
Experimental Studies within the Software Engineering
Process for Intelligent Assistance in a GUI

Maria Virvou
(Department of Informatics, University of Piraeus,
80 Karaoli & Dimitriou St., 18534, Piraeus, Greece

mvirvou@unipi.gr)

Katerina Kabassi
(Department of Informatics, University of Piraeus,
80 Karaoli & Dimitriou St., 18534, Piraeus, Greece

kkabassi@unipi.gr)

Abstract: This paper presents the research work towards improving human computer
interaction by providing intelligent assistance to users. This has been approached by
incorporating principles of a cognitive theory in a Graphical User Interface (GUI), that deals
with file manipulation and is called IFM. The cognitive theory is called Human Plausible
Reasoning (HPR) and has been used to simulate users’ reasoning in the user model of the
system so that the GUI may provide spontaneous assistance to users’ errors. Such a goal is
difficult to achieve and depends heavily on the development process. However, there is a
shortage of reports on the software engineering process of intelligent assistants. Moreover, in
the literature of intelligent assistants there is evidence that some important phases of their
development process may have been omitted and thus the understanding of delicate issues has
not improved significantly. Therefore, the focus of this paper is on presenting and discussing
the software engineering process of the intelligent assistant developed. Special emphasis has
been put on the description of the experimental studies, which were conducted prior and after
the development of the system. Theses studies were used for the specification and refinement of
the overall design as well as the adaptation of HPR in it. The experimental results have shown
that the intelligent assistant may follow the users’ reasoning and provide helpful advice to a
satisfactory extent as compared to human advisors.

Keywords: Intelligent Help, intelligent user interface, object-oriented software engineering,
user modelling, experimental studies.
Category: D.2.10

1 Introduction

As the number of software users increases dramatically throughout the world, the
need for improving Human-Computer Interaction becomes more apparent and
demanding. This is especially the case for software, which is addressed to a wide
range of users of various backgrounds, ages, levels of skills, preferences and habits.
Software of this kind includes programs for file manipulation such as the Windows
98/NT Explorer. Programs like this are used by anyone who wishes to download files
from the Internet, create new files from word processors, spreadsheets and other
packages, create their own programs, copy and move files from one disk to another

Journal of Universal Computer Science, vol. 9, no. 1 (2003), 51-85
submitted: 23/1/02, accepted: 24/1/03, appeared: 28/1/03 © J.UCS

etc. Obviously, tasks of this kind are carried out by the largest portion of users
ranging from experienced users to novice ones. Novice users may encounter
difficulties due to lack of experience and expert users may face problems due to
carelessness or possible tiredness. However, traditional on-line help is not always
sufficiently helpful. For example, Matthews et al. [Matthews et al., 00] highlight the
fact that on-line manuals must explain everything and novices find them confusing,
while more experienced users find it quite annoying to have to browse through a lot of
irrelevant material. Therefore, in addition to basic user interface guidelines,
developers may also consider the benefits of using knowledge-based methods to
enhance user interfaces.

Indeed, a lot of research energy has been put into the development of intelligent
user interfaces. Quite a lot of them focus on providing intelligent help to users who
encounter problems during their interaction with the computer (e.g. [Wilensky et al.,
00], [Matthews et al., 00], [Jerrams-Smith, 00], [Horvitz et al., 98]). Most such
systems incorporate a user modelling component which is responsible for
understanding the person that interacts with the system. The user model accounts for
user behaviour which is the observable response to a particular stimulus in a given
domain [Sison & Simura, 1998]. In this sense, the user modelling component takes as
input observable actions or queries/answers of users and tries to infer the real users’
intentions, beliefs, level of knowledge, possible misconceptions etc. In intelligent
assistance, these inferences about the user are used by the system to generate
automatic assistance adapted to the users’ needs.

In the context of intelligent assistance, we have developed a knowledge-based
GUI that intends to offer spontaneous help to users who have problems due to their
own mistakes. In particular, the GUI aims at understanding the users’ reasoning when
they make plausible human mistakes in their effort to conform with the interface’s
formalities and achieve their goals. The domain that we selected to examine the
capabilities of the intelligent assistance is one that is addressed to a wide range of
users. Therefore, we developed a GUI that manages files and folders in a similar way
as the Windows 98/NT Explorer [Microsoft Corporation, 98] which is a program used
by a very large portion of computer users with varying backgrounds and levels of
skills.

The knowledge-based GUI is called Intelligent File Manipulator (IFM) and deals
with the management of files and folders. IFM monitors users’ actions and reasons
about them in terms of users’ intentions and possible mistakes. This kind of reasoning
is performed by the user modelling component of IFM. In case IFM judges that the
user may have made a mistake with respect to his/her hypothesised intentions, it
suggests an alternative action that the user may have really meant to issue rather than
the one issued. Therefore, the reasoning of IFM may also be used in a learning
environment for novice users since it protects them from erroneous, destructive
actions [Virvou and Kabassi, 02].

User modelling in IFM is largely based on an adaptation of a cognitive theory,
called Human Plausible Reasoning theory [Collins and Michalski, 89], henceforth
referred to as HPR. HPR is a domain-independent theory originally based on a corpus
of people’s answers to everyday questions. Starting from a question asked to a person,
the theory tries to model the reasoning that this person employs in order to find a
plausible answer, assuming that s/he does not have a ready answer. In IFM, we have

52 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

used this theory to simulate the analogical reasoning of users that may lead them to
plausible human mistakes during their interaction with the system.

However, the actual development process of an intelligent user interface, like
IFM, is an issue that needs a lot of attention. Höök [Höök, 00] points out that there
are a number of problems not yet solved that prevent us from creating good intelligent
user interface applications; one of these problems is that we do not have efficient
methods for developing such applications and that we need a better understanding of
the possible ways the interface can utilise intelligence to improve the interaction. The
shortage of guidelines available for the development of intelligent user interface
applications is also highlighted by other researchers as well. For example, Delisle and
Moulin come to this conclusion in their review of the literature of intelligent help
systems [Delisle and Moulin, 02].

In view of the above, in this paper we present and discuss the development
process of IFM throughout its life-cycle. Special emphasis has been put on presenting
the experimental studies that were conducted and used for the requirements analysis,
design specifications and empirical evaluation of the user model and the system. In
particular, the experimental study prior the development of IFM was used for
clarifying the kind of intelligent assistance that IFM was going to provide. Moreover,
it was also used for refining and adapting HPR theory in the particular context of
intelligent assistance in a GUI. The experimental studies that were conducted for the
evaluation of IFM ensured that the system addressed real users’ needs and provided
helpful assistance to a satisfactory extent. The life-cycle model of IFM has been based
on the Rational Unified Process [Kruchten, 99], [Quatrani, 98] which advocates
multiple iterations of the development process.

The main body of this paper is organised as follows. In Section 2 we present and
discuss related work in intelligent assistance. In Section 3 we describe the experiment
that was used for requirements analysis. In Section 4 we give a brief description of
IFM’s current design and its operation. In Sections 5 and 6 we present our approach
in evaluating IFM. Finally, in Section 7 we discuss this work and give the conclusions
drawn.

2 Related Work

The research goal of IFM for automatic generation of intelligent assistance is shared
by a lot of other systems in the area of Intelligent Help Systems (IHSs) [Delisle and
Moulin, 02]. However, the approaches to the kind of assistance as well as the way
that this assistance is generated vary considerably.

53Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

In terms of the kind of assistance provided, there are IHSs that respond to explicit
users’ requests such as UC [Mayfied, 92], [Chin, 89], [Wilensky et al., 00] and
AQUA [Quilici, 89], which are IHSs for UNIX users. Such systems may be of help to
users who have realised that they need assistance. However, in day-to-day interaction
of users with software applications there are many cases when users involve
themselves in problematic situations without their realising it. These problems may be
addressed by systems that monitor users silently and respond spontaneously to
problematic situations, such as the Office Assistant [Horvitz et al., 98] that provides
spontaneous help to users working with Microsoft Office and Microsoft’s Tip Wizard,
which is a similar system to the Office Assistant.

However, even in cases of spontaneous interventions there are different
approaches concerning what is considered problematic. For example, the Office
Assistant mainly intends to help users by optimising their plans, which may be correct
rather than help them with their errors. The same goal is also shared by USCSH
[Matthews et al., 00], which is a help system for UNIX users. USCSH aims at
showing users better and more efficient ways of getting a task done. Unlike these
systems, IFM aims primarily at helping users in situations where they accidentally
issue actions, which they do not really intend. Such actions include commands that
are prompted with error messages by a standard explorer. However, most importantly,
they also include actions, which may be syntactically correct with respect to a
standard explorer’s formalities but they do not achieve what the user may have really
meant. For example, a user may accidentally delete a file, which was useful.

More specifically, IFM aims at reproducing the human reasoning of a colleague
or an expert sitting next to a user and observing his/her actions. This is the reason why
IFM’s reasoning is primarily based on a cognitive theory of human plausible
reasoning. This reasoning is used to imitate a user’s reasoning, which may be correct
or incorrect but in any case plausible. In this sense, IFM incorporates a unified
framework for handling both correct and incorrect user actions. Similarly to IFM’s
approach, Eller and Carberry [Eller and Carberry, 92] describe a set of meta-rules for
hypothesising the cause of errors in ill-formed dialogues. Their domain is not
interactive software but naturally occurring dialogues. In their context, the system
performs a relaxation of the semantic interpretation of a user’s utterance that allows
the interpretation of the utterance in a less precise way than it was originally
perceived. This relaxation occurs in situations when the system has problems in
assimilating the user’s plans and goals. In IFM, a similar form of relaxation takes
place when an erroneous action is transformed through the use of HPR by the system
in its effort to gain an understanding of what the user’s real intention was. In the case
of IFM, HPR provides the advantage of a relatively domain-independent method of
relaxation.

Indeed, HPR has been previously used in another IHS of a different domain. That
system was called RESCUER [Virvou, 99], [Virvou and du Boulay, 99] and provided
automatic assistance to UNIX users. The user interface of UNIX is a command
language interface, which is different from a graphical user interface that involves
mouse events. Moreover, command language interfaces are considered less user-
friendly than GUIs and are probably used by a smaller number of computer users than
GUIs. Therefore, the exploration of the utility and application of HPR in a GUI after
it has been applied in a command language interface is very useful. In particular it

54 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

reveals the potential of HPR for a more general framework for the development and
incorporation of intelligent human-like help into user interfaces.

However, one very important issue that seems to have been overlooked in the
literature of IHSs is the actual development process of such systems and the software
engineering techniques that should ideally include experimental studies in several
phases of the software life-cycle. Such phases definitely include the requirements
analysis as well as the evaluation of IHSs. For example, Chin [Chin, 01] points out
that empirical evaluations are needed to determine which users are helped or hindered
by user-adapted interaction in user modelling systems. He adds that the key to good
empirical evaluation is the proper design and execution of the experiments so that the
particular factors to be tested can be easily separated from other confounding factors.
However, he notes that empirical evaluations are not so common in the user
modelling literature. Similarly, Mc Tear [McTear, 00] points out that the relationship
between theory and practice is particularly important in Intelligent Interface
Technology as the ultimate proof of concept here is that the interface actually works
and that it is acceptable to users; for this reason practical issues such as performance,
reliability and usability would seem to be more important than theoretical issues such
as choice of system design methodology or specification notations.

In view of these, IFM has been developed based on the Rational Unified Process
[Kruchten, 99], [Quatrani, 98], which is an object-oriented model that advocates
multiple iterations in the software life-cycle. This iterative software life-cycle
involved crucial experimental studies. One experimental study was conducted for
requirements analysis and another one was conducted for the empirical evaluation of
the system and its user modelling capabilities. Both studies involved both users
(novice and expert) and human experts that acted as silent observers of the users’
actions.

One important advantage of these studies was that for each protocol of a
particular user’s actions there were many human experts who acted as observers and
were asked to comment on these user’s actions. Each human expert gave his/her
comments independently of the others. This gave us insight on what is possible to be
modelled and what kind of help may be given. In particular, there were cases where
there was a high degree of diversity of opinions among human experts. In such cases
we considered it impossible for an IHS to be able to provide human-like advice with a
high degree of certainty since not even real humans could provide such advice. In
contrast, there were many cases where experts had a unanimous opinion about what
the user was doing and the kind of help s/he needed. The provision of automatic help
in problematic situations of this kind was considered among the necessary functional
requirements of the system. Therefore, in the evaluation of the system we also
conducted experiments where many human experts could express an opinion for the
same user’s actions. Then these opinions were compared among them and then with
IFM’s responses.

Other experimental studies that have been conducted within the development of
IHSs tend to rely on the opinion expressed by one human expert for each protocol.
For example, in the Lumiere Project [Horvitz et al., 98] and an IHS for UNIX users
[Jerrams-Smith, 00], there are reports on experimental studies where there was only
one human expert per user protocol. Therefore, there could not be a comparison
among different human experts’ opinions concerning the same user actions. However,

55Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

even though the approach of these systems in the experiments was different from
IFM’s there was an acknowledgment of the fact that human experts were typically
uncertain about a user’s goals and the kind of assistance needed. This reinforces the
view that special effort must be made so that the requirements analysis and evaluation
may throw light on what is really needed and what is possible to be achieved in IHSs.

3 Experimental Study for Requirements Analysis

IFM’s life-cycle was based on Rational Unified Process, which divides the
development cycle in four consecutive phases: the inception, the elaboration, the
construction and the transition phase. In the inception phase the primary executable
release of IFM was developed. IFM is a system that constantly reasons about users’
actions in order to diagnose problematic situations and give advice concerning the
error identified. Examples of erroneous actions include clicking on the wrong
command or even the wrong files.

3.1 The Experiment

At the early stages of IFM, we conducted a usability evaluation of a standard file
manipulation program, which does not incorporate intelligence, such as Windows
98/NT Explorer. This evaluation aimed at identifying usability problems of standard
file manipulation programs so that these problems were addressed in the design of the
next version of IFM. For this reason we conducted an experiment, which involved
both users and human advisors.

One of the main aims of the empirical study was to categorise as many users’
plans as possible and to identify the most frequent errors that expert and novice users
may make while interacting with a standard explorer. In this way, we could identify
limitations of IFM. Another important aim of the empirical study was to evaluate
IFM’s reactions, in comparison to the human expert comments. The results of that
comparison were also used in order to identify IFM’s limitations so that we could
enhance the specifications for a second version of IFM.

The experiment involved 30 novice and expert users of a standard explorer. All
users were asked to use a standard explorer as they would normally do in their day-to-
day activity. Moreover, there were 10 human experts acting as potential advisors of
users. All human experts possessed a first and/or higher degree in Computer Science
and had teaching experience related to the use of such programs.

The experiment consisted of 3 phases, in a similar way as the 3 initial phases of
the empirical study described in [Sutcliffe, Ennis and Hu, 00]. In particular there was
a pre-test questionnaire and interview, then there was a short system training for
novice users and then the main experimental task.

The main experimental task consisted of usability tests concerning a standard
explorer. Users worked on a standard explorer and their actions were recorded. Then
each protocol of users’ actions was given to all of the human advisors to be analysed.
These advisors were asked to identify users’ mistakes (with respect to the users’
hypothesised intentions) in the protocols. Advisors were also asked to write down
what they thought the most appropriate piece of advice would be for the mistakes that
they identified. The comments of the human advisors in each protocol were compared
among them. In cases where the majority of human advisors identified the same

56 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

mistake, it was considered that indeed the user had made a mistake. Then the
advisors’ comments for remedy were compared to the standard explorer’s responses
or absence of response. In total, the human advisors examined 1342 actions of all
users. Among those actions 753 were issued by novice users and 589 were issued by
by expert users as can be seen in Table 1 that summarises the results of the study.

In the novice users’ protocols, there were 154 actions that were possibly
unintended according to the majority of human advisors. This corresponded to 20% of
the total actions issued by the novice users. In addition, in the protocols of expert
users, the majority of human experts identified 38 possibly unintended actions, which
were mainly issued due to carelessness. The standard explorer, on the other hand,
identified 112 possible errors, which accounted for 14.8% of the total actions of the
novice users and 29 possible errors in the expert users protocols. However, even in
cases when the standard explorer identified user errors, these errors were not
necessarily the same as the errors identified by human experts. Moreover, the advice
that the standard explorer provided was not always adequate. Consequently, 47 users’
errors resulted in the loss of files that were valuable for the users.

Actions Novice
Users

Expert
Users

Sum

Total actions 753 589 1342
Total possibly
unintended
actions
according to the
standard
explorer

112

(112/753=
14.8%)

29

(29/589=4.9%)

141

(141/1342=
10.5%)

Total possibly
unintended
actions
according to the
majority of
human experts

154

(154/753=
20%)

38

 (38/589=
6.4%)

192

(192/1342=
14.3%)

Total possibly
unintended
actions with
destructive
result according
to the majority
of human
experts

36

 (36/753=
4.8%)

11

(11/589=1.9%)

47

(47/1342=3
.5%)

Table 1: Summary of the analysis of users’ protocols

57Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

3.2 Usability Problems

The errors that were identified by the human advisors were caused due to several
reasons that constituted usability problems of standard file manipulation programs.
Some examples of problems that users of a standard explorer often encountered were
the following:

The structure of a regular explorer was the source of many errors for most users
and especially to novices. For example, users often tangled up the parent folder at the
left part of the explorer with the folder shown at the right part of the program.

Another cause of confusion, especially for novice users, involved commands that
were executed at two stages. This was also very confusing to users with previous
experience in command language interfaces. For example, copying or moving an
object from a directory to another was executed using one action only in command-
language interfaces but needed two actions to be completed in graphical user
interfaces. So users often copied or cut one or more files but did not complete the
copy or move operation, respectively.

A serious error category, committed by both novice and expert users, concerned
the deletion of objects; users often deleted a folder without being aware of its content.
This error category was dangerous because the results could be devastating. In a
standard explorer, some measures have been taken against the loss of useful
information due to accidental deletion of files or folders. For example, there is a
confirmation message after the execution of the deletion command and there is also
the recycle bin. However, the confirmation message gives information about the name
of the folder deleted, only after the user has deleted one folder.

Figure 1: The user’s initial file store state in the first example

For example, an error that was made by one user in the protocols examined
concerned the deletion of four folders (the user’s file store state is shown in Figure 1).
The user selected the folders ‘Projects’, ‘Temp’, ‘Test’ and ‘Tests’ to delete them.
However, the user did not really intend to delete the folder ‘Projects’ but the folder
‘Project’. The cause of the error was due to the fact that the user had accidentally
selected the folder called ‘Projects’ instead of the folder called ‘Project’, which was
empty. The standard explorer produced a confirmation message about the deletion of
the four folders (Figure 2), but it did not mention the names of the folders to be
deleted. Furthermore, it had no reasoning mechanisms to recognise that the deletion
of the folder ‘Projects’ was probably undesired by the user. Therefore, the user
deleted the four folders without realising s/he had made an error.

58 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

Figure 2: The confirmation message of the standard explorer for the deletion of 4
items.

The consequences of the above mentioned error could have been more destructive

if the user had skipped the Recycle bin before realising that s/he had deleted the
wrong folder. Indeed, expert users usually omitted intermediate stages in deletion
plans. In the protocols selected there were several cases when the expert users omitted
the Recycle bin by pressing the shift key. For example, an expert user wanted to
delete the folders ‘bill1’ and ‘games’ (Figure 3). He selected the folders “bill2” and
“games”, he pressed the shift key and then selected the command delete.

Figure 3: The user’s file store state in the second example

Being mistakenly sure of his selection, he responded positively to the warning
message of the standard explorer: “Are you sure you want to delete these 2 items?”
However, the user’s real intention was to delete the folder “bill1” rather than “bill2”.
The warning message of the standard explorer informed the user that two items were
going to be deleted but it did not say which items. Moreover, the empirical evaluation
revealed that users, especially expert ones, usually responded to this message without
reading it, since it is always the same. Therefore, the user deleted the folder “bill2”
and lost valuable data.

Finally, another issue that seemed very confusing for all users and especially for
novice ones was that the recycle bin does not exist in removable drives. This is
evident in the sample session presented below.

An intermediate user deleted the folder ‘News’ from disk A. However, she then
realised that she had been mistaken and she did not really mean to delete the folder
‘News’. Therefore, she tried to regain the deleted folder. Not having realised that the
folder had been permanently deleted, she thought that it ended up in the recycle bin.

59Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

Therefore, she tried to find it in the hard disk C:\ and she used the commands of the
window presented in Figure 4. However, the result of her search of the string ‘News’
in C:\ resulted in the system finding 348 files/folders, none of which was the desired
one, and the user was further frustrated.

Figure 4: The user tries to find the lost folder

A subset of the previous error category concerned users that deleted an object
after they had copied it, though they had not pasted it yet. For example, a novice user
wanted to copy the file ‘exams.doc’ from disk A:\ to the folder C:\My Documents\.
Therefore, he executed the command copy and then deleted the file. When the user
selected the folder C:\My Documents\ and executed the command paste the system
produced the error message in Figure 5. The user tries to find the file in the disk A:\
but unfortunately, it had been permanently deleted.

Figure 5: Error message for copying a file that has been deleted

60 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

The error probably occurred because the user believed that the object had been
temporarily stored in the clipboard. However, the clipboard only stores the location of
the object selected to be copied. In case the object is deleted and then pasted, the
system is not capable of recovering the deleted object. In the particular case, the
novice user’s real intention was to move the file ‘exams.doc’ from a removable disk
to his/her hard disk, but the user was not aware of the usage of command cut.

In addition, help provided by standard file manipulation programs did not seem to
be sufficient, especially for novice users. Asking for help in standard file
manipulation programs, presupposes that the users know how to ask for help [Virvou,
Jones and Millington, 00]. This is one of the main reasons why users, especially
novice ones, encounter many problems in the use of programs and make many errors
that result in failure to achieve their goals. Moreover, both expert and novice users
tended to reproduce the same kind of mistake over and over. Therefore, the help given
to users should be more individualised by taking into account their history record.
This could be achieved by keeping a long term user model for every user [Rich, 99].

As a result of the identified usability problems, the human experts categorised all
users’ errors in five categories. These categories are presented below:
! Command errors: Cases where the user had selected the wrong command

with respect to his/her hypothesised intentions or cases where a command had
failed. For example, some users confused the usage of ‘cut’/‘copy’ and ‘paste’
commands.

! Structure errors: Cases where the user had made mistakes due to his/her
unawareness of the structure of a standard file manipulation program. For
example, when the user confused the parent folder on the left part of the
explorer with the folder shown on the right part of the program. These errors
were mainly made by novice users due to their lack of knowledge about the
system and its operations.

! Spelling errors: Errors that were made because a user tangled up objects with
similar names.

! Mouse errors: Errors that were made because the user had tangled up
neighbouring objects in the graphical representation.

! Identical name errors: Cases where the user confused objects with exactly the
same name that were situated in different places in the file store.

In general, all errors belonging to the last three categories were considered as

accidental slips, which means that the user tangled up neighbouring objects or
commands in the graphical representation or objects with similar names, for example
“Doc” and “Docs”.

3.3 Use Cases

The users’ plans recognised during the experimental study served as the basis for the
construction of use case diagrams. Use case is a modelling technique incorporated in
UML which may be used to describe what a new system should do or what an
existing system already does [Eriksson and Penker, 98].

However, Muller, Haslewanter & Dayton [Muller, Haslwanter and Dayton, 97]
point out that there may be some problems with the use case driven approach. One
problem is that the use case model usually is written with the software system as the

61Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

focus of attention. They mean that the use cases give too little priority to the end-users
and that each use case has been made up by software engineers to represent user
actions. To overcome these problems it is necessary to model the use cases in
participation with the end-users [Lif, 98]. Indeed, in the context of IFM, we
constructed use case diagrams after having analysed the results of the experimental
study where users and human experts had participated. In particular, we identified the
use cases where users tended to have problems.

"uses"

delete S from
current position

place S into
c lipboard

copy from
c lipboard into T

select(S)

copy(S)

cut(S)

select(T)

User

paste(T)

" uses"

"uses"

" uses"

"uses"

"uses"

" uses"

Figure 6: Use case diagram for “cut”, “copy” and “paste”

The use cases that have the relation communicates with the user, correspond to

users’ actions. A «uses» relationship between use cases means that an instance of the
source use case also includes the behaviour described by the target use case [Muller,
97]. In the context of our study, the «uses» relationship between use cases reveals
similarities between user actions that may be confusing for users. For example, the
use case diagram in Figure 6, illustrates the actions “cut”, “copy” and “paste”. In this
diagram, it is shown that all three actions (cut, copy and paste) are related to a use
case “select” which means that a user has to select an object before using these
actions. Moreover, the actions “cut” and “copy” are related with a use case that places
an object into the clipboard.

However, unlike the use case “copy”, in the use case “cut” there is one more
relationship «uses» with the use case “delete the selected object from current
position”. Therefore, the diagram of the example shows that “cut” and “copy” have a
strong similarity in their functionality from the point of view of a user. The action
“paste” bears also a similarity to “cut” and “copy”. Similarities like this have been
taken into consideration for the construction of the underlying hierarchies of the
system’s knowledge base as will be described in the next section.

62 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

4 Design and Implementation of IFM

In this section we describe the design of the latest executable release of IFM in the
iterations of its life cycle.

4.1 Overall Description

Intelligent File Manipulator (IFM) is a graphical user interface for file manipulation
that provides intelligent help to its users. IFM monitors users’ actions and reasons
about them. In case it diagnoses a problematic situation, it provides spontaneous
advice. When IFM generates advice, it suggests to the user a command, other than the
one issued, which was problematic. In this respect, IFM tries to find out what the
error of the user has been and what his/her real intention was. Therefore, an important
aim of IFM’s reasoning is error diagnosis.

The reasoning of IFM is largely performed by its user modelling component
which tries to model the user in terms of his/her possible intentions and possible
mistakes. For this reason the user modelling component employs two reasoning
mechanisms, which work independently of each other and are combined in order to
show what the user may have really thought when s/he issued a command.

The first reasoning mechanism is used for recognising the users’ goals and is
based on what we call “instabilities”. The second reasoning mechanism is based on
HPR and is used to simulate the users’ incorrect thinking that may have led them to
possible mistakes. The second reasoning mechanism is also influenced by the
recorded style, habits and error proneness of each individual user via HPR’s certainty
parameters as will be explained in more detail in Section 4.2.2. In this way, IFM may
respond in a more adaptive way than a standard explorer since it can automatically
adapt the messages that it generates to the individual user’s needs.

IFM evaluates each user’s action with respect to its relevance to the user’s
hypothesised goals. As a result of this evaluation each action is categorised in one of
four categories, namely, expected, neutral, suspect and erroneous. Depending on the
category, where it is categorised, the action is processed further by IFM or not.

In particular, if an action is compatible with the system’s hypotheses about the
user’s intentions, it is categorised as expected. If it is neither expected nor
contradictory to the user’s hypothesised goals, it is categorised as neutral. In the cases
of expected and neutral, the system executes the user’s action normally without
further notice.

If an action contradicts the system’s hypotheses about the user’s intentions it is
categorised as suspect. Finally, if an action is wrong with respect to the user interface
formalities it is categorised as erroneous. In the cases of suspect and erroneous, the
system tries to generate an action other than the one issued that would fit better in the
context of the user’s hypothesised intentions. The alternative action has to be similar
to the one issued and is generated based on HPR’s statement transforms which
transform the given action.

The categorisation of user actions in one of the four categories is done by the
goal recognition mechanism which is based on instabilities. Instabilities are added
and/or deleted from a list as a result of user actions. For example, when a user issues a
cut or copy action this results in the addition of an instability to the list of instabilities.
This instability is removed if the user issues a paste action. Another example is the
creation of an empty folder, which also adds an instability because the system would

63Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

expect a subsequent user action by which the folder would acquire a content or be
deleted. Indeed, the instability, which is associated with the existence of an empty
folder, is deleted if a user issues an action that assigns some content to the empty
folder or removes the folder. In this sense, an addition of an instability signifies the
initiation of a user’s plan whereas the deletion of an instability signifies the
continuation of a plan.

An action is considered expected if it deletes at least one of the existing
instabilities of the file store state. It is considered neutral if it neither adds nor deletes
instabilities and suspect if it only adds instabilities although there are already other
instabilities that have not been deleted or when an action violates an existing
instability before this has been deleted as a result of another action. However, IFM
uses the categorisation of user actions as a way of acquiring some idea about which
action may need more attention. By no means does it intervene based only on the
categorisation of commands.

A very simple example of an interaction of a user with IFM is the following:
The user created a new folder in the hard disk, inside the folder C:\My

Documents\ which s/he called ‘temp’. At that stage, the user’s file store is shown in
Figure 7. Then the user selected the file A:\unit1.txt and issued a cut command. This
action was considered as neutral and was executed normally. However, the user then
selected the folder C:\My Documents\temp and issued a copy command. IFM
considered this action suspect because in case it was executed it would delete the
content of the clipboard before it was used. In terms of instabilities, this action was
suspect because it violated the existing instability that was associated with the “cut„
command before this was deleted as a result of another action. Therefore, IFM
transformed the action based on the incorporated adaptation of HPR. The
transformation of the given action is done in a way that similar alternatives which
would not be suspect or erroneous can be found.

IFM evaluated the possible similar alternatives and found that the user probably
meant to issue: paste(C:\My Documents\temp\) because ‘copy’ and ‘paste’ are very
similar according to HPR transformations when applied to the hierarchy of users’
actions (a part of which is illustrated in Figure 9). Moreover, the action paste(C:\My
Documents\ temp\) is considered as expected because it uses the content of the
clipboard and gives contents to the newly created folder ‘C:\My Documents\temp\’
which is empty. In this way it deletes two existing instabilities without adding any
new one.

Therefore, the user is informed about the system’s advice. However, the user is
not obligated to follow this advice. S/he may execute his/her initial action or issue a
completely new one. In the particular example, the user found the system’s advice
very helpful and, consequently, adopted its suggestion. Then, the user formatted the
floppy disk, which was his/her final goal. In case the user had used a standard file
manipulation program, his/her error in command 4 would not have been recognised
and the user would have formatted the floppy disk and would have lost the useful file
‘unit1.txt’.

64 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

Figure 7: The user’s file store state

4.2 The Knowledge Base of IFM

One important reasoning mechanism in IFM is based on an adaptation of HPR theory.
HPR assumes that a person has a partial knowledge of a domain and when s/he is
asked about something that s/he does not know, s/he tries to infer the answer from
what s/he knows and is relevant to the question asked. The inferred answer may be
correct or incorrect; in any case it is a plausible guess.

In IFM, we have used this reasoning to simulate users when they make
“plausible” human mistakes. In our case, we assume that an error has resulted from
reasoning that has been incorrect but is still plausible.

4.2.1 Hierarchies in Class Diagrams

In HPR, human knowledge about a domain is represented as a collection of
statements. An example of a statement is: precipitation(Egypt) = very-light, which
means that the precipitation of Egypt is very light. Precipitation is called a descriptor,
Egypt is called an argument and very-light is called a referent. A descriptor is said to
apply to an argument and together they form a term.

The simplest class of inference patterns are called statement transforms.
Statement transforms exploit the 4 possible relations among arguments and among
referents to yield 8 types of statement transform. There are eight statement transforms
which allow plausible conclusions to be drawn. The argument transforms move up,
down or sideways in the argument hierarchy using GEN, SPEC, SIM or DIS
respectively. The referent transforms do the same in the referent hierarchy. For
example, from the statement flower-type(England)=roses, we can make the following
statement transforms, given the type hierarchy for geographic regions shown in
Figure 8 and a similar type hierarchy for flowers (not illustrated).

Argument transforms

GEN flower-type(Europe)=roses

SPEC flower-type(Surrey)=roses

SIM flower-type(Holland)=roses

DIS flower-type(Brazil)≠roses

65Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

Referent transforms
GEN flower-type(England)=temperate flowers

SPEC flower-type(England)=yellow roses

SIM flower-type(England)=peonies

DIS flower-type(England)≠bougainvillea

Figure 8: Hierarchy of geographic regions

The core theory also introduces certainty parameters, which are approximate

numbers ranging between 0 and 1. Certainty parameters affect the certainty of
different plausible inferences.

SIM and DIS statement transforms depend on the degree of similarity (σ), which
represents the similarity of one set to another one. In particular, if the degree of
similarity is almost 1 there is great confidence in the transformation, otherwise, the
confidence decreases. The degree of typicality (τ) represents how typical a subset is
within a set (for example, the cow is a typical mammal). Dominance (δ) indicates
how dominant a subset is in a set (for example, elephants are not a large percentage of
mammals). Finally the only parameter applicable to every expression is the certainty
parameter (γ). This parameter indicates the degree of belief a person has that an
expression is true. For example, in the formal representation of statement transforms
the certainty parameter γ represents the degree of certainty of a person about this
transform.

The domain knowledge in IFM concerns the use of commands and the
representation of the file store state. Concepts concerning the use of commands are
classified in hierarchies in order to be compatible with the main underlying

CONTINENTS

EUROPE

ENGLAND HOLLAND

SURREY

…

…

AMERICA

BRAZIL

NORTH
AMERICA

USA

SOUTH
AMERICA

CANADA …

…

66 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

assumptions of HPR. However, the main hierarchy of IFM’s knowledge base, that of
users’ actions represents procedural knowledge rather than declarative knowledge,
which is used in example domains for HPR. In this respect, the use case diagrams that
were specified during the requirements analysis provided an insightful basis for the
construction of hierarchies out of procedural knowledge. This was mainly due to the
nature of use cases which normally represent the functionalities of a system.
Moreover, the relation «uses» among use cases highlighted shared functionalities,
which were used for the classification of commands in hierarchies.

For example, the use case diagram in Figure 6 shows that the commands cut,
copy and paste need an argument that has to be selected before using them. In
addition, all three commands are related to the clipboard. Therefore, these three
commands have been classified as commands that take an argument and have been
placed under the “clipboard” commands; in this way they are in neighbouring
positions in the hierarchy of commands. However, cut and copy share the same
functionality concerning the placement of the selected object into the clipboard
whereas the command paste does the opposite; it takes the content of the clipboard
and places it into the selected object. Among the three commands, cut and copy are
classified under the commands that “place into clipboard” and therefore they share a
greater similarity. This can be seen in Figure 9, which illustrates the hierarchy of
users’ actions. The hierarchy represents the semantic and/or syntactic structure of
actions. Moreover, it is constructed in such a way that every descendant node of a
parent node inherits all the properties of the parent node.

User Action

Selec tor

T : item;

Cl ipboard

T : item;
Information Providers

Creator

T : Folder;
Destroyer Modifier

T : item;

Select

Place T into clipboard Take T from c lipboard

Rename

mkfi le mkDir

Open

T : i tem;

Explore

T : Folder;

delDir

T : Fo lder;

delFile

T : File;

Copy C ut Paste

mktxt mkdoc mkbmp mkwav

 Figure 9: A Class diagram representing a part of IFM’s knowledge base.

In general, we have found the UML notation quite suitable for modelling our

knowledge base. In the case of Prolog, a term may be represented as a class and its
arguments as attributes of the specific class. Furthermore, UML relationships can be
used to represent predicates (also called relations). We can distinguish predicates into
three categories according to their semantics. Predicates that correspond to an isa

67Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

relationship can be represented by a UML generalisation, for example
isa(selector(T),userAction). Others that correspond to an ispart relationship can be
represented by a UML aggregation, for example contains(folder,file). Finally, UML
association represents predicates that cannot be categorised into one of the above
categories, for example neighbouring(folder1,folder2). A hierarchical, tree-structured
knowledge base may be presented by means of generalisations. In particular, in IFM
we have used a class diagram in order to represent the structure of the Prolog
predicates involved (e.g. Figure 9). Each term situated in a leaf of the tree structure
corresponds to a user’s action. Higher-level terms indicate the categorisation of users’
actions, namely Selector, Clipboard, Information Providers, Creator, Destroyer and
Modifier. The attribute T represents the item involved in user’s action. T can be a
folder, a file, or either a folder or a file (an item).

4.2.2 Generation of Advice

When IFM considers that an action issued by a user may have been incompatible with
the user’s hypothesised intentions, it tries to generate an alternative action that the
user may have really meant to issue. The generation of possible actions to be
suggested to the user is done based on HPR transforms. However, one possible
problem in this approach is the generation of many alternatives.

A solution to this problem is ordering the alternative actions in a way that the
ones, which are most likely to have been intended by the user, come first. The
certainty parameters of HPR provide a good tool for ordering the alternatives.
Certainty parameters are used in IFM in order to calculate a degree of certainty for
every alternative action.

However, the certainty parameters of HPR were not immediately applicable in
IFM. Their meaning needed to be specified in the domain of IFM. In addition, the
exact way of calculation of one important certainty parameter, the degree of certainty
(γ), was not specified fully in HPR. In view of these problems, the full specification of
certainty parameters and their adaptation into IFM was done by taking into account
the results of the experimental study that was conducted during the early phases of
IFM’s development.

We have used five of the certainty parameters presented in HPR: degree of
certainty (γ), degree of typicality (τ) of an action in the set of all actions issued by the
user, degree of similarity (σ) of a set to another set, frequency (φ) of an error in the set
of all actions and dominance (δ) of an error in the set of all errors.

The degree of similarity is used to calculate the resemblance of two commands or
two objects. The similarity between two commands of the hierarchy is pre-calculated.
The value is estimated by taking into account the result of the commands, their
relative distance in the user actions hierarchy and finally their relative geographical
position in the graphical user interface. For example two commands that have a very
similar result, such as “cut” and “copy” commands, have a great degree of similarity.
Moreover, two commands that are neighbours in the user actions hierarchy, such as
“mktxt” and “mkdoc”, have a high degree of similarity. Finally, all users, and
especially novices that have little experience, tend to entangle commands that are
neighboring in the graphical user interface. In this case, the similarity between two
objects is dynamically calculated. The value of the similarity of two objects is
partially based on the resemblance of their names (e.g., directories “Doc” and “Docs”)

68 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

but also based on relative distance of objects in the graphical representation of the file
store.

The typicality of a command is based on the estimated frequency of execution of
the command by the particular user. The degree of frequency of an error represents
how often a specific error is made by a particular user. However, sometimes one has
to know a particular user’s weaknesses. Such weaknesses can be recognized by the
dominance of an error in the set of all errors.

Finally, all parameters are combined in order to calculate a degree of certainty
related to every alternative command generated by IFM. This degree of certainty
represents the system's certainty that the user intended the alternative command
generated. The degree of certainty determines whether this command is to be
proposed to the user or not and if it is, in what priority.

The certainty of the system’s advice is calculated as a sum of all certainty
parameters, with each parameter being multiplied to a weight, which is determined
with respect to how important the particular certainty parameter is. The formula of the
degree of certainty is shown in equation (1).

τφδσγ 1.02.03.04.0 +++= (1)

The weight of each certainty parameter was estimated based on the results of the
experimental study that took place in the early stages of the development. The
analysis of the comments of the human experts revealed important aspects that human
experts took into account when they reasoned about users’ actions in order to give
advice. For an expert to suggest an alternative action, s/he had to evaluate candidate
alternative actions in order to select the most appropriate one. The most important
criterion when evaluating an alternative action, which was going to be proposed to the
user, was the similarity of that action to the one issued by the user, because users
generally tended to tangle up actions or objects that were very similar. Thus, in the
formula, the weight of the degree of similarity is estimated to 0.4, which is the largest
weight of all.

Human experts took seriously into account whether a particular error was the
most common error of the user or not. So the weight of dominance of the particular
error in the set of all errors is 0.3. An important criterion when evaluating an
alternative action was the frequency a user made an error while interacting with the
system. The degree of frequency of the particular error is multiplied by 0.2. Human
experts were also interested to know if the user used the particular action that they
were about to propose frequently or not. It was more likely that the user intended an
action s/he has executed many times rather than another one s/he has never executed
before. So the typicality of a certain command for the particular user also plays a role
and is multiplied to 0.1.

5 Evaluating IFM’s Reasoning in Comparison with Human
Experts

After the construction of IFM was completed, the system was evaluated so that the
usefulness of its operation could be ensured. One important aim of IFM was the
development of a more adaptive and intelligent GUI than a standard explorer, which

69Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

would provide additional reasoning. This reasoning was aimed at rendering the
interaction more human-like in terms of intelligent and plausible responses of the
system to users’ errors. Therefore, an important evaluation goal was to find out how
successful IFM was at producing additional reasoning in comparison to a standard
explorer. Moreover and most importantly, IFM was evaluated as to how successful it
was at reproducing reasoning similar to human experts who observed the interaction.

For the above purposes, an experiment was conducted which was very similar to
the one described in the requirements analysis. 30 novice and expert users were asked
to interact with a standard explorer. Their actions were recorded and the protocols
collected were given to 10 human experts who were asked to comment on them. This
time, these protocols were also given as input to IFM and IFM’s responses were also
recorded. Then IFM’s responses were compared to those of a standard explorer and to
the comments that the human experts had made when they analysed the protocols.
However, both the human advisors’ comments and IFM’s responses were not seen by
the users who had interacted with a standard explorer. Hence, there were many cases
where the correctness of IFM’s hypotheses about the real intentions of the users could
be verified by the users’ subsequent actions.

5.1 A sample session

Figure 10: Actions for the creation of a new folder in A:\project3\

In Table 2, we illustrate a sample of a user protocol and show what IFM’s

reactions were to the user’s actions and how these were compared to a standard
explorer and to the reactions of human experts. The user’s initial file store state is
presented in Figure 11.

70 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

Figure 11: The user’s initial file store state

In Table 2, there are four columns. The first column illustrates the actual user’s
commands. However, due to the limited space, we use the meaning of groups of
actions rather than presenting the exact screenshots as these had been shown to human
experts. For example, if a user had selected a folder (e.g. A:\project2\), then selected
“File” from the menu bar, then selected “New”, then “Folder” (as illustrated in Figure
10), this sequence of actions is represented by the command
“create_new_folder_in(A:\project2\)”, which is a synopsis of the meaning of these
actions. The second column illustrates the reasoning of IFM that corresponded to each
command; in case a command was characterised as suspect or erroneous, IFM
generated alternative commands and suggested to the user to replace the command
issued with one of the alternatives. The third column illustrates the responses of a
standard explorer. Finally, in the fourth column we demonstrate whether IFM’s
suggestions were compatible to the human experts’ suggestions for each command.

In the sample protocol in Table 2, the reader can see that IFM may follow the
user’s reasoning in a lot more cases than a standard explorer. Commands, which are
considered “expected” by IFM show that IFM has a high degree of certainty that the
user had intended these commands. In the sample protocol such commands are the
commands 2, 5, 6, 12 and 14, which account for 1/3 of the total actions of the user.

Moreover, in the sample protocol, IFM was very successful at diagnosing two
errors of the user at commands 8 and 15, which were also recognised by the majority
of human experts but the standard explorer either did not recognise at all (e.g.
command 8) or recognised only partly (e.g. command 15). For example, at command
8 of the sample session of Table 2, the user instead of pasting a file that s/he had cut
previously, s/he issued a copy command. This resulted in a tricky situation where the
user did not realise that s/he had made a mistake and s/he was running the risk of
deleting the file which s/he erroneously believed that was moved elsewhere. This

71Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

mistake was also recognised by all of the human experts but was not recognised by
the standard explorer at all, which considered the command correct. In this case,
IFM’s reasoning was compatible with a unanimous opinion of the human experts.

USER
COMMANDS

IFM’S REASONING RESPONSE
S OF A
STANDARD
EXPLORER

COMPATIBILITY
OF IFM’S ADVICE
WITH THE
HUMAN
EXPERTS’
ADVICE

1. create_new_folder
_in(A:\)

Neutral command. No response.

2. rename(A:\NewFol
der, A:\java\)

Expected command
concerning the
renaming of the new
folder.

No response.

3. create_new_folder
_in
(A:\java1\)

Suspect command.
IFM’s alternative
command:
create_new_folder_in(A
:\java\). This command
is suggested because the
newly created A:\java\
has no contents,
whereas A:\java1\
already has a lot of
contents.

No response. IFM’s reasoning was
compatible with the
opinion expressed by
30% of the human
experts.

4. delete
(A:\java1\New
Folder\)

Neutral command. Are you sure
you want to
remove the
folder ‘New
Folder’ and
all its
contents?

5. create_new_folder
_in (A:\java\)

Expected command.
This command verifies
IFM’s suggestion in
action 3.

No response.

6. rename
(A:\java\New
Folder\,
A:\java\programs\)

Expected command. No response.

7. cut(A:\java1\exerci
seA\optional\exerc
ise.java)

Neutral command. No response.

Table 2: A part of a user’s protocol with IFM’s comments and comparison with a

standard explorer and human experts’ comments

72 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

USER COMMANDS IFM’S REASONING RESPONSES
OF A
STANDARD
EXPLORER

COMPATIBILITY
OF IFM’S ADVICE
WITH THE HUMAN
EXPERTS’ ADVICE

8. copy
(A:\java\programs\)

Suspect command.
IFM would expect a
“paste” action following
the “cut” action at
command 5.
IFM’s alternative
command:
paste(A:\java\programs\).
This command is
suggested because copy is
similar to paste and
A:\java\programs\ has been
selected by the user .
Moreover,
A:\java\programs\ is a
newly created folder (on
top of a stack of recently
created folders) that has
not been assigned any
content yet.

No response. IFM’s reasoning about
the possible error of the
user and the need of a
“paste” action was
compatible with the
opinion expressed by
the majority of the
human experts (100%).

9. create_new_folder_in
(A:\)

Neutral command. No response.

10. rename(A:\New
Folder\, A:\
java2\)

Neutral command. No response.

11. cut(A:\java1\
exerciseB\
user_manual.doc)

Neutral command. No response.

12. paste(A:\java2\) Expected command. No response.
13. cut

(A:\java1\exercise
B\essay.doc)

Neutral command. No response.

14. paste(A:\java2\) Expected command. No response.
15. deldir(A:\java1\

exerciseA\)
Suspect command.
IFM’s alternative
command:
deldir(A:\java1\exerciseB\)
. This command is
suggested because
A:\java1\exerciseB\ has
been left empty unlike
A:\java1\exerciseA\.
Moreover, the names of the
folders are very similar and
one could have been
mistaken for the other.

Are you sure
you want to
remove the
folder
‘exerciseA’ and
all its contents?

IFM’s reasoning was
compatible with the
opinion expressed by
70% of the human
experts.

Table 2 cont.: A part of a user’s protocol with IFM’s comments and comparison with

a standard explorer and human experts’ comments

However, there were cases where there was a diversity of human experts’
opinions. In those cases, IFM’s advice was usually identical to the advice of the
majority of human experts (e.g. in command 15 of the sample session of Table 2). In

73Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

this particular command IFM recognised an error, which was also recognised by 70%
of the human experts. In this case, the user tried to delete a folder which had a lot of
contents although in the previous commands 11-14 s/he had emptied a similar but
different folder by moving all of its contents elsewhere. IFM in common with 70% of
the human experts thought that the user probably really meant to delete the emptied
folder rather than the one selected. However, the standard explorer only prompted the
user with a generic confirmation message of the type: “Are you sure you want to
remove the folder ‘exerciseA’ and all its contents?” Unlike IFM, it did not suggest
any alternative command that the user may have meant instead of the one issued.

In fewer cases IFM’s advice was compatible to the advice provided by a minority
of experts (e.g. in command 3 of the sample session demonstrated in Table 2).
However, it is worth noting that in the particular command the user’s subsequent
actions (4 and 5) verified the correctness of IFM’s hypothesis.

In total, in the sample session IFM managed to follow the user’s correct or
incorrect reasoning successfully in 5 “expected” commands and 3 “suspect”
commands which account for more than half of the commands of the session. In
contrast, a standard explorer has no reasoning concerning commands, which are
compatible or incompatible with the users’ intentions and thus cannot follow the
user’s reasoning in the way that IFM can.

5.2 Summative Results

The users’ protocols that were examined in this experimental study consisted of 1260
users’ actions. In these actions, there were 135 erroneous or possibly erroneous
actions according to a standard file manipulation program. All of these possibly
erroneous actions, which accounted for 11% of the total actions, were prompted with
the standard explorer’s error and/or confirmation messages. In the 1260 actions, the
majority of human experts identified 185 possibly unintended actions, which
accounted for 15% of the total actions. These possibly unintended actions included
the ones that were prompted with error messages by a standard explorer but they did
not necessarily include the commands that were prompted with warning/or
confirmation messages (e.g. command 4 in the sample session). In addition, they also
included commands that were “correct” according to a standard explorer’s formalities
but were incompatible with the users’ intentions (e.g. commands 8 and 15 of the
sample session in Table 2). IFM recognised 226 possibly unintended actions, which
accounted for 18% of the total actions.

Table 3 summarises the total actions that were considered as possibly unintended
according to a standard explorer, IFM, a unanimous opinion of human experts, the
majority of human experts and at least a minority of human experts respectively.
Examples of such considerations can be found in the sample session of Table 2:
Commands 4 and 15 were considered possibly unintended by a standard explorer
(13% of the total actions of the sample session). Commands 3, 8 and 15 were
considered possibly unintended by IFM (20% of the total actions of the sample
session). Command 8 was considered possibly unintended by all of the human experts
(6% of the total actions of the sample session). Commands 8 and 15 were considered
possibly unintended by the majority of human experts (13% of the total actions of the
sample session). Commands 3, 8 and 15 were considered possibly unintended by at
least a minority of human experts (20% of the total actions of the sample session).

74 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

However, it must be noted that the actual percentages in Table 3 do not indicate
the success or not of IFM and the standard explorer in comparison with human
experts because these percentages do not show how compatible the views of IFM or
the standard explorer were with the views of human experts. For example, in the
sample session the standard explorer produced a warning message in two commands
(command 4 and 15). This number is the same as the number of commands that were
considered as unintended by the majority of human experts (command 8 and 15).
However, the actual commands that alerted the majority of human experts were not
identical to the commands that alerted the standard explorer. On the other hand, the
commands that alerted the majority of human experts also alerted IFM.

In view of these quality differences, the degree of success of IFM and the
standard explorer was measured by the degree of compatibility of their alert with that
of the human experts. For example, in the sample session, the possibly unintended
commands that were identified by both the majority of human experts and IFM were
2 (commands 8 and 15). In this session the compatibility of alert of IFM with the
majority of human experts was 100%. On the other hand, in the sample session there
was just one possibly unintended command (15) that was identified by both the
majority of the human experts and the standard explorer although the majority of
human experts had identified two commands (8 and 15). Hence in this session the
compatibility of alert of the standard explorer with the majority of human experts was
just 50%. Table 4 illustrates the rates of compatibility of alert of IFM and the standard
explorer with human experts in the total 1260 actions of the experiment.

 All sessions Sample Session of
Table 2

Total Actions 1260
Total possibly unintended actions according
to the standard explorer

135 (11%) 13%

Total possibly unintended actions according
to IFM

226 (18%) 20%

Total possibly unintended actions according
to a unanimous opinion of human experts

96 (8%) 6%

Total possibly unintended actions according
to the majority of human experts

185 (15%) 13%

Total possibly unintended actions according
to at least a minority of human experts

252 (20%) 20%

Table 3: Summative results about considerations of users’ possibly unintended

actions

75Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

 IFM Standard explorer
Possibly
unintended
actions
identified by
IFM and all
human
experts

Possibly unintended
actions identified by
IFM and all human
experts/Possibly
unintended actions
identified by all
humans

Possibly
unintended
actions
identified by
a standard
explorer and
all human
experts

Possibly
unintended actions
identified by
standard explorer
and all human
experts/Possibly
unintended actions
identified by all
humans

Compatibility
of alert in
cases where
the human
experts had a
unanimous
opinion

88 88/96=92% 52 52/96=54%

Possibly
unintended
actions
identified by
IFM and the
majority of
humans

Possibly unintended
actions identified by
IFM and the
majority of
humans/Possibly
unintended actions
identified by the
majority of humans

Possibly
unintended
actions
identified by
standard
explorer and
the majority
of humans

Possibly
unintended actions
identified by
standard explorer
and the majority
of
humans/Possibly
unintended actions
identified by the
majority of
humans

Compatibility
of alert with
the majority of
human experts

164 164/185=89% 87 87/185=47%

Possibly
unintended
actions
identified by
IFM and at
least a
minority of
human
experts

Possibly unintended
actions identified by
IFM and at least a
minority of human
experts/Possibly
unintended actions
identified by at least
a minority of human
experts

Possibly
unintended
actions
identified by
standard
explorer and
at least a
minority of
human
experts

Possibly
unintended actions
identified by
standard explorer
and at least a
minority of human
experts /Possibly
unintended actions
identified by at
least a minority of
human experts

Compatibility
of alert with at
least a
minority of
human experts

218 218/252=87% 97 97/252=38%

Table 4: Comparison of the standard explorer and IFM with human experts’ alert.

Concerning the comparison of IFM’s responses to human experts’ responses the

results were very encouraging. The compatibility of the recognition of possibly
unintended actions of IFM with the majority of human experts was 89%, whereas the
respective degree for the standard explorer was just 47%. In cases where all human
experts thought that the user’s action was unintended, IFM had been alerted as well in
92% of these cases. However, the standard explorer was only alerted in 54% of these
actions. Hence, IFM proved to be very successful in cases were there was a total
agreement of human experts’ opinions.

76 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

Compatible
advice of
IFM with a
unanimous
opinion of
human
experts

Compatible
advice of IFM
with a unanimous
opinion of human
experts/ Possibly
unintended
actions identified
by all humans

Compatible
advice of
standard
explorer
with
unanimous
of human
experts

Compatible
advice of
standard
explorer with
unanimous of
human experts
/Possibly
unintended
actions
identified by all
humans

Compatibility
of advice in
cases where
there was a
unanimous
opinion of
human
experts

88
commands

88/96=92% 17
commands

17/96=17.7%

Compatible
advice of
IFM with
the
majority of
humans

Compatible
advice of IFM
with the majority
of
humans/Possibly
unintended
actions identified
by the majority of
humans

Compatible
advice of
standard
explorer
with the
majority of
humans

Compatible
advice of
standard
explorer with
the majority of
humans/Possibly
unintended
actions
identified by the
majority of
humans

Compatibility
of advice
with the
majority of
human
experts

153
commands

153/185=82.7% 17
commands

17/185=9%

Compatible
advice of
IFM with
at least on
human
expert

Compatible
advice of IFM
with at least on
human expert /
Possibly
unintended
actions identified
by at least a
minority of human
experts

Compatible
advice of
standard
explorer
with at
least a
minority of
human
experts

Compatible
advice of
standard
explorer with at
least on human
expert/Possibly
unintended
actions
identified by at
least a minority
of human
experts

Compatibility
of advice
with at least
one human
expert

188 188/252=75% 17 17/252=7%

Table 5: Comparison of the standard explorer and IFM with human experts’ advice

However, even in cases where the same commands alerted both the human

experts and the standard explorer, the content of the advice of these two parties was

77Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

not necessarily the same. For example, at command 15 of the sample session both the
human experts and the standard explorer were alerted. Despite this fact, the majority
of human experts would suggest the user to delete a particular folder other than the
one mentioned in the command issued whereas the standard explorer would only
produce a generic confirmation message. On the other hand, IFM produced the same
content of advice as the majority of human experts in this particular command.

In view of these differences/similarities in the content of advice generated in the
cases of alert we have compared IFM and the standard explorer in terms of the
compatibility of their advice with that of the human experts (Table 5). In this aspect
IFM proved to be much more similar to the human experts than the standard explorer.

The experiment revealed that IFM reacted in many more cases where the human
experts had reacted as well than the standard explorer and produced much more
similar advice to that of human experts. Furthermore, the value of the degree of
compatibility of IFM’s advice with human experts revealed that the system could
successfully reproduce human experts’ advice to a satisfactory extent. In particular,
IFM was especially successful at recognising errors that looked quite obvious to a
human advisor but were not recognised by a standard explorer at all. Such errors were
recognised by all of the human experts. Recognising “obvious” human errors is a
great improvement in a user interface in terms of its user-friendliness; this cannot be
achieved if human reasoning is not incorporated into a system. However, even human
advisors, in their minds, may only model an approximation of users’ beliefs.
Therefore, it was beyond the scope of IFM (and consequently of the evaluation) to
produce reasoning that would exceed the capabilities of human experts who observed
the interaction.

6 Evaluating User-IFM Interaction

Another usability test of IFM involved observing how novice and expert users
interacted with IFM and how useful IFM could be in terms of recognising, diagnosing
and preventing errors made by both expert and novice users.

6.1 The Experiment

For the usability evaluation of IFM, 16 users were selected. They had diverse
backgrounds and interests and constituted a representative sample of expert and
novice users. All 16 users were asked to interact with IFM, as they would normally do
with a standard file manipulation program. Thus, in case IFM diagnosed a
problematic situation, it informed the user that perhaps there was something wrong
and suggested an alternative command.

The experiment required making observations about the users as they interacted
with the system. Therefore, computer logging was used in order to register all users’
action. The protocols collected were studied very carefully after the completion of the
users’ interaction with IFM and then the users were also interviewed so that they
could give their own views bout what had happened during their interaction with the
system.

A sample session of a user’s interaction with IFM together with IFM’s reasoning
is illustrated in Table 6. The first column presents the user’s commands and the
second column illustrates IFM’s reasoning. In case a command was considered

78 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

neutral or expected, it was executed normally. Otherwise, IFM informed the user that
s/he was probably mistaken. The full reasoning of IFM together with the alternative
commands that it suggested are presented in the second column of Table 6. Figure 12
illustrates the file store state of the particular user at the beginning of the sample
session. The folder A:\18-7-2001\ contains three files, named “submitted.doc”,
“program.pas”, “report.doc”.

Figure 12: The user’s initial file store state

In the example presented in Table 6, IFM succeeded at providing the right advice
at command 7 where the user had accidentally selected “delete” instead of “rename”
from the drop-down menu. Thus, IFM succeeded at preventing the user from issuing a
catastrophic accidental deletion of a newly created folder where s/he had already
moved 2 files and copied one file. Moreover, at command 12, IFM was rightfully
alerted when the user attempted to paste the whole folder A:\18-7-2001\, into another
folder, A:\15-10-2001\, where s/he had already pasted the contents of A:\18-7-2001\.
IFM generated a plausible alternative by transforming the copy command and
suggested that perhaps the user wanted to copy a folder other than the one selected
with a very similar name.

However, the user had made a mistake in the paste command and had selected the
wrong folder. Internally, IFM had generated this command as well but it selected to
show to the user the one with the highest similarity to the command issued.

6.2 Analysis of the protocols

After the users had completed their interaction with IFM, the protocols were collected
and were given to 5 human experts to comment on them. The human experts were
asked to evaluate IFM’s reasoning in the light of the users’ actions. Therefore, IFM
was evaluated in terms of how successful it was at following the users’ reasoning and
producing helpful advice. The success of IFM at following the users’ reasoning was
estimated by taking into account how often users’ actions were considered as
expected and how often users’ actions were rightfully considered as suspect.

79Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

USER’S COMMANDS IFM’S COMMENTS
1. create_new_folder_in(A:\) Neutral command.
2. explore(A:\18-7-2001\) Neutral command.
3. cut(A:\18-7-

2001\submitted.doc)
Neutral command.

4. paste(A:\New Folder\) Expected command.
This command deletes the instability added in
the previous action by the cut command.

5. cut(A:\18-7-2001\program.pas) Neutral command.
6. paste(A:\New Folder\) Expected command.

This command deletes the instability added in
the previous action by the cut command.

7. delete(A:\New Folder\) Suspect command.
This command will result in losing many
valuable files and folders. [IFM’s suggestion:
Did you mean to rename New Folder? Delete
and rename are in neighbouring positions in
the menu of commands.]

8. rename(A:\New Folder\,
A:\15-10-2001\)

Expected command.
This command deletes the instability for the
name New Folder of the newly created folder.
This action verifies the correctness of IFM’s
suggestion in command 7.

9. copy(A:\18-7-2001\report.doc) Neutral command.
10. paste(A:\15-10-2001\) Expected command.

This command deletes the instability added in
the previous action by the copy command.

11. copy(A:\18-7-2001\) Neutral command.
12. paste(A:\15-10-2001\) Suspect command.

A:\15-10-2001\ already contains a copy of the
contents of A:\18-7-2001\. [IFM’s suggestion:
In the current command and the previous one,
did you really mean what you have issued i.e.
to copy A:\18-7-2001\ into A:\15-10-2001?
Yes No
Or perhaps you really meant to do one of the
following:
1. Copy A:\14-7-2001 and paste it into A:\15-
10-2001? Yes No
2. Other commands Yes No
The user selects “Other commands” and issues
the replacement command 13.

13. paste(A:\10-9-2001\) Expected command.
This command deletes the instability added in
action 11 by the copy command.

14. delete(A:\18-7-2001\) Expected command.
This folder contains copies of files that can be
found elsewhere and therefore its existence is
pointless.

Table 6: A part of a user protocol with IFM’s reasoning

80 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

In case an action was considered by IFM as expected it meant that IFM had been
successful at recognising the user’s intentions and following the user’s reasoning. On
the other hand, IFM was considered to have been rightfully alerted if it prompted the
user with an “alert message” about an action being suspect and the user acknowledged
his/her error by issuing a corrective action. Moreover, in cases when the corrective
action issued by the user was the same as the one generated by IFM, then IFM was
considered totally successful at producing helpful advice.

Total protocol actions 619
 Actions Percentage
Expected 195 195/619=32%
Suspect 88 88/619=14%
Neutral 294 294/619=47%
Erroneous 42 42/619=7%
Suspect + Erroneous 130 130/619=21%

Table 7: Categorisation of commands according to IFM

In the example of Table 6 there were 6 expected actions out of 14, which

accounted for 42% of the total actions. Moreover, IFM was rightfully alerted in two
actions (action 7 and action 12). If these 2 actions are added to the 6 expected actions
then this accounts for 57% of the total actions where IFM was successful at following
the user’s reasoning and recognising his/her intentions. IFM was totally successful at
producing helpful advice in action 7.

In all the collected protocols, which consisted of 619 actions, IFM categorised
these actions in the way that is illustrated in Table 7. IFM was alerted in commands
that it considered as suspect or erroneous. In total there were 130 actions that were
considered suspect or erroneous which accounted for 21% of the total actions. In
these actions, IFM produced messages containing advice to the user. IFM managed to
recognise 195 (32%) actions as expected and was rightfully alerted in 102 (16%)
actions. If we sum up these actions and divide them by the total actions of the users,
we find out that IFM managed to follow 48% of the total actions of the users.

IFM was considered to have failed completely to produce helpful advice when it
was not alerted at all in cases where a user had a problem. Indeed, IFM could not
recognise all users’ errors. There were cases where the users had made a mistake but
IFM did not recognise it at all. This might have happened because IFM had not
realised that the user’s action was suspect. However, in most problematic situations,
IFM did categorise the user’s action as suspect but in some cases it could not find any
alternative actions to propose to the user. In those cases the action was normally
executed and the user suffered the consequences of his/her action. One way or
another, IFM did not intervene in 22% of the users’ actions that resulted in a state that
was undesired by these users as it was revealed by the users’ interviews.

Finally, IFM was considered to have been misleading when it was unnecessarily
alerted. In general, IFM was unnecessarily alerted in approximately 5% of the total
actions. Finally, there was a small percentage (10%) of the cases that IFM intervened,
where the user admitted that s/he had made an error but his/her next action was not at
all compatible with IFM’s advice. However, this does not necessarily mean that IFM

81Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

had given the wrong advice; perhaps the users changed their plans after they were
notified about their possible mistakes.

The above rates have been estimated as the average between the rates of novice
and expert users. In fact, the rates of novice and expert users separately show that
IFM has been more successful in the category of novice users than in the category of
experts. Finally, we have observed that users learn from their own mistakes if there is
a system advising them and the rate of error occurrence gradually decreases. This
does not happen in standard file manipulation programs, as we have observed during
the empirical evaluation. Moreover, through IFM’s usage we have an increase of the
cases where users reach their final goals and do not lose useful information that they
cannot recover.

7 Discussion and Conclusions

In this paper, we have presented the software engineering approach that we have used
for the development of an intelligent assistant of users’ errors. The assistant
developed, relies heavily on a novel adaptation of the cognitive theory Human
Plausible Reasoning into a GUI that deals with file manipulation.

The multiple iterations of the software life cycle, were particularly useful for
constructing and refining the knowledge-base of the system. To a large extent, this
was achieved due to the multiple evaluations of the design that allowed the
involvement of users and human advisors in experimental studies. Though multiple
evaluations are also advocated by user interface designers [Sommerville, 92], [Dix et
al., 93], [Shneiderman, 98], [Olsen, 98], in the case of knowledge-based user
interfaces that incorporate user modelling techniques, evaluations are often neglected
completely. This may have disasterous consequences on the system’s overall
credibility and effectiveness. On the other hand, multiple experimental studies allow
the refinement and correction of the design at early stages of the development.
Moreover, they render the knowledge elicitation and acquisition procedures more
effective.

This was certainly the case in IFM where human advisors were asked to comment
on user protocols and thus reveal many aspects of their reasoning at different stages of
the development of the system. In this way, we specified what is missing from the
reasoning of standard applications in comparison with human observers. Moreover,
we specified fully the aspects of HPR, which were not completely specified originally
and achieved an adaptation of the theory that was compatible with the human experts’
reasoning and the users’ reasoning.

Another advantage of the experiments that were conducted at several stages of the
development, was the fact that the same experimental settings could be used in all
phases. In particular, the methods that we used for evaluation were largely based on
comparisons of the file manipulation programs with human experts’ reasoning who
were acting as observers of the interaction. In this way, we could approach the goal of
rendering the interaction more human-like by eliciting and refining the knowledge
and reasoning of a human observer of a human user of a GUI rather than the human
user directly.

Overall, the results of the evaluation revealed that indeed users often encounter
problems with the use of a standard explorer; therefore the existence of an intelligent

82 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

assistant would be needed. In addition, IFM’s final release was quite successful at
producing reasoning similar to the majority of human experts that took part in the
evaluation. However, generally user modelling components of user interfaces may
only model an approximation of users’ beliefs. Therefore, it was beyond the scope of
IFM to produce reasoning that would exceed the capabilities of human experts who
observed the interaction.

Finally, the report on the development cycle of IFM clarifies issues related to the
construction of intelligent assistance, such as what is aimed, what is achieved, how
theories and models may be employed for the construction of software that will
respond to real users’ needs. Indeed, Delisle and Moulin [Delisle and Moulin, 02]
after having reviewed the literature in user interfaces and help systems conclude that
work on help systems would greatly benefit from in-depth studies of today’s users’
frustrations and expectations. The scarcity of similar reports in the literature of
intelligent assistance renders this paper a source of know-how for the future
developments in the field.

References
 [Chin, 89] Chin D.N.: “KNOME: Modeling What the User Knows in UC”, in Kobsa A. and
Wahlster W. (eds.) User Models in Dialog Systems, 1989, 74-107.

[Chin, 01] Chin, D.N.: “Empirical Evaluation of User Models and User-Adapted Systems”,
User Modeling and User Adapted Interaction, 2001, Vol. 11, No. 1/2, 181-194.

[Collins and Michalski, 89] Collins, A., Michalski, R.: “The Logic of Plausible Reasoning: A
core Theory”, Cognitive Science, 1989, Vol. 13, 1-49.

[Delisle and Moulin, 02] Delisle, S., Moulin, B.: “User Interfaces and Help Systems: From
Helplessness to Intelligent Assistance”, in: P. Mc Kevitt (Ed.) Artificial Intelligence Review,
2002, Vol. 18, No. 2, 117-157.

[Dix et al., 93] Dix, A., Finlay, J., Abowd, G., and Beale, R.: “Human-Computer Interaction”
NY: Prentice-Hall, 1993.

[Eller and Carberry, 92] Eller, R., Carberry, S.: “A Meta-rule Approach to Flexible Plan
Recognition in Dialogue”, in User Modeling and User-Adapted Interaction, 1992, Vol. 2, No.
1-2, 27-53.

[Eriksson and Penker, 98] Eriksson, H.E., Penker, M.: “UML Toolkit”, John Wiley & Sons Inc,
1998.

[Höök, 00] Höök, K.: “Steps to take before intelligent user interfaces become real,” Interacting
with Computers, 2000, Vol. 12, 409-426.

[Horvitz et al., 98] Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and Rommelse, K.: “The
Lumiere Project: Bayesian User Modeling for Inferring the Goals and Needs of Software
Users”, Proceedings of the fourteenth Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann: San Francisco, 1998, 256-265.

83Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

[Jerrams-Smith, 00] Jerrams-Smith J.: “An Intelligent Human-Computer Interface for Provision
of On-Line Help”, in: St.J. Hegner, P. Mc Kevitt, P. Norvig and R. Wilensky (Eds.) Artificial
Intelligence Review, Intelligent Help Systems For Unix, 2000, Vol. 14, No. 1/2, 5-22.

[Kruchten, 99] Kruchten, P.: “Rational Unified Process-An Introduction”, Addison-Wesley,
1999.

[Lif, 98] Lif, M.: “User Interface Modelling – adding usability to use cases”, Rep. No 84 CMD,
Uppsala University, 1998.

[Matthews et al., 00] Matthews, M., Pharr, W., Biswas, G., and Neelakandan: “USCSH: An
Active Intelligent Assistance System,” In Hegner, St.J., Mc.Kevitt, P., Norvig, P., and
Wilensky, R. (Eds.) Artificial Intelligence Review, Intelligent Help Systems For Unix, 2000,
Vol. 14, 121-141.

[Mayfied, 92] Mayfield, J.: “Controlling inference in plan recognition”, in User Modeling and
User-Adapted Interaction, 1992, Vol. 2, No. 1-2, 55–82.

[McTear, 00] McTear M.F.: “Intelligent interface technology: from theory to reality?”, in
Interacting with computers, 2000, Vol. 12, 323-336.

[Microsoft Corporation, 98] Microsoft Corporation: “Microsoft® Windows® 98 Resource
Kit”, Microsoft Press, 1998.

[Muller, Haslwanter and Dayton, 97] Muller, M.J., Haslwanter J.H., and Dayton, T.:
“Participatory Practises in the Software Lifecycle”, in Helander, M., Landauer, T.K. and
Prabhu, P. (Eds.), Handbook of Human-Computer Interaction, Elsevier Science B.V.,
Amsterdam, 1997, 255-297.

[Muller, 97] Muller, P.A.: “Instant UML”, Wrox Press Ltd, 1997.

[Olsen, 98] Olsen, Jr., D.R.: “Developing User Interfaces”, Morgan Kaufmann Publishers, Inc,
1998.

[Quatrani, 98] Quatrani, T.: “Visual Modeling with Rational Rose and UML”, Addison-
Wesley, 1998.

[Quilici, 89] Quilici, A.: “AQUA: A system that detects and responds to user misconceptions”,
in A. Kobsa and A. Wahlster (eds.) User Modeling and Dialog Systems, New York, Springer-
Verlag, 1989, 108-132.

[Rich, 99] Rich, E.: “Users are individuals: individualizing user models”, International Journal
of Human-Computer Studies, 1999, Vol. 51, 323-338.

[Shneiderman, 98] Shneiderman, B.: “Designing the User Interface: Strategies for Effective
Human-Computer Interaction”, Addison-Wesley, 1998.

[Sison & Simura 98] Sison R. and Shimura M.: “Student modeling and machine learning”,
International Journal of Artificial Intelligence in Education, 1998, Vol. 9, 128-158.

[Sommerville, 92] Sommerville, I.: “Software Engineering”, Addison-Wesley, 1992.

84 Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

[Sutcliffe, Ennis and Hu, 00] Sutcliffe, A.G., Ennis, M., and Hu J.: “Evaluating the
effectiveness of visual user interfaces for information retrieval”, International Journal of
Human-Computer Studies, 2000, Vol. 53, No. 5, 741-763.

[Virvou, 99] Virvou, M.: “Automatic reasoning and help about human errors in using an
operating system”, Interacting with Computers, 1999, Vol. 11, No. 5, 545-573.

[Virvou and du Boulay, 99] Virvou, M., Du Boulay, B.: “Human Plausible Reasoning for
Intelligent Help”, User Modeling and User-Adapted Interaction, 1999, Vol. 9, 321-375

[Virvou, Jones and Millington, 00] Virvou, M., Jones, J., and Millington, M.: “Virtues and
Problems of an Active Help System for UNIX”, in: St.J. Hegner, P. Mc Kevitt, P. Norvig and
R. Wilensky (Eds.) Artificial Intelligence Review, Intelligent Help Systems For Unix, 2000,
Vol. 14, No. 1/2, 23-42.

[Virvou and Kabassi, 02] Virvou, M., Kabassi, K.: “F-SMILE: An Intelligent Multi-Agent
Learning Environment,” Proceedings of the IEEE International Conference on Advanced
Learning Technologies (ICALT 2002), IEEE Computer Society, 2002, 144-149.

[Wilensky et al., 00] Wilensky, R., Chin, D.N., Luria, M., Martin, J., Mayfield, J., and Wu, D.:
“The Berkeley UNIX Consultant Project,” in: St.J. Hegner, P.Mc. Kevitt, P. Norvig and R.
Wilensky (Eds.) Artificial Intelligence Review, Intelligent Help Systems For Unix, 2000, vol.
14, No 1-2, pp. 43-88.

85Virvou M., Kabassi K.: Experimental Studies within the Software Engineering Process ...

