogiwara and Hemachan-
dra [OH93] constructed a stronger oracle E such that UPE �= NPE = PSPACEE .

��

The oracle D from Theorem 9 shows that min·P ⊆ #·NP =⇒ NP = coNP
is not relativizable. This oracle has the additional property UPD = NPD or,
equivalently, #·PD = #·NPD. We leave it open whether the following oracle E

can be constructed.

min·PE ⊆ #·NPE ∧ UPE �= NPE ∧ NPE �= coNPE

Acknowledgements

We are grateful to Lane A. Hemaspaandra, Harald Hempel, Sven Kosub, and
Kolya Vereshchagin for many helpful comments and suggestions. We are also
grateful to our referees whose hints have simplified our paper.

Moreover, we thank for support by Nortel (Northern Telecom) and by grant
NSF-INT-9513368/DAAD-315-PRO-fo-ab.

References

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=NP problem.
SIAM Journal on Computing, 4:431–442, 1975.

[HW97] H. Hempel and G. Wechsung. The operators min and max on the polynomial
time hierarchy. In Proceedings 14th Symposium on Theoretical Aspects of
Computer Science, volume 1200 of Lecture Notes in Computer Science, pages
93–104. Springer Verlag, 1997.

[Köb89] J. Köbler. Strukturelle Komplexität von Anzahlproblemen. PhD thesis, Uni-
versität Stuttgart, Fakultät für Informatik, 1989.

[Kre88] M. W. Krentel. The complexity of optimization problems. Journal of Com-
puter and System Sciences, 36:490–509, 1988.

[Kre92] M. W. Krentel. Generalizations of OptP to the polynomial hierarchy. Theo-
retical Computer Science, 97:183–198, 1992.

49Glasser C., Wechsung G.: Relativizing Function Classes

[KST89] J. Köbler, U. Schöning, and J. Torán. On counting and approximation. Acta
Informatica, 26:363–379, 1989.

[KSV98] S. Kosub, H. Schmitz, and H. Vollmer. Uniformly defining complexity classes
of functions. In Proceedings 15th Symposium on Theoretical Aspects of Com-
puter Science, volume 1373 of Lecture Notes in Computer Science, pages 607–
617. Springer Verlag, 1998.

[OH93] M. Ogiwara and L. Hemachandra. A complexity theory of feasible closure
properties. Journal of Computer and System Sciences, 46:295–325, 1993.

[Rac82] C. Rackoff. Relativized questions involving probabilistic algorithms. Journal
of the ACM, 29:261–268, 1982.

[Tod89] S. Toda. On the computational power of PP and ParityP. In Proceedings 30th
IEEE Symposium on Foundations of Computer Science, pages 514–519. IEEE
Computer Society Press, 1989.

[Tod91] S. Toda. Computational Complexity of Counting Complexity Classes. PhD
thesis, Tokyo Institute of Technology, Department of Computer Science,
Tokyo, 1991.

[Tor91] J. Torán. Complexity classes defined by counting quantifiers. Journal of the
Association for Computing Machinery, 38:753–774, 1991.

[Val79a] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

[Val79b] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal of Computing, 8(3):411–421, 1979.

[Vol94] H. Vollmer. Komplexitätsklassen von Funktionen. PhD thesis, Universität
Würzburg, Institut für Informatik, Germany, 1994.

[VW95] H. Vollmer and K. W. Wagner. Complexity classes of optimization functions.
Information and Computation, 120:198–219, 1995.

[Yao85] A. C. C. Yao. Separating the polynomial-time hierarchy by oracles. In Pro-
ceedings 26th Foundations of Computer Science, pages 1–10. IEEE Computer
Society Press, 1985.

50 Glasser C., Wechsung G.: Relativizing Function Classes

