
Journal of Universal Computer Science, vol. 9, no. 1 (2003), 2-33
submitted: 21/2/02, accepted: 24/1/03, appeared: 28/1/03  J.UCS
A Multiply Hierarchical Automaton Semantics
for the IWIM Coordination Model

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk)

F. Arbab
(Software Engineering Dept., CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherlands

farhad@cwi.nl)

G. A. Papadopoulos
(Computer Science Dept., University of Cyprus, 75 Kallipoleos St., Nicosia, Cyprus

george@cs.ucy.ac.cy)

J. R. W. Glauert
(School of Information Systems, University of East Anglia, Norwich, NR4 7TJ, U.K.

J.Glauert@sys.uea.ac.uk)

Abstract: The drawbacks of programming coordination activities directly within the applica-
tions software that needs them are briefly reviewed. Coordination programming helps to separate
concerns, making complex coordination protocols into standalone entities; permitting separate
development, verification, maintenance, and reuse. The IWIM coordination model is described,
and a formal automata theoretic version of the model is developed, capturing the essentials of the
framework in a fibration based approach. Specifically, families of worker automata have their
communication governed by a state of a manager automaton, whose transitions correspond to
reconfigurations. To capture the generality of processes in IWIM systems, the construction is
generalised so that process automata can display both manager and worker traits. The relation-
ship with other formalisations of the IWIM conception of the coordination principle is explored.
Keywords: Coordination, IWIM, Automata, Fibration.
Categories: C.2.4, D.1.3, D.2.6, D.3.3, F.1.1.

1 Introduction
The massively parallel systems that can be built today require programming models that
explicitly deal with the concurrency of cooperation among large numbers of entities in
a single application. Today’s concurrent applications typically use ad hoc templates to
coordinate the cooperation of their components, and this is symptomatic of a lack of
proper coordination frameworks for describing complex cooperation protocols in terms
of simple primitives and structuring constructs.

In most real applications, there is no paradigm in which we can systematically talk
about cooperation of active entities, and in which we can compose cooperation scenar-
ios such as client-server, workers pool, etc., out of a set of more basic concepts. Con-
sequently, applications programmers must deal directly with the lower-level communi-
cation primitives that instantiate the cooperation model of a concurrent application.
These primitives are generally scattered throughout the source code, interspersed with
non-communication application code, and the cooperation model never manifests itself

3Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
in a tangible form. Thus it is not an identifiable piece of source code that can be de-
signed, developed, debugged, maintained, and reused, in isolation from the rest of the
application. This inability to deal with the cooperation model of a concurrent applica-
tion explicitly, contributes to the difficulty of developing working concurrent applica-
tions containing large numbers of actively cooperating entities.

Despite the fact that the implementation of complex protocols is often the most dif-
ficult part of a development, the end result is typically so nebulous that it cannot be rec-
ognized as a commodity in its own right. This makes maintenance and modification of
the cooperation protocols much more difficult than necessary, and their reuse next to im-
possible.

The two most popular models of communication within highly concurrent applica-
tions are shared memory and message passing. In the shared memory model, interproc-
ess synchronisation primitives play the dominant role, with interprocess communica-
tion subordinate, whereas in the message passing model, interprocess communication
is dominant, and synchronisation subordinate. The latter makes the message passing
model somewhat more flexible than the shared memory model and, therefore, it is the
dominant model used in concurrent applications. However, both paradigms are too low-
level to serve as a proper foundation for systematic construction of cooperation proto-
cols as explicit, tangible pieces of software.

Such observations have led in recent years to an upsurge in activity in so-called co-
ordination frameworks and languages. An early survey is [Malone and Crowston
(1994)] which characterisies coordination as an emerging discipline. Various approach-
es with roots in eg. the actor model [Agha (1986)], or in logic programming [Shapiro
(1989)], were instrumental in establishing coordination as an independent discipline.
See [Ciancarini and Hankin (1996), Garlan and Le Metayer (1997), Papadopoulos and
Arbab (1998), Ciancarini and Wolf (1999), Porto and Roman (2000), Omicini et al.
(2002)] for representative contemporary work. A number of higher level perspectives
have emerged. Among these are the tuple based approaches such as Linda [Gelernter
(1985), Carriero and Gelernter (1989)], and by contrast, the connection control based
approaches amongst which we find the IWIM (Ideal Worker Ideal Manager) model. It
is with this model that this paper is concerned.

The rest of this paper contains the following. In [Section 2] we survey the IWIM
model informally. With this motivation covered, in [Section 3] we develop a theoretical
automaton-based model for IWIM, which we call the IWIM systems model. This is de-
veloped gradually, as it is a fairly complicated construction, aiming to reflect the essen-
tials of IWIM in a credible manner. The underlying idea is that families of worker au-
tomata perform their tasks under the supervision of a manager automaton. Change of
state of the manager corresponds to reconfiguration, whereupon a different family of
worker automata shoulders the burden. This basic idea is elaborated to enable arbitrar-
ily complex hierarchies to be modelled. Although our model is reasonably involved, it
falls short of trying to capture everything about IWIM or any specific implementation
of the IWIM idea, such as is to be found in the formal specification of the MANIFOLD
language [Arbab et al. (1993), Bonsangue et al. (2000)]. In particular we abstract away
from the ability of workers to continue with internal actions on their own, which in the
full IWIM model they can do irrespective of the attentions of any manager. One prin-

4 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
cipal purpose of this work could be seen as exploring the viability of fibration based ide-
as in the arena of reconfiguration problems.

In [Section 4] we discuss how the instantaneous reconfiguration aspect of our
IWIM systems can be generalised to model the asynchronous event based reconfigura-
tions characteristic of real IWIM frameworks. In [Section 5] we show how the model
of Arbab, de Boer and Bonsangue [Arbab et al. (2000a)], a model featuring aspects of
reconfiguration, can be expressed by IWIM systems; and in [Section 6] we show how
the model of Katis, Sabadini and Walters [Katis et al. (2000)], a significantly different
theoretical account, can also be captured within IWIM systems. These two enterprises
support the other principal purpose of this work, which is to explore how the IWIM idea
may be formalised in a manner that vividly highlights the special nature of the relation-
ship between managers and workers in IWIM, and to compare such a formalization with
models that do not do so. One aspect of IWIM systems not covered in this paper is the
issue of their algebraic properties. The highly structured IWIM systems model has a
rich algebraic theory. However an in depth account would almost double the size of this
paper; see [Banach et al. (2002)]. [Section 7] concludes.

2 The IWIM Model

In this section we review the generic coordination framework known as the Ideal Work-
er Ideal Manager (IWIM) model [Arbab (1995), Arbab (1996), Arbab et al. (1998)].
The basic concepts in the IWIM model are processes, events, ports, and channels. A
process is a black box with well defined ports of connection through which it exchanges
units of information with the other processes in its environment. A port is a named
opening in the bounding walls of a process through which units of information are ex-
changed using standard I/O primitives such as read and write; we assume that each port
is used for the exchange of information in only one direction: either into the process (in-
put port) or out of the process (output port).

The interconnections between the ports of processes are made through channels. A
channel connects a port of a producer process to a port of a consumer process. Inde-
pendent of the channels, there is an event mechanism for information exchange in
IWIM. Events are broadcast by their sources into their environment, yielding event oc-
currences. In principle, any process in an environment can pick up a broadcast event
occurrence. In practice, usually only a few processes pick up occurrences of each event,
because only they are tuned in to the relevant sources.

The IWIM model supports anonymous communication: in general, a process does
not, and need not, know the identity of the processes with which it exchanges informa-
tion. This concept reduces the dependence of a process on its environment and makes
processes more reusable; it also makes the protocols governing such communication
more reusable.

A process in IWIM can be regarded as a worker process or a manager (or coordi-
nator) process. The responsibility of a worker process is to perform a task. A worker
process is not responsible for the communication that is necessary for it to obtain the
proper input it requires to perform its task, nor is it responsible for the communication
that is necessary to deliver the results it produces to their proper recipients. In general,
no process in IWIM is responsible for its own communication with other processes. It

5Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
is always the responsibility of a manager process to arrange for and to coordinate the
necessary communications among a set of worker processes.

There is always a bottom layer of worker processes, called atomic workers, in an
application. In the IWIM model, an application is built as a (dynamic) hierarchy of
worker and manager processes on top of this layer. Aside from the atomic workers, the
categorization of a process as a worker or a manager process is subjective: a manager
process proc that coordinates the communication among a number of worker processes,
may itself be considered as a worker process by another manager process responsible
for coordinating the communication of proc with other processes.

In IWIM, a channel is a communication link that carries a sequence of bits, grouped
into units. A channel represents a reliable, directed, and perhaps buffered, flow of in-
formation in time. Here, reliable means that the bits placed into a channel are guaran-
teed to flow through without loss, error, or duplication, and with their order preserved;
and directed means that there are always two identifiable ends in a channel: a source and
a sink. Once a channel is established between a producer process and a consumer proc-
ess, it operates autonomously and transfers the units from its source to its sink.

If we make no assumptions about the internal operation of the producer and the
consumer of a channel c, we must consider the possibility that c may contain some
pending units. The pending units of a channel c are the units that have already been de-
livered to c by its producer, but not yet delivered by c to its consumer. The possibility
of the existence of pending units in a channel gives it an identity of its own, independent
of its producer and consumer. It makes it meaningful for a channel to remain connected
at one of its ends, after it is disconnected from the other. The full details of the IWIM
model codify a number of variations on this theme, but for our purposes, a channel will
stay alive as long as one end or another is connected to a process.

Worker processes have two means of communication: via ports, and via events.
The communication primitives that allow a process to exchange data through its ports
are conventional read and write primitives. A process can attempt to read data from one
of its input ports. It hangs if no data is presently available through that port, and con-
tinues once data is made available. Similarly, a process can attempt to write data to one
of its output ports. It hangs if the port is presently not connected to any channel, and
continues once a channel connection is made to accept the data.

It is worth mentioning at this point that the interaction of all the ideas sketched in
the preceding paragraphs conspires to make the notion of port quite intricate, as the for-
mal models of subsequent sections show. The fact that an individual port p belongs to
a specific worker (which may also be engaged in management activities, but none in-
volving p), but has its connectivity controlled by a different process, whose interest in
p may wax and wane depending on the state of the computation, requires careful mod-
elling to ensure that there are ‘no bits left dangling’. Thus various aspects of a port’s
functionality end up attached to different parts of the formal model, the whole being
subject to a number of carefully constructed invariants.

Besides reading and writing over ports, a process proc can also broadcast an event
e to all other processes in its environment by raising that event. The identity of the event
e together with the identity of the process proc comprise the event occurrence. A proc-
ess can also pick up event occurrences broadcast by other processes and react to them.

6 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
Certain events are guaranteed to be broadcast in special circumstances; for example, ter-
mination of a process instance always raises a special event to indicate its death. Our
formal model in the rest of the paper will be quite limited in that we only model recon-
figuration events. Even then, for simplicity, the modelling will be synchronous, a defect
we address later.

A manager process can create new instances of processes (including itself) and
broadcast and react to event occurrences. It can also create and destroy channel con-
nections between various ports of the process instances it knows, including its own.
Creation of new process instances, as well as installation and dismantling of communi-
cation channels are done dynamically. Specifically, these actions may be prompted by
event occurrences it detects. Each manager process typically controls the communica-
tions among a dynamic family of process instances in a data-flow like network. The
processes themselves are generally unaware of their patterns of communication, which
may change in time, according to the decisions of a coordinator process.

In our formal model, again for reasons of simplicity, we eschew the full generality
of these concepts. Our process networks will turn out to be statically defined, though
the execution trajectory through this stucture will be dynamically determined. As such
they may be viewed as the static unwinding of an implicit but more succinct syntactic
specification of dynamic behaviour, and the unwinding enables us to restrict discussion
to the semantic level alone, a welcome simplification.

3 IWIM Automata
In this section, we distil the essentials of the ideas just described, to create the model
which will serve as the basis for the semantics of IWIM in the rest of the paper. We
build the model up in two steps. The first is based on a fibration-inspired strategy, to
reflect the way that IWIM events tear down and rebuild interconnections between fam-
ilies of processes. Accordingly, elementary IWIM automata will have in the base a
manager automaton, describing how the manager part of an elementary IWIM system
moves, and above each state of the manager automaton, there will be a collection of
worker automata, connected together according to the prescription contained in the
manager state. The various worker collections are then integrated into a single elemen-
tary IWIM system using an ‘above’ relation describing how workers relate to states of
the manager, a construction inspired in essence by the Grothendieck construction. As
a result of this, each configuration of the overall automaton can be projected down onto
the relevant state of the manager in the manner of a fibration1.

The capacity of IWIM systems to reconfigure themselves via events that provoke
managers into reconfiguration activities, is here modelled by mappings of certain work-
er moves (that represent the raising of the event) to manager moves (that represent the
reception and processing of the event, resulting in reconfiguration). Unlike genuine
IWIM systems, this is a synchronous activity in our model, but we will show in Section
4 that the asynchronous aspects can be recaptured within our framework.

[Fig. 1] illustrates in pictures what we have just described in words for elementary
IWIM automata. It shows a collection of worker automata {A, B, C, D, E, S} sitting

1. The projection oriented nature of fibrations explains why we say ‘above’ and not ‘below’, cf.
Proposition 3.4 and Proposition 3.8 below.

7Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
above a manager Man, forming an elementary IWIM system. The states of Man i.e. {l,
m, n}, each map to communication networks consisting of directed graphs of ports and
channels. The ports of these networks correspond bijectively to input and output ports
in the workers, who are ignorant of whence come their input messages and where their
output messages are destined. Input ports are shown solid, while output ports are hol-
low. Furthermore these bijections in large part mimic the substructuring of individual
ports in IWIM into their private and public parts. Also, following these bijections up to
the workers reveals which workers are above which management states. Note that
worker B is above more than one management state. This means that when Man makes
a transition from l to m, B is unaffected and continues to work as before. Attached to
each channel is a queue of messages, illustrated for just one channel for l in the figure.
Some of the channels can be external, such as the external input channel for state l, and

l

m

n

a -o!v-› b

c -rec-› d

χ

[u, …]

A B

C

S
D E

Fig. 1: A manager Man with some workers above it. Broken vertical lines show the

Man

correspondence between worker and manager ports, bijective for each manager state.

8 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
the external output channel for n; these allow connection to and exchange of informa-
tion with the outside world. Note however that external input can only take place when
l is the current management state, and external output can only take place when n is the
current management state. The management transitions must specify what happens to
the message queues. These are mapped by additional data illustrated by χ in the figure
and merged into the destination queues.

Worker C shows a typical worker output transition; there are similar worker input
transitions. The port of worker S shows that ports are really quite general purpose con-
cepts in IWIM, able to accomodate several incoming and outgoing channels. Worker S
itself can be seen as providing a serialisation service for B, C, D. Worker D shows a
reconfiguration event transition. The thick line from the transition to the manager illus-
trates that the atomic transition label rec is mapped to the manager transition from m to
n. In this manner the workers can provoke reconfigurations implemented by the man-
ager.

In the second step of the two step strategy for building our IWIM system model,
the elementary IWIM system construction just described is generalised to take account
of the more flexible nature of real IWIM systems. Now, processes may manifest both
manager and worker roles, worker processes may enjoy the attentions of more than one
manager, and manager processes may enjoy the benefits of more than one worker. To
cope with this, we define IWIM worker-manager automata as asynchronous products of
individual worker and manager automata. Also the relation connecting workers and
managers becomes global. In this manner we get unrestricted IWIM systems. The pre-
viously mentioned properties continue to hold. In particular, configurations of an unre-
stricted IWIM system can be projected down onto configurations of their mangers.

Let us illustrate all this in another figure. [Fig 2] shows four worker-manager au-
tomata, W, X, Y, Z. These are drawn as rectangles with the dashed horizontal line rep-
resenting the division between the worker and manager facets, the manager facet being
uppermost. The worker structure is suppressed in all cases, and the fact that the man-
ager parts of W and X are empty is intended to indicate that these automata are atomic
workers, with trivial manager facets. The arrows emanating from manager states point
to the worker facets under their control. [Fig 2] illustrates that (almost) completely gen-
eral management relationships are permitted between worker-manager automata. In
fact the only restriction is that an automaton’s manager facet cannot manage it’s own
worker facet. Of course in realistic settings, the kind of contorted and cyclic dependen-
cies occurring in [Fig. 2] do not really arise. Far more plausible, are regularly structured
hierarchies with atomic workers in the bottommost layer.

3.1 Elementary IWIM Systems

Definition 3.1 An IWIM manager automaton is a triple (M, mI, R), where M is a set of
management states, mI ∈ M is an initial state, and R is a set of reconfiguration transi-
tions. These components are further stuctured as follows. Each management state m is
itself the name of a pair (Pm, Cm), where Pm is a set of port names, and Cm is a set of
channel names. There are two partial functions sm, tm : Cm → Pm which map channels
to source and target port names, whenever sm or tm are defined. They satisfy dom(sm)
∪ dom(tm) = Cm, i.e. each channel is connected to at least one port — channels not in

9Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
dom(sm) are called external input channels, and channels not in dom(tm) are called ex-
ternal output channels; channels in both dom(sm) and dom(tm) are called internal chan-
nels. In a reconfiguration transition, written m -r-› n, the r is shorthand for a partial in-
jection on the channel names χm,n : Cm → Cn. Also for each management state m, we
have an identity transition m -idm-› m in which the χm,m partial injection is a total iden-
tity.

The above definition characterises states of the manager automaton as connection net-
works in which the ports do not have a unique orientation (as input or output ports). Dif-
ferent states m, n may refer to the same connection network. Reconfigurations identify
some channels of the source state with some channels of the target.

Definition 3.2 An IWIM worker automaton is a triple (I, O, A), where I is a set of input
ports, O is a set of output ports, and I and O are disjoint. A = (St, Init, Tr) is an autom-
aton with states St, of which Init ∈ St is an initial state, and Tr ⊆ St × Act × St is a tran-
sition relation, where Act is a set of actions of the form in?v or out!v or rec. In the first
two kinds of action, in ∈ I, out ∈ O, and we assume that there is a global alphabet of
values Val containing v. In the last kind, rec is just a name (intended to be the name of
a reconfiguration transition as in Definition 3.1). Where convenient below, we will
write transitions using the notation a -in?v-› b or a -out!v-› b or a -rec-› b. We define

Fig. 2: A schematic illustration of a network of worker-manager automata. Arrows

W X

Y

Z

from manager states to other automata show the ‘above’ relation of the system. N.B.
The fact that Y manages Z and Z also manages Y is legitimate in the IWIM model.

10 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
TrI = {a -in?v-› b ∈ Tr}, TrO = {a -out!v-› b ∈ Tr}, TrR = {a -rec-› b ∈ Tr}, so that Tr =
TrI ∪ TrO ∪ TrR, the union being evidently disjoint. Additionally we define Rec = {rec |
a -rec-› b ∈ Tr} the alphabet of reconfiguration events of the worker.

So far, workers are automata of a fairly standard kind. Now we show how workers and
managers are glued together.

Definition 3.3 An elementary IWIM system (Man, Wor) consists of an IWIM manager
automaton Man, an elementary workforce Wor, and ancillary data to be described be-
low. Wor is a set of worker names together with a map wor, which yields for each work-
er w ∈ Wor, an IWIM worker automaton wor(w). Furthermore we have:

(1) There is a relation ^ between Wor and the management states of Man. We write
w^m to say that a worker w is above a management state m if the pair is in the re-
lation.

(2) If a worker w is above a management state m, then there is a map rw^m from the rec
actions of wor(w), into reconfiguration transitions m -r-› n of Man.

(3) For each management state m ∈ Man, there is a total bijection λm : Pm → IOm
where IOm is the disjoint union of all of the input and output ports of all workers
above m; i.e. IOm = +∪k^m{i | i ∈ Iwor(k)} +∪ +∪k^m{o | o ∈ Owor(k)}.

(4) Associated to each channel c ∈ Cm (where m is a management state), there is a
queue of messages which we write c:[u0, u1, …]. Each ui is in Val. The front of
this queue is u0.

A configuration of an elementary IWIM system (Man, Wor) consists of:

(1) a state m of Man;

(2) a set ests = {ak | ak ∈ Stwor(k), k ∈ Wor} of states ak one for each worker k;

(3) a set qs = {c:qc | c:qc = c:[u0, u1, …], c ∈ Cn, n ∈ M} of queues of messages c:[u0,
u1, …] one for each channel of each management state.

Note that in the above, ests may equivalently be viewed as the range of a function which
maps each worker to one of its states, so that ak is formally an ordered pair. Since we
are overwhelmingly concerned with the states and how they change, we will not use the
more cumbersome functional apparatus. Similar remarks apply to qs though here some
of the indexing information is routinely suppressed.

A configuration of an elementary IWIM system (Man, Wor) is initial iff: m is initial,
the ak are also all initial, and the queues associated with all channels are empty.

A transition of an elementary IWIM system (Man, Wor) in state (m, ests, qs) is one
of the following six kinds:

(ENVI) The environment adds a value to the input end of a queue whose source end
is not attached to any port (an external input channel’s queue).

11Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
c ∉ dom(sm) ,
c ∈ dom(tm) ,
qsrest = qs – {c:[… , un]}
—————————————
m —› m ,
ests —› ests ,
qs —› qsrest ∪ {c:[… , un , u]}

(ENVO) The environment removes a value from the output end of a queue whose
target end is not attached to any port (an external output channel’s queue).

c ∉ dom(tm) ,
c ∈ dom(sm) ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
m —› m ,
ests —› ests ,
qs —› qsrest ∪ {c:[u1, …]}

(IN) A worker automaton performs an input on one of its input ports, removing
the front element from an input queue attached to the port, of which there
must be at least one.

k^m , ak ∈ ests , ak -i?u-› bk ,
λm(p) = i ∈ Iwor(k) , tm(c) = p ,
estsrest = ests – {ak} ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
m —› m ,
ests —› estsrest ∪ {bk} ,
qs —› qsrest ∪ {c:[u1, …]}

(OUT) A worker automaton performs an output on one of its output ports, adding
a value to the end of any output queue attached to the port, of which there
must be at least one.

k^m , ak ∈ ests , ak -o!u-› bk ,
λm(p) = o ∈ Owor(k) ,
∅ ≠ Out = {d | sm(d) = p} ,
estsrest = ests – {ak} ,
qsrest = qs – {d:[… , ud,nd

] | d ∈ Out}
———————————————————
m —› m ,
ests —› estsrest ∪ {bk} ,
qs —› qsrest ∪ {d:[… , ud,nd

, u] | d ∈ Out}

(FOR) A port performs a forwarding action, removing the front element from
an input queue attached to the port and inserting (a copy of) it to all output
queues attached to the port, of which there must be at least one.

12 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
tm(c) = p ,
∅ ≠ Out = {d | sm(d) = p} ,
qsrest = qs – ({c:[u, u1, …]} ∪ {d:[… , ud,nd

] | d ∈ Out})
—————————————————————————————
m —› m ,
ests —› ests ,
qs —› qsrest ∪ {c:[u1, …]} ∪ {d:[… , ud,nd

, u] | d ∈ Out}

NB. The above notation is intended to include the case that c ∈ Out,
whereupon the front message of c’s queue is moved to its tail.

(REC) A worker automaton kr performs a rec action akr -rec-› bkr, provoking a re-
configuration m -r-› n of the elementary IWIM system, given by the function
rkr^m. The manager automaton makes a transition to the new state. Worker
automaton kr completes its transition. Worker automata other than kr who are
above both the old and new manager state remain as before. Worker automata
above the old but not the new manager state go into suspension. Worker au-
tomata not above the old but above the new manager state are awakened. The
queues of channels above the old manager state which are reassigned via
the channel reconfiguration data are moved according to that data, being
merged with the existing queues at target channels and leaving the queues
at originating channels empty. The queues at other channels remain as before.

kr^m , akr ∈ ests , akr -rec-› bkr ,
rkr^m(rec) = m -r-› n = χm,n : Cm → Cn ,
estsrest = ests – {akr} ,
qsdel = {c:qc | c ∈ Cm, c ∈ dom(χm,n)} ∪ {d:qd | d ∈ Cn, d ∈ rng(χm,n)} ,
qsrest = qs – qsdel ,
qsdom = {c:[] | c ∈ Cm, c ∈ dom(χm,n)} ,
qsmerge = {d:qcd | c:qc, c ∈ Cm, c ∈ dom(χm,n),

d:qd, χm,n(c) = d ∈ Cn, d ∈ rng(χm,n),
qcd ∈ merge(qc, qd)}

———————————————————–
m —› n ,
ests —› estsrest ∪ {bkr} ,
qs —› qsrest ∪ qsdom ∪ qsmerge

This transition system has some features that deserve comment. Note firstly that input/
output and forwarding activities are completely decoupled. For this reason it makes lit-
tle sense for the manager to connect up a port to use simultaneously as a broadcasting
device, and as an input device to the relevant worker, since the input messages and for-
warded messages are necessarily disjoint. Thus since even forwarding ports have to be-
long to some worker, it is best to invent special purpose dummy workers just for the pur-
pose, such as worker S in [Fig. 1].

A second issue concerns the creation and destruction of processes. IWIM is entire-
ly virtuous regarding matters of life and death: there is no murder, only suicide. The
most that managers can accomplish is anasthesia. When a reconfiguration transition
takes a worker out of the current configuration because that worker is not above the new
current management state, the worker sleeps, because being above the current manage-

13Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
ment state is a hypothesis of all six transition types. When the current management state
once more becomes one which the worker is above, it wakes and is able to participate
in worker transitions again. It is the worker’s own responsibility to enter a state out of
which no transitions emerge if it wishes to die.

Thirdly there arises the issue of queue management during reconfiguration transi-
tions. We have elected to merge assigned queues with existing ones (for given source
and target ports) as representing an abstraction of the potential presence of several in-
dependent queues from the source to the target. The latter would require a more com-
plex notion of reconfiguration transition than we wish to get embroiled in.

Let EConfs(Man, Wor) be the set of all configurations of (Man, Wor). Equipping it
with the transitions just described makes it into a transition system. We regard this tran-
sition system as unlabelled, it being the case that the kind of step involved is always de-
ducible from the pair of configurations in question.

A run of (Man, Wor) is, in the normal manner, a sequence of contiguous transitions
of EConfs(Man, Wor), starting with an initial configuration:

(m, ests, qs) —› (m′, ests′, qs′) —› (m′′, ests′′, qs′′) —› …

Let Mngr(Man, Wor) be the set of manager states of configurations in EConfs(Man,
Wor). These are given by a function eπman where eπman(m, ests, qs) = m. The set Mn-
gr(Man, Wor) can be equipped with transitions derived from the (REC) transitions of
EConfs(Man, Wor). Thus to the transition (m, ests, qs) —› (m′, ests′, qs′) corresponds
the Mngr(Man, Wor) transition eπman(m, ests, qs) —› eπman(m′, ests′, qs′), i.e. m —› m′,
(we regard these transition as unlabelled too). We also add an identity transition m —›
m to each manager state in Mngr(Man, Wor).

Now although a particular worker may be above several manager states, making
problematic the definition of a projection from the static structure of the elementary
IWIM system to its manager, the same is not true of the set of configurations of the el-
ementary IWIM system and its transition system, EConfs(Man, Wor), as it relates to the
set of manager states. In EConfs(Man, Wor), some specific manager state always index-
es any worker state that forms part of a configuration, and so we obtain the following
result.

Proposition 3.4 Let (Man, Wor) be an elementary IWIM system. Let EConfs(Man,
Wor) be the associated transition system and Mngr(Man, Wor) be the corresponding set
of manager transitions. Then there is a projection:

Πe : EConfs(Man, Wor) → Mngr(Man, Wor)

which maps states by:

(m, ests, qs) |→ m = eπman(m, ests, qs)

and which maps (REC) transitions by:

(m, ests, qs) —› (m′, ests′, qs′)
|→

m —› m′ = eπman(m, ests, qs) —› eπman(m′, ests′, qs′)

14 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
and which maps (ENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(m, ests, qs) —› (m, ests′, qs′)
|→

m —› m

Proof. Obvious.

3.2 Unrestricted IWIM Systems

The previous section captures the essence of the process by which an individual man-
ager automaton manages a group of worker automata. However the IWIM model does
not restrict worker management to a single layer. Managers may themselves be workers
managed by others, in time honoured hierarchical fashion. We model this here by al-
lowing managers to themselves acquire a worker facet. The result is effectively a prod-
uct of the two preceding constructions.

Definition 3.5 An IWIM worker-manager automaton is the asynchronous product of
an IWIM worker automaton (I, O, A) as in Definition 3.2, and an IWIM manager au-
tomaton (M, mI, R) as in Definition 3.1. That is to say, an IWIM worker-manager au-
tomaton is of the form (I, O, A)⊗(M, mI, R), where (I, O, A) is called the worker facet
and (M, mI, R) is called the manger facet. The set of states of the worker-manager au-
tomaton is St × M, with initial state (Init, mI), and there are two kinds of transitions:
worker transitions, for example (a, m) -w-› (b, m), where a -w-› b is a transition of (I, O,
A) (and the manager facet m remains unchanged), and manager transitions, for example
(a, m) -r-› (a, n), where m -r-› n is a transition of (M, mI, R) (and the worker facet a re-
mains unchanged).

The following is evident.

Proposition 3.6 An IWIM worker-manager automaton for which the worker facet is a
single (initial) state IWIM worker automaton with empty transition relation is strongly
bisimilar to an IWIM manager automaton. Also an IWIM worker-manager automaton
for which the manager facet is a single (initial) state IWIM manager automaton whose
port and channel sets are empty, and with transition relation consisting of just the oblig-
atory (in this case empty) identity function, is strongly bisimilar to an IWIM worker au-
tomaton.

In view of this, we can refer to IWIM worker-manager automata with trivial worker fac-
ets as pure mangers, and to IWIM worker-manager automata with trivial manager facets
as pure workers.

Now that individual automata are capable of both worker and manager behaviour,
we can define an unrestricted IWIM system as a community of automata where the
manager facets of individual automata manage their individual workforces drawn from
the same community, and the worker facets of individual automata each do their jobs
coordinated by one or more manager facets, since we place no restriction on the number
of bosses any poor labourer might have. In keeping with the best industrial practice, no
worker is ever his own manager (no selfdetermination — no one sets their own salary,
nor signs off their own expense claims). Since the moves of the whole system are the

15Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
moves of the individual elements, we need no additional restrictions beyond the no self-
determination rule and the restrictions that apply to elementary IWIM systems, to have
consistency.

Definition 3.7 An unrestricted IWIM system WM is a set of IWIM worker-manager
automaton names called WM, a subset InitialWM ⊆ WM, together with ancillary data de-
scribed below. There are three maps: worman, wor, man, where for each wm ∈ WM,
worman(wm) is an IWIM worker-manager automaton, wor(wm) is its worker facet, and
man(wm) is its manager facet. We write mwm to say that state m is a state of a facet of
automaton wm, the facet intended being clear from the context; formally mwm is an or-
dered pair, just as before. The states of a worker-manager automaton wm are thus writ-
ten (awm, mwm), where a is the state of the worker facet and m is the state of the manager
facet.

Moreover, other aspects of the notation for elementary IWIM systems acquire ad-
ditional subscripting to indicate what part of the unrestricted IWIM system they refer
to. Thus we have Pmwm for the set of port names of state m of the manager facet
man(wm) of wm; likewise Cmwm is the corresponding set of channel names.

There is a binary above relation ^ where wm′^mwm means that the worker facet
wor(wm′) of automaton wm′ is above state m of the nontrivial manger facet man(wm) of
automaton wm. The no selfdetermination rule implies that whenever wm′^mwm, then
wm′ ≠ wm. The workforce {wm1, … , wmn} of automata whose worker facets are above
states of the manager facet of wm is refered to as an elementary IWIM subsystem of
WM, and is an elementary IWIM system in the sense of Definition 3.3 when we disre-
gard the manger facets of the workers and the worker facet of the manager. Thus IOmwm
is the set of input and output ports of the workforce above mwm. Specifically for an el-
ementary IWIM subsystem:

(1) The above relation is inherited from the global one, and we will assume henceforth
that no automaton is above the unique state of a trivial manager.

(2) There is a map rwm′^mwm of the rec transitions of worker facets into reconfiguration
transitions of the corresponding nontrivial manager facet.

(3) The total bijection property of manager ports to workforce input/output ports holds
via a map λmwm : Pmwm → IOmwm.

(Note that the no selfdetermination rule is consistent with the asynchronous product
structure of the transitions for worker-manager automata. Otherwise some rwm^mwm
could force moves of wm that were worker and manager moves simultaneously.)

Let WM be an unrestricted IWIM system. Then we define WM# = {wm ∈ WM | wm
has a nontrivial manager facet}.

A configuration (sts, qs) of an unrestricted IWIM system consists of:

(1) a set sts = {(awm, mwm) | wm ∈ WM} of states (awm, mwm) one for each automaton
in WM;

(2) a set qs = {c:qc | c ∈ Cmwm, ∃ a • (awm, mwm) ∈ sts} of queues of messages c:[u0, u1,
…] one for each channel c ∈ Cmwm of each management state mwm of each non-
trivial manager facet man(wm).

16 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
As before, these configuration components are really the ranges of suitable functions.
A configuration (sts, qs) of an unrestricted IWIM system WM is initial iff: all states

in sts are initial in both facets, and all channel queues in qs are empty.
Let (sts, qs) be a configuration of an unrestricted IWIM system WM. Then we can

define the manager part of (sts, qs) to be πman(sts) = {mwm | ∃ awm • (awm, mwm) ∈ sts,
wm ∈ WM#}.

A transition of an unrestricted IWIM system WM in configuration (sts, qs) is one
of six kinds, patterned after elementary IWIM system transitions:

(ENVI) The environment adds a value to the end of an external input queue.

c ∉ ∪{dom(sm′wm′) | m′wm′ ∈ πman(sts)} ,
c ∈ dom(tmwm) , mwm ∈ πman(sts) ,
qsrest = qs – {c:[… , un]}
—————————————
sts —› sts ,
qs —› qsrest ∪ {c:[… , un, u]}

(ENVO) The environment removes a value from the end of an external output queue.

c ∉ ∪{dom(tm′wm′) | m′wm′ ∈ πman(sts)} ,
c ∈ dom(smwm) , mwm ∈ πman(sts) ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
sts —› sts ,
qs —› qsrest ∪ {c:[u1, …]}

(IN) A worker facet of an automaton performs an input on one of its input ports,
of which there must be at least one.

k^mwm , mwm ∈ πman(sts) ,
(ak, nk) ∈ sts , (ak, nk) -i?u-› (bk, nk) ,
λmwm(p) = i ∈ Iwor(k) , tmwm(c) = p ,
stsrest = sts – {(ak, nk)} ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
sts —› stsrest ∪ {(bk, nk)} ,
qs —› qsrest ∪ {c:[u1, …]}

(OUT) A worker facet of an automaton performs an output on one of its output
ports, of which there must be at least one.

(ak, nk) ∈ sts , (ak, nk) -o!u-› (bk, nk) ,
∅ ≠ Out = {d | ∃ mwm ∈ πman(sts), p • k^mwm,

λmwm(p) = o ∈ Owor(k), smwm(d) = p} ,
stsrest = sts – {(ak, nk)} ,
qsrest = qs – {d:[… , ud,nd

] | d ∈ Out}
———————————————————
sts —› stsrest ∪ {(bk, nk)} ,
qs —› qsrest ∪ {d:[… , ud,nd

, u] | d ∈ Out}

17Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
(FOR) A port performs a forwarding action.

k^m′wm′ , m′wm′ ∈ πman(sts) , tm′wm′(c) = p ,
∅ ≠ Out = {d | ∃ mwm ∈ πman(sts), p • k^mwm,

λmwm(p) = o ∈ Owor(k), smwm(d) = p} ,
qsrest = qs – ({c:[u, u1, …]} ∪ {d:[… , ud,nd

] | d ∈ Out})
—————————————————————————————
sts —› sts ,
qs —› qsrest ∪ {c:[u1, …]} ∪ {d:[… , ud,nd

, u] | d ∈ Out}

NB. The above notation is intended to include the case that c ∈ Out,
whereupon the front message of c’s queue is moved to its tail.

(REC) The worker facet of automaton kr performs a rec action akr -rec-› bkr,
moving to state bkr, and provoking reconfigurations of all the elementary
IWIM subsystems managed by manager facets above a current state
of which kr sits. All these manager facets move to their respective new
management states. The queues of the channels managed by these manager
facets are mapped via the channel reconfiguration data for their particular
manager facet.

∅ ≠ Rmman = {mwm | mwm ∈ πman(sts) • kr^mwm} ,
(akr, mkr) ∈ sts , (akr, mkr) -rec-› (bkr, mkr) ,
Rnman = {nwm | mwm ∈ πman(sts) • kr^mwm,

rkr^mwm(rec) = mwm -r-› nwm = χmwm,nwm : Cmwm → Cnwm} ,
stsrest = sts – ({(akr, mkr)} ∪

 {(awm, mwm) | (awm, mwm) ∈ sts, mwm ∈ Rmman}) ,
stspost = {(bkr, mkr)} ∪ {(awm, nwm) | (awm, mwm) ∈ sts,

mwm ∈ Rmman, nwm ∈ Rnman} ,
qsdel = {c:qc | c ∈ Cmwm, c ∈ dom(χmwm,nwm), mwm ∈ Rmman} ∪

 {d:qd | d ∈ Cmwm, d ∈ rng(χmwm,nwm), mwm ∈ Rmman, nwm ∈ Rnman} ,
qsrest = qs – qsdel ,
qsdom = {c:[] | c ∈ Cmwm, c ∈ dom(χmwm,nwm), mwm ∈ Rmman} ,
qsmerge = {d:qcd | c:qc, c ∈ Cmwm, c ∈ dom(χmwm,nwm),

d:qd, χmwm,nwm(c) = d ∈ Cmwm, d ∈ rng(χmwm,nwm),
mwm ∈ Rmman, nwm ∈ Rnman,
qcd ∈ merge(qc, qd)}

———————————————————–
sts —› stsrest ∪ stspost ,
qs —› qsrest ∪ qsdom ∪ qsmerge

The remarks made following the elementary IWIM subsystems transition system de-
scription apply with equal or greater force here. Thus all transitions have hypotheses
that ensure that any active worker is being actively managed by being above at least one
current mangement state. Also there is no murder, only anasthesia and suicide. More-
over, reconfiguration events simultaneously affect all mangers who might be managing
a particular worker facet. The structure of the model ensures that they can all do this
without adversely interfering with each other.

18 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
Let Confs(WM) be the set of all configurations of WM. Equipping it with the transitions
just described makes it into a transition system.

A run of WM is a sequence of contiguous transitions of Confs(WM) starting with
an initial configuration:

(sts, qs) —› (sts′, qs′) —› (sts′′, qs′′) —› …

Let (sts, qs) be a configuration of WM. Let Mngrs(WM) be the set of manager parts of
configurations in Confs(WM). It can be equipped with transitions derived from those of
Confs(WM). Thus whenever (sts, qs) —› (sts′, qs′) is a (REC) transition of Confs(WM),
there is a Mngrs(WM) transition πman(sts) —› πman(sts′). We also add an identity tran-
sition πman(sts) —› πman(sts) to each manager part in Mngrs(WM). As previously, all
of these transitions are unlabelled.

It will now not be surprising that despite the greater complexity we have here, the
projection that we had in [Section 3.1] can be recovered.

Proposition 3.8 Let WM be an unrestricted IWIM system. Let Confs(WM) be the as-
sociated transition system, and Mngrs(WM) be the associated manager parts transition
system. Then there is a projection:

Π : Confs(WM) → Mngrs(WM)

which maps states by:

(sts, qs) |→ πman(sts)

and which maps (REC) transitions by:

(sts, qs) —› (sts′, qs′)
|→

πman(sts) —› πman(sts′)

and which maps (ENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(sts, qs) —› (sts′, qs′)
|→

πman(sts) —› πman(sts′) = πman(sts)

Proof. Obvious.

Having covered the technical details, it is appropriate to review how the formal con-
structions relate to the informal account of [Section 2]. As well as the internal details
of both manager and worker automata, we have the ^ relation, the λ bijections, and the
r reconfiguration mappings. Given a worker-manager automaton wm, the domains and
ranges of ^, λ, r, suitably restricted to wm, make precise within our model the notion of
the environment of wm loosely refered to at the beginning of [Section 2]. That these
aspects of the model reside outside of the worker and manager facets, reflects the IWIM
philosophy that on the one hand workers should be unaware of who they are communi-
cating with or who is in charge of the distributed computation, and that on the other
hand managers should have no detailed knowledge of the state of their subordinate
workers. For this to work, we need the managers to be ready at all times to react to

19Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
reconfiguration events from their workers, and if a manager’s worker facet is also busy
working for his own boss, the asynchronous product between the two facets gives the
simplest possible model of the required interruptibility.

In the remainder of the paper we will be concerned only with unrestricted IWIM
systems, and will henceforth just refer to them as IWIM systems.

4 IWIM Systems with Delayed Reconfigurations
Now we tackle the problem of the asynchronous nature of true IWIM system event
processing. As noted previously, this can be captured within our framework. The basic
idea is simple. We introduce fresh pure worker automata, delay automata, whose job is
to buffer the reconfiguration events generated by the worker facets of the automata of
the original model on their way to the relevant destination manager facet. The way this
is done is to change the rec events of the original model into rec messages to the delay
automata, who then subsequently raise the required event. Since buffering is already
implicit in the message queues used by worker facets, and further buffering can be
achieved by retaining information in automaton states, there are a number of ways one
can imagine of implementing such an idea. In the one we will follow, the workers each
acquire an extra output port through which to send rec messages instead of raising rec
events. Connected to these extra output ports, are channels leading to delay automata,
one per manager facet in charge of the worker. This ensures that the rec messages are
broadcast asynchronously towards each relevant manager. (Because event processing
takes place simultaneously by all managers below a worker, we need to ensure that each
delay automaton is above only one manager. To ensure the correct separation of con-
cerns between automata it is easiest to introduce delay automata on a per per wm′^mwm
tuple basis.) Upon receipt of the rec message, the delay automaton raises the corre-
sponding event with the manager.

Assuming that some particular worker facet is above k manager facets, the behav-
iour of the original system can be recovered as long as there is always the possibility of
performing the following 2k+1 step sequence of the new system instead of a rec transi-
tion of the original system, in a manner uninterrupted by other system transitions:

(1) the worker facet transmits the relevant rec value through its extra output port
onto the n delay channels leading to the n delay automata corresponding to the n
manager facets above which it sits,

(2i) delay automaton i receives the rec value from delay channel i, recording it in
its state,

(3i) delay automaton i performs a rec transition causing manager facet i to perform
the required reconfiguration.

This sequence of steps preserves the property that all delay channels remain empty ex-
cept between steps (1) and (2i), which is correspondingly consistent with enabling them
to be executed without interruptions.

On the other hand, if we consider that the execution of these steps can indeed be
interrupted, as allowed by the asynchrony inherent in the fragmenting of a single tran-
sition into several, other outcomes become possible. Since the original system had only
synchronous reconfigurations, it provides no definition of what might happen should a
reconfiguration be attempted nonatomically, and any evolution consistent with the se-

20 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
mantics is permissible. For example, a context dependent notion of reconfiguration can
be created by having delay automata raise different reconfiguration actions in manager
facets, depending on what reconfigurations intervened between the receiving of some
particular rec value from a worker, and the raising of the corresponding reconfiguration
event in the manager; the information to manage this being kept in a delay automaton’s
state, suitably managed through intervening reconfigurations. And depending on what
policy is adopted for the introduction and behaviour of the delay automata, different
policies for the handling of pending events become possible. Moreover being them-
selves workers, delay automata can be woken and suspended during reconfiguration
transitions, further tuning this aspect.

One canonical possibility for dealing with reconfigurations that attempt to inter-
leave other reconfiguration actions, is to enforce a strict sequentialisation policy. This
can be done by ensuring that once a rec message arrives at a delay automaton, the only
thing the delay automaton can then do is to raise the corresponding event, ignoring fur-
ther inputs till it has done so. We call this arrangement the standard asynchronisation
of an IWIM system, and we now present the technical details.

Suppose WM is an IWIM system with the usual notations, i.e. the typical automa-
ton name is wm mapping to (I, O, A = (St, Init, Tr))⊗(M, mI, R), with manager states m
mapping to networks (Pmwm, Cmwm), and reconfigurations mwm -r-› nwm = χmwm,nwm :
Cmwm → Cnwm; and with ancillary data given by wm′^mwm, λmwm, rwm′^mwm.

The standard asynchronisation of WM, which we call here WM*, has the set of au-
tomaton names WM* = WM ∪ {∆.wm′.m.wm | wm′^mwm}. We assume all of these
∆.wm′.m.wm names are fresh, and introduce for each ∆.wm′.m.wm name, for future con-
venience, fresh port, channel, and input and output port names2:

∆.wm′.m.wms , ∆.wm′.m.wmt , ∆.wm′.m.wmch , ∆.wm′.m.wmi , ∆.wm′o

If wm maps to (I, O, A = (St, Init, Tr))⊗(M, mI, R) in WM, in WM*, wm maps to (I, O*,
A* = (St, Init, Tr*))⊗(M, mI, R*).

The input ports I of the worker facet of wm remain unchanged. However for the
output ports we have O* = O ∪ {∆.wmo}. The worker facet automaton wor(wm) itself
is given by the same state space St, initial state Init, and:

Tr* = TrI ∪ TrO ∪ {a -∆.wmo!rec-› b | a -rec-› b ∈ TrR}

This ensures that rec messages can be sent over ∆.wmo to all delay automata
∆.wm.m′.wm′. To ensure that these are handled properly, we examine the manager facet
of wm.

In the manager facet man(wm), the state space M and initial state mI remain un-
changed. State m however maps to the communication network (P*mwm, C*mwm) where:

P*mwm = Pmwm ∪ {∆.wm′.m.wms, ∆.wm′.m.wmt | wm′^mwm}
C*mwm = Cmwm ∪ {∆.wm′.m.wmch | wm′^mwm}

s*mwm = smwm ∪ {∆.wm′.m.wmch |→ ∆.wm′.m.wms | wm′^mwm}
t*mwm = tmwm ∪ {∆.wm′.m.wmch |→ ∆.wm′.m.wmt | wm′^mwm}

2. The last of these is not an error.

21Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
Finally, if mwm -r-› nwm = χmwm,nwm : Cmwm → Cnwm is a reconfiguration transition of R,
there is a corresponding transition of R* given by χ*mwm,nwm : C*mwm → C*nwm where
χ*mwm,nwm = χmwm,nwm interpreted as a partial injection on C*mwm.

Standing between the worker and manager facets of the preceding automata, are the
delay automata themselves. A delay automaton name ∆.wm′.m.wm maps to a pure
worker given by:

(I∆.wm′.m.wm, O∆.wm′.m.wm, A∆.wm′.m.wm =
(St∆.wm′.m.wm, Init∆.wm′.m.wm, Tr∆.wm′.m.wm))⊗({♦}, ♦, ∅)

Here:

I∆.wm′.m.wm = {∆.wm′.m.wmi | wm′^mwm}

while O∆.wm′.m.wm = ∅. The worker automaton A∆.wm′.m.wm is given by the state space:

St∆.wm′.m.wm = Recwm′ +∪ {Init∆.wm′.m.wm}

and the initial state Init∆.wm′.m.wm is the one named as such. The transitions of
A∆.wm′.m.wm are given by:

Tr∆.wm′.m.wm = {Init∆.wm′.m.wm -∆.wm′.m.wmi?rec-› rec | rec ∈ Recwm′} ∪
{rec -rec-› Init∆.wm′.m.wm | rec ∈ Recwm′}

where we have abused notation a little by allowing rec to name the state reached by in-
putting a rec message (not to mention its original use as event name), hopefully without
causing confusion. It is now clear that the delay automaton inputs a rec message com-
ing from the original worker, and then provokes a rec reconfiguration event in the man-
ager at a later point.

To connect all this together, we give the above relation, which is:

^* = ^ ∪ {∆.wm′.m.wm^*mwm | wm′^mwm}

and the λ*mwm bijections which are:

λ*mwm = λmwm ∪ {∆.wm′.m.wms |→ ∆.wm′o | wm′^mwm} ∪
{∆.wm′.m.wmt |→ ∆.wm′.m.wmi | wm′^mwm}

Note how in the first line of the above the original worker’s output port ∆.wm′o is shared
by as many managers as it has, each controlling an individual queue to a separate
∆.wm′.m.wm delay automaton.

Finally the r*∆.wm′.m.wm^*mwm functions are given by:

r*∆.wm′.m.wm^*mwm(rec) = mwm -r-› nwm iff rwm′^mwm(rec) = mwm -r-› nwm.

It is now clear that this construction has the properties indicated informally above. Thus
whereas in WM, a worker wm′ above a manger state mwm can perform the step a -rec-›
b simultaneously with each implicated manager’s performing the appropriate mwm -r-›
nwm (because rwm′^mwm maps rec to mwm -r-› nwm), in WM*, wm′ can no longer do this
directly. Instead it passes a rec message to ∆.wm′.m.wm via a single a -∆.wm′o!rec-› b
action which causes rec messages to be broadcast onto all relevant channels
∆.wm′.m.wmch. If such a channel was previously empty, then ∆.wm′.m.wm can swallow

22 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
the rec message by performing an Init∆.wm′.m.wm -∆.wm′.m.wmi?rec-› rec input from the
same channel. This obtains by the fact that ports ∆.wm′o and ∆.wm′.m.wmi are connect-
ed via ∆ .wm ′ .m.wmch , s ince λ*m w m connects ∆ .wm ′o to ∆ .wm ′ .m.wms =
s*mwm(∆.wm′.m.wmch), and also connects t*mwm(∆.wm′.m.wmch) = ∆.wm′.m.wmt to
∆.wm′.m.wmi. Since r*∆.wm′.m.wm^*mwm maps the only available ∆.wm′.m.wm transition
rec -rec-› Init∆.wm′.m.wm to the reconfiguration mwm -r-› nwm, it follows that when
∆.wm′.m.wm performs rec -rec-› Init∆.wm′.m.wm, it provokes the desired reconfiguration
mwm -r-› nwm. Thus if ∆.wm′.m.wmch was empty at the outset, the simulation of one
manager’s reconfiguration by a delayed but uninterrupted sequence of steps is available.
Evidently when several managers need to react, consequent on the same original atomic
reconfiguration, similar simulations can also be constructed. These simulations may
also be interleaved with other actions, provided none of the other actions ‘beat the se-
quence to the tape’, where the ‘tape’ is the invocation of a rec step mapped by a
r*∆.wm′.m.wm^*mwm to a change of configuration of the manager wm, while the manager
remains in the original state m. Examples of other actions that can safely be interleaved
in this manner are ordinary I/O actions, and reconfigurations not involving any of the
automata involved.

Proposition 4.1 The construction just given is idempotent, in the sense that applying
it n more times to WM* results in a system which can simulate an atomic
reconfiguration of WM that involves k managers in 2k(n+1)+1 uninterrupted steps.

The straightforward if tedious proof rests on the observation that in WM*, the only
worker above mwm capable of provoking a reconfiguration is a ∆.wm′.m.wm, so that the
next application of the construction replaces each ∆.wm′.m.wm’s rec steps by a three
step sequence etc. Thus iterated application of the construction exemplifies the fact that
a chain of buffers is behaviourally equivalent to a single buffer.

5 The Arbab, de Boer, Bonsangue Model

In this section we show how the model proposed by Arbab, de Boer and Bonsangue in
[Arbab et al. (2000a)] (see also [Arbab et al. (2000b)]), henceforth the ABB model, can
be subsumed within our framework. In the ABB model, there is a family of compo-
nents. Each component is a transition system similar to one of our worker automata,
and it has access to a set of channel ends to which it is connected. A component may
output values along channel source ends (eg. c) to which it is connected, and may input
values from channel sink ends (eg. c) to which it is connected. The state transitions for
these actions are of the form a -c!v-› b and a -c?v-› b respectively, and these are the only
kinds of action that components may perform. The dynamic reconfigurability of ABB
systems comes from the fact that they can alter their set of connected channel ends by
sending and receiving channel end identities along the channels themselves. Thus if a
component possesses channel ends c, d, it may relinquish possession of d by a transition
like a -c!d-› b; likewise a -c!d-› b relinquishes possession of d. Likewise possession of
d or d can be gained by a -c?d-› b or a -c?d-› b. It is tacitly assumed that since channels
are point to point connections, once a component has relinquished possession of a chan-
nel end, it will no longer attempt to use it until it has received it once again from some
other component. Channels themselves are queues in the ABB model, just as they are

WM*…*
n+1—

23Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
in ours, and when a channel end, d (resp. d) say, becomes detached from the component
to which it was previously connected by being output along channel c say, no inputs
over d (resp. outputs over d) can take place until the relevant message has been con-
sumed by the component connected to the sink end of c, whereupon d (resp. d) becomes
available to that component for communication purposes. Output and input transitions
in which a channel end is respectively transmitted or received are called reconfiguring
output and input transitions.

We will now describe the mapping of a family of ABB components to a corre-
sponding IWIM system. Note that since channels are not created dynamically in the
ABB model, the complete set of channels that figure in an execution of an ABB system
is known at initialisation time, and given an ABB system, we call this complete set of
channels CH. From this we create the five disjoint alphabets:

CHi = {chi | ch ∈ CH}
CHo = {cho | ch ∈ CH}
CHs = {chs | ch ∈ CH}
CHt = {cht | ch ∈ CH}
CHch = {chch | ch ∈ CH}

Let C1 … Cn be a family of ABB components. For each Ci we construct a transition
system Ki as follows. Let Ci be (Sti, Initi, Tri, ri) where Sti is a set of states of which Initi
is an initial state, Tri is a transition relation containing transitions of type a -out!v-› b or
a -in?v-› b (with in, out ∈ CH), and ri is the initial value of the dynamically changing
set of channel ends possessed by Ci. By the remarks above we can assume that CH =
{ch | for some i, ch ∈ ri or ch ∈ ri}. For simplicity we will assume that each end of each
channel in CH is in some ri.

Now we set Ki to be the transition system given by (Sti*, Initi*, Tri*), where the set
of states is Sti* = Sti ∪ newSti, with Initi* = Initi, and Tri* is given as follows (also im-
plicitly defining the fresh states newSti). Each transition a -out!v-› b or a -in?v-› b of Ci
where v is not a channel end yields a transition a -outo!v-› b or a -ini?v-› b of Ki. More-
over each reconfiguring output a -out!ch-› b of Ci is replaced by a pair of transitions a
-outo!cho-› ab -rec(outo!cho)-› b, where ab is a fresh state in newSti and rec(outo!cho) is
a reconfiguration action where the intention is to simulate the detaching of the channel
end cho from the component in a manner that will be made clear below. Likewise if the
channel end being detached is ch rather than ch, Ki will contain the pair of transitions a
-outo!chi-› ab -rec(outo!chi)-› b. A similar arrangement holds for reconfiguring input
transitions a -in?ch-› b and a -in?ch-› b. For these we have respectively a -ini?cho-› ab
-rec(ini?cho)-› b and a -ini?chi-› ab -rec(ini?chi)-› b.

For technical reasons, it is not sufficient to work with just the Ki. Given Ki, let θi
+a

be a finite directed path through the transition system of Ki (i.e. a finite sequence of con-
tiguous transitions of Ki), starting at state a. Let Ki

a be the transition system determined
by the set of paths: {θi

+a | θi
+a is a path through the transition system of Ki starting at

a, and if θi
+a contains a rec transition, there is only one and it is the last transition of

θi
+a}.

Given a θi
+a, let θi

a be the result of erasing from θi
+a all non-rec transitions (so the

transitions listed in θi
a will not be contiguous, neither will they necessarily mention a).

24 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
Let φ(θi
+a), φ(θi

a) denote the final state reached by such a θi
+a or θi

a. Define Θi
a = {θi

a |
θi

+a is a path through the transition system of Ki starting at a}; consequently Θi
a is par-

tially ordered by the prefix relation. We write θi
+, θi, Θi to denote θi

+Initi, θi
Initi, Θi

Initi.
Let:

M = ∏{Θi | i ∈ {1 … n}}

The rest of the construction will proceed by recursion on the structure of M, which is
again partially ordered by the prefix relation. We construct a pure manger automaton
pm, whose space of states is M, and above each m ∈ M, there will be a collection of pure
worker automata crafted from the Ki

a transition systems3.
The base case is m = []×[]×…×[]. Above this m we have the collection of pure

workers pwi
[] for i ∈ {1 … n}, where pwi

[] is given by (CHii
[], CHoi

[], Ki
Initi), with

CHii
[] = {chi | chi ∈ CHi, ch ∈ ri} and CHoi

[] = {cho | cho ∈ CHo, ch ∈ ri}. Note that
Initi = φ([]) (with the understanding that [] is the empty path through Ki).

The manager state m maps to (Pm, Cm) where:

Pm = {chs | chs ∈ CHs, ch ∈ ri} ∪ {cht | cht ∈ CHt, ch ∈ ri}
Cm = {chch | {chs, cht} ∩ Pm ≠ ∅}

and the sm, tm maps function in the way we would expect, i.e. sm(chch) = chs and tm(chch)
= cht. The link between the manager and the workers is also unsurprising:

λm = {cht |→ chi | chi ∈ CHii
[]} ∪ {chs |→ cho | cho ∈ CHoi

[]}

pwi
[]^m

completing the base case.
Now suppose that m = (θ1 … θn) and suppose m′ = (θ1 … θi′ … θn) where θi′ =

θi@[ai -rec(outo!cho)-› bi], and where the transition ai -rec(outo!cho)-› bi is a Ki- imme-
diate successor reconfiguring transition to the last one in θi. The manager state m which
maps to (Pm, Cm) is transformed to m′ which maps to (Pm′, Cm′) where:

Pm′ = Pm – {chs}
Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅}

and the sm′, tm′ maps work as expected, i.e. sm′(chch) = chs and tm′(chch) = cht. It now
makes sense to define the manager reconfiguration transition m -r-› m′ as the partial in-
jection

χm,m′ : Cm → Cm′

which is the maximal identity function on Cm ∩ Cm′.
Suppose that above m we had the n pure workers {pwj

θj | j ∈ {1 … n}}. Then above
m′ we will also have n pure workers. For j ≠ i, pwj

θj will continue to be above m′ and
the reconfiguration transition m -r-› m′ will leave it in the same state as it was. For the
case j = i we have instead the pure worker pwi

θi′ = (CHii
θi′, CHoi

θi′, Ki
φ(θi′)) where:

CHii
θi′ = CHii

θi

CHoi
θi′ = CHoi

θi – {cho}

3. Since there is only one nontrivial manager, we suppress the ‘pm’ tags for convenience.

25Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
and so we can summarise the above map for m′ as:

{pwj
θj^m′ | pwj

θj^m, j ∈ {1 … n} – {i}} ∪ {pwi
θi′^m′}

The λm′ map is:

λm′ = λm – {chs |→ cho}

and we have that:

rpwiθi^m(rec(outo!cho)) = m -r-› m′

which completes the piece of the recursion for the case of a rec(outo!cho) reconfigura-
tion. If we consider instead rec(outo!chi), rec(ini?cho), rec(ini?chi) reconfigurations, the
above is modified respectively by:

CHii
θi′ = CHii

θi – {chi} ; CHoi
θi′ = CHoi

θi ;
Pm′ = Pm – {cht} ; Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅} ;
λm′ = λm – {cht |→ chi}

CHii
θi′ = CHii

θi ; CHoi
θi′ = CHoi

θi ∪ {cho} ;
Pm′ = Pm ∪ {chs} ; Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅} ;
λm′ = λm ∪ {chs |→ cho}

CHii
θi′ = CHii

θi ∪ {chi} ; CHoi
θi′ = CHoi

θi ;
Pm′ = Pm ∪ {cht} ; Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅} ;
λm′ = λm ∪ {cht |→ chi}

together with the obvious consequences. Since the ABB system enjoys the property
that a component cannot give away a channel end that it is not connected to and neither
does it ever receive a channel end that it already possesses, it readily follows that the set
operations above are nonnull.

Beyond these there are the expected identity transitions on states of M of course,
which completes the construction. Thus we have cut up the original ABB system into
a collection of pieces that can be reassembled as an IWIM system, in order that the latter
is able to achieve the same effect as the original system. In fact it is easy to convince
onself that the IWIM system constructed from a given ABB system by the above tech-
nique is able to simulate it in the sense that non-reconfiguring inputs and outputs corre-
spond bijectively, while reconfiguring inputs and outputs correspond to sequences of
two steps in the IWIM system, the first to receive or transmit the channel end identifier,
the second to provoke the desired reconfiguration via the manager.

6 The Katis, Sabadini, Walters Model

In this section we consider a model proposed by Katis, Sabadini and Walters in [Katis
et al. (2000)], henceforth the KSW model, and show how it too can be subsumed within
our framework. In the KSW model, the main entity of interest is the CP automaton. A
CP automaton G = (G, X, Y, A, B, ∂0, ∂1, γ0, γ1), consists of a directed graph G = (G0,
G1) where G0 is the set of nodes and G1 is the set of arcs, together with four maps:

∂0 : G1 → X ; ∂1 : G1 → Y ; γ0 : A → G0 ; γ1 : B → G0

26 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
These work as follows. The arcs of the graph represent transitions of the automaton,
whose states are the nodes. The sets X and Y are input and output alphabets respectively.
Thus the maps ∂0 : G1 → X and ∂1 : G1 → Y describe which input letter a transition of
the graph consumes, and which output letter it produces. Since both maps are total,
each transition involves both input and output. We will write a CP automaton transition
as:

s -(ind, arc, outd)-› t

where s and t are states, arc is the arc carrying the transition, and ind, outd are the input
and output data. (In [Katis et al. (2000)], the authors also admit null elements in both
X and Y alphabets, to aid abstraction and to represent the absence of genuine communi-
cation during a step.) Communication is synchronous, thus when two CP automata
communicate, the symbol output by the producer of the communication, is simultane-
ously input by the consumer of the communication. Most emphatically, there are no
queues in the model: communication in this model is above all a synchronisation mech-
anism.

The sets A and B (called the in-condition and out-condition respectively in [Katis
et al. (2000)]), are to do with initialisation and finalisation, though in a slightly non-
standard manner. Specifically, the γ0-image of A is the set of entry points into the CP
automaton, i.e. initial states, and the γ1-image of B is the set of exit points, i.e. final
states, of the automaton — except that when CP automata are combined in the appro-
priate way, then subsets of entry or exit points may be identified, leading to a richer
gamut of possibilities parameterised by partitions of γ0(A) and γ1(B).

CP automata are endowed with a number of algebraic operations, which construct
more complex CP automata out of simpler ones. We will model the KSW formalism
by mapping CP automata to IWIM systems, and then showing how the CP automaton
algebraic operations can be reflected in constructions on the corresponding IWIM sys-
tems.

Let G = (G = (G0, G1), X, Y, A, B, ∂0, ∂1, γ0, γ1) be a CP automaton. We build an
IWIM system corresponding to G, and consisting of a pure manager and a pure worker.
The pure manager pm has one-state ♦ which maps to ({ps, pt}, {chs, cht}) with s♦(chs)
= ps and t♦(cht) = pt (and with s♦(cht) and t♦(chs) undefined). The state ♦ is initial and
the only transition of the manager is the identity. Clearly the manager’s structure is in-
dependent of G.

The pure worker pw is ({pi}, {po}, (St, Init, Tr)) where the transition system Tr is
constructed thus. For each G transition s -(ind, arc, outd)-› t, Tr contains the two step
sequence s -pi?ind-› arc -po!outd-› t ; this makes it clear that St = G0 ∪ G1 (we will tac-
itly assume that this union is disjoint). Regarding Init, we can choose any state s0 in
γ0(A) to be Init. Thus the mapping from CP automata to IWIM systems is in general
one to many. In reality of course, examples of CP automata that represent complete sys-
tems typically have unique initial states, reflecting the often observed fact that most real
systems start in a well defined condition. The plurality comes in useful when compo-
nent CP automata are combined to form a larger system. We will comment on this fur-
ther below. More generally, γ0(A) and γ1(B) are sets of states of the pure worker pw.

27Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
Our basic construction is nearly complete. All that remains is to note that the λ mapping
is given by:

λ♦(ps) = po ; λ♦(pt) = pi

that the above mapping is given by:

pw^♦pm

and that since there are no rec actions in the worker, the r map is empty.
Note the following invariant of the generated IWIM system: regardless of G, there

is exactly one pure worker, one one-state pure manager, one external input channel, one
external output channel, and γ0(A) and γ1(B) can be identified with sets of configurations
of the pure worker.

We can easily see that whatever the initial state of the given CP automaton, we can
find an IWIM system from among the possibilities constructed, with the same initial
state; and which furthermore simulates it in the sense that the execution of a CP autom-
aton transition inputting x and outputting y, corresponds in the IWIM system to the input
from the input queue of x and the output onto the output queue of y, in that order. (The
alternative order leads to an equally acceptable construction.) Note that in the IWIM
system these are comunications with the environment.

We now move on to constructions on CP automata and how these are reflected in
the corresponding IWIM systems; the principal ones that we must consider are binary
combinators. We will subscript with the name of the relevant automaton to disambigua-
te when notations would otherwise clash.

Communicating Parallel Composition. Let G = (G = (G0, G1), X, Y, A, B, ∂0,G, ∂1,G,
γ0,G, γ1,G) and H = (H = (H0, H1), Y, Z, C, D, ∂0,H, ∂1,H, γ0,H, γ1,H) be CP automata. Then
the communicating parallel composition of G and H, written G ⋅H, is the CP automa-
ton:

G ⋅H = (G⋅H = (G0 × H0, G1⋅H1 = {(g, h) | g ∈ G1, h ∈ H1, ∂1,G (g) = ∂0,H (h)}),
X, Z,
A × C, B × D,
∂0,G ⋅H (g, h) = ∂0,G (g), ∂1,G ⋅H (g, h) = ∂1,H (h),
γ0,G ⋅H = γ0,G × γ0,H , γ1,G ⋅H = γ1,G × γ1,H)

This definition makes clear the statement above that communication is synchronous in
the KSW model. The input and output labels on an arc (g, h) of the combined system
are ∂0,G (g) and ∂1,H (h) respectively, while the very existence of the arc is predicated on
the condition ∂1,G(g) = ∂0,H (h), which supports the interpretation that arc g output and
arc h input the same symbol. This is the only notion of communication in the KSW
model.

We model the communicating parallel composition of G and H at the IWIM system
level as follows. Suppose WMG is an IWIM system representing G, and WMH is an
IWIM system representing H. We assume that both WMG and WMH each have a pure
worker, pwG and pwH respectively, a one-state pure manager, pmG and pmH respectively,
an external input channel cht,G and cht,H respectively, an external output channel chs,G
and chs,H respectively, that γ0,G(A) and γ1,G(B) can be identified with a set of states of

28 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
pwG, and that γ0,H(C) and γ1,H(D) can be identified with a set of states of pwH. The
IWIM system WMG ⋅H we seek can be generated from WMG and WMH as follows.

There is the usual one-state pure manager pmG ⋅H as above. The corresponding pure
worker pwG ⋅H = ({pi}, {po}, (StG ⋅H, InitG ⋅H, TrG ⋅H)) is built from pwG and pwH by defin-
ing StG ⋅H = StG × StH, InitG ⋅H = (InitG, InitH), and for TrG ⋅H, whenever we have a pair of
transitions in TrG of the form sG -pi?ind-› arcst,G -po!val-› tG, and a pair of transitions in
TrH of the form sH -pi?val-› arcst,H -po!outd-› tH, we form the TrG ⋅H transitions (sG, sH)
-pi?ind-› (arcst,G, arcst,H) -po!outd-› (tG, tH). It is clear that this procedure only succeeds
because of the special structure of the transition systems TrG and TrH. We can now iden-
tify γ0,G ⋅H(A × C) with states corresponding to γ0,G(A) × γ0,H(C), and γ1,G ⋅H(B × D) with
states corresponding to γ1,G(B) × γ1,H(D); and the rest of the data for the IWIM system
WMG ⋅H is routine.

It is obvious that WMG ⋅H is able to simulate G ⋅H in a straightforward manner pro-
vided WMG can simulate G and WMH can simulate H.

Parallel Composition without Communication. Let G = (G = (G0, G1), X, Y, A, B,
∂0,G, ∂1,G, γ0,G, γ1,G) and H = (H = (H0, H1), Z, W, C, D, ∂0,H, ∂1,H, γ0,H, γ1,H) be CP
automata. Then the noncommunicating parallel composition of G and H, written G ×
H, is the CP automaton:

G × H = (G × H = (G0 × H0, G1 × H1), X × Z, Y × W, A × C, B × D,
∂0,G × H (g, h) = ∂0,G (g) × ∂0,H (h), ∂1,G × H (g, h) = ∂1,G (g) × ∂1,H (h),
γ0,G × H = γ0,G × γ0,H , γ1,G × H = γ1,G × γ1,H)

This noncommunicating parallel composition still features synchronous communica-
tion, but this time of pairs of data values.

We model the noncommunicating parallel composition of G and H at the IWIM
system level thus. Let WMG and WMH be IWIM systems representing G and H respec-
tively. We assume that WMG and WMH have pure workers, pwG and pwH, one-state pure
managers, pmG and pmH, external input channels cht,G and cht,H, external output chan-
nels chs,G and chs,H, that γ0,G(A) and γ1,G(B) can be identified with a set of states of pwG,
and that γ0,H(C) and γ1,H(D) can be identified with a set of states of pwH. Then we pro-
ceed as follows to construct WMG × H.

There is the usual one-state pure manager pmG × H as above. We build a corre-
sponding pure worker pwG × H = ({pi}, {po}, (StG × H, InitG × H, TrG × H)) from pwG and
pwH by defining StG × H = StG × StH, InitG × H = (InitG, InitH), and for TrG × H, whenever
we have a pair of transitions in TrG of the form sG -pi?indG-› arcst,G -po!outdG-› tG, and
a pair of transitions in TrH of the form sH -pi?indH-› arcst,H -po!outdH-› tH, we form the
TrG × H transition pair:

(sG, sH) -pi?(indG, indH)-› (arcst,G, arcst,H) -po!(outdG, outdH)-› (tG, tH).

We can now identify γ0,G × H(A × C) with states corresponding to γ0,G(A) × γ0,H(C), and
γ1,G × H(B × D) with states corresponding to γ1,G(B) × γ1,H(D); and the rest of the data
for WMG × H is routine.

It is obvious that WMG × H is able to simulate G × H in a straightforward manner
provided WMG can simulate G and WMH can simulate H.

29Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
Up to now, the in-conditions and out-conditions of the component CP automata have
played a passive role; the next construction remedies this.

Restricted Sum. Let G = (G = (G0, G1), X, Y, A, B, ∂0,G, ∂1,G, γ0,G, γ1,G) and H = (H
= (H0, H1), X, Y, B, C, ∂0,H, ∂1,H, γ0,H, γ1,H) be CP automata. Then the restricted sum of
G and H, written G + H, is the CP automaton:

G + H = (G + H = (G0 + H0 / ~B where ~B is the finest equivalence
relation generated by γ1,G(b) ~B γ0,H(b) (and we write
[g]B for the equivalence class containing g), G1 + H1),

X, Y, A, C,
∂0,G + H = ∂0,G + ∂0,H, ∂1,G + H = ∂1,G + ∂1,H,
γ0,G + H = γ0,G , γ1,G + H = γ1,H)

(As expected, the sources and targets of the arcs in G1 + H1 are the equivalence classes
of the corresponding sources and targets in G0 and H0.)

Let WMG and WMH be IWIM systems representing G and H respectively. We as-
sume that WMG and WMH have pure workers, pwG and pwH, one-state pure managers,
pmG and pmH, external input channels cht,G and cht,H, external output channels chs,G and
chs,H, that γ0,G(A) and γ1,G(B) can be identified with a set of states of pwG via maps
γw0,G : A → StG, γw1,G : B → StG, and that γ0,H(B) and γ1,H(C) can be identified with a
set of states of pwH via maps γw0,H : B → StH, γw1,H : C → StH. We proceed as follows
to construct WMG + H.

There is the usual one-state pure manager pmG + H as above. We build a corre-
sponding pure worker pwG + H = ({pi}, {po}, (StG + H, InitG + H, TrG + H)) from pwG and
pwH by defining:

StG + H = StG + StH / ~B where ~B is the finest equivalence relation
generated by γw1,G(b) ~B γw0,H(b) (and we write
[s]B for the equivalence class containing s)

InitG + H = [InitG]B

TrG + H = {[s]B -pi?v-› [t]B | [s]B, [t]B ∈ St, s -pi?v-› t ∈ TrG,I ∪ TrH,I} ∪
 {[s]B -po!v-› [t]B | [s]B, [t]B ∈ St, s -po!v-› t ∈ TrG,O ∪ TrH,O}

That this works as desired is conditional on the observation that in both pwG and pwH,
the states picked out by γw0,G, γw1,G, γw0,H, γw1,H are, so to speak, ‘G0-states’ and not
‘arc-states’. This can be assured by choosing γw0,G, γw1,G, γw0,H, γw1,H to be γ0,G, γ1,G,
γ0,H, γ1,H in the base case construction, whereupon it evidently persists through the bi-
nary combinator simulations we have described, and enables us to formally identify
γ0,G + H = γ0,G with a set of states of pwG + H via γw0,G + H : A → StG + H = γw0,G / ~B and
to identify γ1,G + H = γ1,H with a set of states of pwG + H via γw1,G + H : C → StG + H =
γw1,H / ~B. With this confirmed, the construction of StG + StH / ~B results in a glueing of
s -pi?ind-› arc -po!outd-› t sequences only at their ends, and it then becomes easy to see
that the given recipe gives us an IWIM system WMG + H capable of simulating the CP
automaton G + H, if WMG simulates G and WMH simulates H.

Two points deserve comment. Firstly, [Katis et al. (2000)] speak of the need to ‘ad-
just’ the in-conditions or out-conditions of a CP automaton in order to make it fit for

30 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
some particular purpose. More than anything else this is an indication that these inter-
connection aspects of the automaton are really properties that belong more to the inter-
connection mechanism itself, than to the automata involved.

Secondly if, following [Katis et al. (2000)], we intend the restricted sum to model
sequential composition, the construction of WMG + H, though faithful to the CP autom-
aton G + H, suffers from the weakness that if a final state of G has out-transitions, and
a corresponding initial state of H has in-transitions, then a run may wander from G to
H and then back in to G. The IWIM system paradigm offers more flexibility here, al-
lowing the expression of an irreversible transition from G to H. We describe the details,
resulting in the construction of an IWIM system WM*G + H that simulates G + H in a
different way.

Suppose in G0 + H0 / ~B above, there are k of the equivalence classes that are non-
singletons, i.e. there are k classes that glue at least one element of G0 to at least one el-
ement of H0 (the remaining classes just containing individual elements outside the rang-
es of γ1,G(B) and γ0,H(B)). Call them:

[γw1,G(b)1], [γw1,G(b)2] … [γw1,G(b)k]

Now partition each of [γw1,G(b)1] … [γw1,G(b)k] into two subsets each:

[γw1,G(b)1]G = [γw1,G(b)1] ∩ G0 and [γw1,G(b)1]H = [γw1,G(b)1] ∩ H0
… … … …

[γw1,G(b)k]G = [γw1,G(b)k] ∩ G0 and [γw1,G(b)k]H = [γw1,G(b)k] ∩ H0

all nonempty by our assumptions. Replacing in StG + H the [γw1,G(b)1] … [γw1,G(b)k] by
the [γw1,G(b)1]G, [γw1,G(b)1]H … [γw1,G(b)k]G, [γw1,G(b)k]H is tantamount to generating
a new equivalence relation, which we call B*, on the state space StG + StH. This is the
finest relation generated by the two families of clauses:

(γw1,G(b) ~B γw0,H(b) = γw0,H(c) ~B γw1,G(c)) ⇒ γw1,G(b) ~B* γw1,G(c))

(γw0,H(b) ~B γw1,G(b) = γw1,G(c) ~B γw0,H(c)) ⇒ γw0,H(b) ~B* γw0,H(c))

Now we define:

St*G + H = (StG + H – {[γw1,G(b)1] … [γw1,G(b)k]}) ∪
{[γw1,G(b)1]G, [γw1,G(b)1]H … [γw1,G(b)k]G, [γw1,G(b)k]H}

Init*G + H = [InitG]B*

Tr*G + H = {[s]B* -pi?v-› [t]B* | [s]B*, [t]B* ∈ St, s -pi?v-› t ∈ TrG,I ∪ TrH,I} ∪
{[s]B* -po!v-› [t]B* | [s]B*, [t]B* ∈ St, s -po!v-› t ∈ TrG,O ∪ TrH,O} ∪
{[s]B* -rec-› [t]B* | s = γw1,G(b) = γw0,H(b) = t , b ∈ B}

By distinguishing the G from the H components of the glueing states, we are able to
introduce rec transitions from one to the other. All of these rec transitions are above the
unique state of the pure manager, and all map to the identity reconfiguration on the cor-
responding port/channel network ({ps, pt}, {chs, cht}). Since the pure worker remains
above this state when such a rec transition is executed, its rec transition completes and
the run continues in the H component; however this time there is no way back to the G

31Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
component, even if there are in-transitions to the initial state of H used, and out-transi-
tions from the final state of G reached.

This all works adequately, but is still open to the criticism that pure worker pwG, its
useful life over when the locus of control moves into the pwH part of the system, re-
mains alive, though defunct, preventing its resources from being reused. In a real sys-
tem, it would be garbage collected releasing its resources for other activities. Equally,
a demand driven implementation might well not create the pwH part of the system until
it was needed. Our IWIM system model enables us to express these aspects though we
will not go into all the formal details. Here is the general idea.

We split the state of the pure manager into two; and (a modified) pwG is above the
new initial state, while pwH is above the other state. There is a reconfiguration transi-
tion from the former to the latter, whose data is the identity reconfiguration on the port/
channel network ({ps, pt}, {chs, cht}). The modification to pwG entails adding the
[γw1,G(b)1]G … [γw1,G(b)k]G states described previously to its state space, and then add-
ing rec transitions to a typical [γw1,G(b)j]G state from each of its comprising γw1,G(b)j
states. These rec transitions map to the reconfiguration mentioned above.

It is clear that the behaviours of the resulting system are as follows. The manager
starts in its initial state; consequently the modified pwG is active. It executes until it
reaches a γw1,G(b)j state and proceeds to perform the γw1,G(b)j -rec-› [γw1,G(b)j]G tran-
sition. This maps to the reconfiguration step of the manager, and because pwH is above
the new manager state, the modified pwG leaves the system configuration and pwH joins
it, starting in its initial state.

This story holds up if H has a unique initial state. If not, an unwinding technique
similar to that used in our ABB system simulation must be employed.

Furthermore, the nontrivial state space now introduced for the manager has conse-
quences for all the combinators. A product-like construction must be used on the man-
ager states for the communicating and noncommunicating parallel compositions, while
a sum-like construction, involving the introduction of reconfiguration transitions must
be used for the restricted sum. We leave the fascinating details for the motivated reader.

7 Conclusions

In the preceding sections we have introduced a formal model for capturing some of the
essence of the IWIM concept in an automata based framework. The essence of the
IWIM model is the special role of reconfigurations, so our constructions aimed to reflect
this in an explicit manner, rather than relying on ‘programming them away’ within a
more general purpose automata theoretic framework. The objective was to model these
structural aspects of reconfigurations involving managers and workers as simply as pos-
sible while keeping their special nature to the fore. This led to some complexity in the
model as we saw, but not as much as there might have been had we chosen for example
to model the full asynchrony of the true IWIM model, rather than emulate it via delay
automata.

To keep things as accessible as possible, we started with elementary IWIM sys-
tems, before treating the unrestricted case. The fact that the generalisation went
smoothly is due in no small way to the fact that the design of the model was tacitly un-

32 Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
dertaken in a manner in sympathy with categorical imperatives, which have a great ca-
pacity to foster relatively elegant structural properties.

Having built our IWIM systems and dealt with the emulation of full asynchrony,
we emulated the ABB and KSW models. While the ABB model is a distributed state
model like ours, the KSW model is a global state model, in which the state of the entire
system resides at one indivisible point. This policy permits a straightforward construc-
tion for sequential composition, at the price of being somewhat unrealistic for a distrib-
uted model of computation. It is clear that sequential composition would involve the
distributed termination problem in a distributed state model, and this is one reason why
it is not contemplated for the ABB model. Had we not wanted to capture all the alge-
braic properties described in [Katis et al. (2000)], including sequential composition, we
could have employed a more natural construction to emulate aspects of the KSW model.
For example we could have piped the output of one worker into the input of another in
modelling communicating parallel composition, this however immediately distributes
the state.

Finally, we observe that coordination models different from the IWIM one, and in
particular the global state tuple based approaches, must nevertheless embody the capac-
ity for disentangling management from worker aspects, which was done so readily for
IWIM, even if they only do so implicitly. The challenge of extracting this structure from
so different looking starting points remains an intriguing issue to explore in future pub-
lications.

Acknowledgement

The work described in this paper was partially supported by the EU in the course of the
KIT-INCO Project SEEDIS (Contract No. 962114).

References

[Agha (1986)] Agha G. (1986); Actors: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press.

[Arbab (1995)] Arbab F. (1995); Coordination of Massively Concurrent Activities. CWI Tech.
Rep. CS-R9565.

[Arbab (1996)] Arbab F. (1996); The IWIM Model for Coordination of Concurrent Activities. in:
Proc. COORD-96, Ciancarini, Hankin (eds.), LNCS 1061, 34-56, Springer.

[Arbab et al. (1993)] Arbab F., Herman I., Spilling P. (1993); An overview of Manifold and its
Implementation. Concurrency: Practice and Experience 5, 23-70.

[Arbab et al. (1998)] Arbab F., Blom C. L., Burger F. J., Everaars C. T. H. (1998); Rusable Coor-
dination Modules for Massively Concurrent Applications. Software: Practice and Experi-
ence 28, 703-735.

[Arbab et al. (2000a)] Arbab F., de Boer F. S., Bonsangue M. M. (2000a); A Logical Interface
Description Language for Components. in: Proc. COORD-00, Porto, Roman (eds.), LNCS
1906, 249-266, Springer.

[Arbab et al. (2000b)] Arbab F., de Boer F. S., Bonsangue M. M. (2000b); A Coordination Lan-
guage for Mobile Components. in: Proc. ACM SAC-00, 166-173.

[Banach et al. (2002)] Banach R., Arbab F., Papadopoulos G. A., Glauert J. R. W. (2002); A Mul-
tiply Fibred Automaton Semantics for IWIM. CWI Research Report SEN-R0206. http:/
/www.cwi.nl

33Banach R., Arbab F., Papadopoulos G.A., Glauert J.R. W.: A Multiply Hierarchical ...
[Bonsangue et al. (2000)] Bonsangue M. M., Arbab F., de Bakker J. W., Rutten J. J. M. M., Scutel-
là A., Zavattaro G. (2000); A Transition System Semantics for the Control-Driven Coordi-
nation Language MANIFOLD. Theor. Comp. Sci. 240, 3-47.

[Carriero and Gelernter (1989)] Carriero N., Gelernter D. (1989); LINDA in Context. Comm.
ACM 32, 444-458.

[Ciancarini and Hankin (1996)] Ciancarini P., Hankin C. H. L. (eds.) (1996); Coordination Lan-
guages and Models 1996 (Proc. COORD-96). LNCS 1061, Springer.

[Ciancarini and Wolf (1999)] Ciancarini P., Wolf A. L. (eds.) (1999); Coordination Languages
and Models 1999 (Proc. COORD-99). LNCS 1594, Springer.

[Garlan and Le Metayer (1997)] Garlan D., Le Metayer D. (eds.) (1997); Coordination Languag-
es and Models 1997 (Proc. COORD-97). LNCS 1282, Springer.

[Gelernter (1985)] Gelernter D. (1985); Generative Communication in Linda. ACM Trans. Prog.
Lang. Sys. 7, 80-112.

[Katis et al. (2000)] Katis P., Sabadini N., Walters R. F. C. (2000); A Formalisation of the IWIM
Model. in: Proc. COORD-00, Porto, Roman (eds.), LNCS 1906, 267-283, Springer.

[Malone and Crowston (1994)] Malone T., Crowston K. (1994); The Interdisciplinary Study of
Coordination. ACM Comp. Surv. 26, 87-119.

[Omicini et al. (2002)] Omicini A., Zambonelli F., Klusch M., Tolksdorf R. (2002); Coordination
of Internet Agents: Models, Technologies, and Applications. Springer.

[Papadopoulos and Arbab (1998)] Papadopoulos G. A., Arbab F. (1998); Coordination Models
and Languages. in: Advances in Computers — The Engineering of Large Systems, Zelkow-
itz (ed.), 329-400, Academic.

[Porto and Roman (2000)] Porto A., Roman G-C. (eds.) (2000); Coordination Languages and
Models 2000 (Proc. COORD-00). LNCS 1906, Springer.

[Shapiro (1989)] Shapiro E. (1989); The Family of Concurrent Logic Languages. ACM Comp.
Surv. 21, 412-510.

	A Multiply Hierarchical Automaton Semantics for the IWIM Coordination Model
	R. Banach (Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K. banach@cs.man...
	F. Arbab (Software Engineering Dept., CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherlands farhad@c...
	G. A. Papadopoulos (Computer Science Dept., University of Cyprus, 75 Kallipoleos St., Nicosia, Cy...
	J. R. W. Glauert (School of Information Systems, University of East Anglia, Norwich, NR4 7TJ, U.K...
	Abstract: The drawbacks of programming coordination activities directly within the applications s...
	1 Introduction
	2 The IWIM Model
	3 IWIM Automata
	3.1 Elementary IWIM Systems
	c œ dom(sm) , c Œ dom(tm) , qsrest = qs – {c:[º , un]}
	c œ dom(tm) , c Œ dom(sm) , qsrest = qs – {c:[u, u1, º]}
	k^m , ak Œ ests , ak -i?u-› bk , lm(p) = i Œ Iwor(k) , tm(c) = p , estsrest = ests – {ak} , qsres...
	k^m , ak Œ ests , ak -o!u-› bk , lm(p) = o Œ Owor(k) , Æ ¹ Out = {d | sm(d) = p} , estsrest = est...
	tm(c) = p , Æ ¹ Out = {d | sm(d) = p} , qsrest = qs – ({c:[u, u1, º]} » {d:[º , ud,nd] | d Œ Out})
	kr^m , akr Œ ests , akr -rec-› bkr , rkr^m(rec) = m -r-› n = cm,n : Cm Æ Cn , estsrest = ests – {...

	3.2 Unrestricted IWIM Systems
	c œ »{dom(sm¢wm¢) | m¢wm¢ Œ pman(sts)} , c Œ dom(tmwm) , mwm Œ pman(sts) , qsrest = qs – {c:[º ,...
	c œ »{dom(tm¢wm¢) | m¢wm¢ Œ pman(sts)} , c Œ dom(smwm) , mwm Œ pman(sts) , qsrest = qs – {c:[u, u...
	k^mwm , mwm Œ pman(sts) , (ak, nk) Œ sts , (ak, nk) -i?u-› (bk, nk) , lmwm(p) = i Œ Iwor(k) , tmw...
	(ak, nk) Œ sts , (ak, nk) -o!u-› (bk, nk) , Æ ¹ Out = {d | $ mwm Œ pman(sts), p • k^mwm, lmwm(p) ...
	k^m¢wm¢ , m¢wm¢ Œ pman(sts) , tm¢wm¢(c) = p , Æ ¹ Out = {d | $ mwm Œ pman(sts), p • k^mwm, lmwm(p...
	Æ ¹ Rmman = {mwm | mwm Œ pman(sts) • kr^mwm} , (akr, mkr) Œ sts , (akr, mkr) -rec-› (bkr, mkr) , ...

	4 IWIM Systems with Delayed Reconfigurations
	5 The Arbab, de Boer, Bonsangue Model
	6 The Katis, Sabadini, Walters Model
	7 Conclusions
	Acknowledgement
	References

