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Abstract: This paper presents a complete system for scheduling transportation or-
ders to a fleet of autonomous mobile robots in service environments. It consists of
the autonomous mobile robots, a user friendly interface to acquire the orders for the
robots via internet and to store them in a database, a general language for modeling
multistorey buildings with XML and the scheduling algorithms. The model description
of the buildings is used to plan the paths for the robots and to estimate the cost and
times for the orders. One challenging key problem – the multi robot cooperation – is
solved by the scheduling algorithms and by giving autonomy to the service robots.
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1 Introduction

Interest in autonomous mobile service robots continuously increases since J.
Engelberger present his transport service robot HelpMate [Eng93, SV96]. Service
robots have to achieve a high level of flexibility, adaptability, and efficiency in
human-populated areas. Today, only few service robot systems are available.
Some are built for transportation and delivery tasks like serving drinks in a
hotel [RG98], delivering mail [Ves96], or offering transportation capacity in a
hospital [Eng93].

In contrast to these single robots approaches, this paper presents a team
of currently three service robots. They offer the possibility to simultaneously
handle a large number of tasks in multistorey buildings in a predefined time
window or interval. Therefore, a large number of transportation tasks have to
be acquired, organized and scheduled to the service robots.

For transportation tasks, this problem is known as the vehicle routing prob-
lem (VRP). It involves the design of a set of minimum cost routes for a fleet of
vehicles, e.g., service robots. The VRP area has been intensively studied in liter-
ature. We refer the reader to [LBB83, LN87, Mag81] for comprehensive surveys
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on the VRP and its variations that also describe many practical occurrences of
the problem.

In the VRP with time windows (VRPTW) the above issues have to be dealt
with under the added complexity of specified delivery times or time windows. The
pickup and delivery problem with time windows (PDPTW) is a generalization of
the VRPTW. It is concerned with the construction of optimal routes to satisfy
transportation requests, requiring both pickup at the origin and delivery at the
destination under capacity, time window and precedence constraints. In addition,
each route satisfies pairing constraints since corresponding pickup and delivery
locations have to be served by the same vehicle. The VRPTW is a particular case
of the PDPTW where the destinations is always one common depot. Solomon
et al. give a recent surveys on time window constrained routing and scheduling
problems [SD88, YDS91, SW00].

An important constraint for the PDPTW is the consideration of the vehicle
capacity. In the preemptive case, the vehicles have an infinite capacity and could
be interrupted to pickup new items. In the non-preemptive case, the route from
the pickup location to the corresponding delivery location could not be inter-
rupted. The ARIADNE robots have a limited transportation capacity and can
pickup from 1 two 20 objects depending on the object size. Therefore, a schedul-
ing algorithm is needed which considers all possibilities between the preemptive
and the non-preemptive case.

In contrast to industrial environments, a further important constraint for a
transport application in service environments is the customer orientation. The
vehicle serves a set of customers with permanently varying demands. Customer
orientation is more than to fulfill the transportation request in time. Many ad-
ditional items specify the customer needs.

– A simple and comfortable user interface. Transport tasks can be initiated at
any time and at any computer.

– An always up-to-date database for the orders and schedules with an Internet
connection to ensure transparency.

– The up-to-date constraint leads to soft real-time behavior of the scheduling
algorithm, e.g., it has to work online.

– If possible, previous schedules have to be changed only moderately to achieve
planning certainty for the customer. This condition will be called minor
changing constraint.

– Shortest possible routes to gain high throughput, low energy consumption
and a short response time.

– In addition to the route planning a time estimation is also demanded.
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– Privacy, i.e., orders should be seen only by the originator.

Since practical applications in industrial environments are static, i.e., the
number of vehicles and the pickup and delivery locations are fixed, known in
advance and constant over the time, previous work on PDPTW concentrated
mainly on the minimization of the length of the route [SD88]. For this type of
application, the calculation time of the scheduling algorithm is secondary.

Other similar projects are the Martha project [RAHIR98]. The objectives are
the operation and control of a large fleet of autonomous mobile robots (10-100)
for containers transshipment tasks in harbors, airports and marshaling yards.
Simmons et al. use the Prodigy task scheduler for the Xavier robot [SGH+97].
Prodigy is a domain-independent nonlinear problem solver that uses means-ends
analysis and backward chaining to reason about multiple goals and multiple
alternatives of achieving them. Rogue, an architecture that integrates high-level
planning with a low-level executing, is the framework that integrates the Xavier
robot with the prodigy planning system [HV97]. Burghard and Thrun et. al.
build a scheduling/planning system with a web interface for their solitary acting
museum robots MINERVA and RHINO [BCF+98, TBB+99]. Even though all
of these robots (including ours) work autonomously, the approaches could be
regarded as tele-robotics, tele-controlled or better tele-instructed with a high
degree of autonomy for each robot.

In this paper we present the complete system for scheduling transportation
orders to autonomous mobile robots in service environments. Therefore, we in-
troduce the mobile service robots in section 2. Section 3 describes the customer
interface to receive transportation orders and section 4 gives an example of a
prototype multistorey building and introduces the XML language for modeling
buildings. Section 5 presents the online capable algorithms for the preemptive
and non-preemptive scheduling strategies. A conclusion forms the last chapter
of the paper.

2 Service robot team - ARIADNE

The ARIADNE team consists of three mobile industrial robots (Fig. 1): Odysseus,
Marvin and Thor. Each is about 80 cm × 60 cm large and 90 cm high. The mo-
bile platform can carry a payload of 200 kg at speeds of up to 0.8 m/s (about
half the speed of a pedestrian). The right and left driving wheels are mounted
on a suspension on the center line of the mobile platform. Passive castors on
each corner of the chassis ensure stability.

The core of every robot is a Pentium PC 166 MHz with 16 MB RAM and
real-time Linux. Two micro-controllers are used. One controls the internal states,
display, keyboard and radio link of the robot. The other one manages the motors
and the optical line-tracking. Each platform is rigged with two laser scanners,
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Figure 1: Left: The ARIADNE-team: Odysseus, Marvin, and Thor executing
service orders. Each robot is equipped with four drawers, two on each side.
Right: A robot automatically charges its batteries.

one on the front and the other on the rear of the robot. Each laser scans 180◦

of the environment [PSFL98].
Each of the 250 kg robots can operate for about 8 hours with one battery

charge. When the power drains the robot visits an automatic power recharg-
ing station, connects itself to it and recharges its batteries (Fig. 1, right). A
behavior based approach is used to control the robots [SP01]. Behaviors are ex-
pressed by groups of fuzzy rules and different behaviors are combined by the
compositional rule of inference [TW86, SHP95, Saf97]. Important behaviors are
obstacle avoidance, wall following, robots meets human and robot meets robot.
Planning advises are combined with the behaviors by using fuzzy states in the
fuzzy rules [SHW96]. Refining abstract goals, e.g., going to an office is done
by the robots. Current information about the robot, e.g., robot monitoring,
robot orders, schedules, battery loading, laser scans etc., can be monitored at
http://lamu.gmd.de:8080.

Each robot sends a heartbeat, i.e., a position change information while it is
moving and some other signal if it is standing, e.g., while charging its battery.
If the heartbeat stops and the robot is unreachable, the administrator will be
alerted immediately. If the unavailable robot was executing some task, the ad-
ministrator can schedule this task to another robot. An additional task might
be necessary for finding the defective robot and unloading the robot cargo. The
behavior of the robots is visualized two and three dimensional with a Java ap-
plet or a VRML browser. The applet and the VRML browser increase the user
friendliness of the system (Fig. 2). Additional live cameras assist the administra-
tor to monitor the robots and to detect critical situations, e.g., an area crowded
by persons or an area of construction.
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Figure 2: 2D and 3D monitoring window.

The key idea behind the development of the team is to give more autonomy
to the service robots and allow them to cope with unexpected events and obsta-
cles, inaccurate environment model, other vehicles, and so on. This high level of
autonomy is achieved using advanced sensor-based capabilities, e.g., for local-
ization, obstacle detection and modeling, as well as planning and deliberation
between the robots through local communication and coordination [SM00].

3 Customer interface

The customer interface (RoboDis) is a client-server web-based dispatching sys-
tem for multiple autonomous service robots executing transport orders. The web
interface allow users to enter transport orders which consist of a pickup and a
delivery event and to store them in a SQL database. The scheduling algorithms
load the list of orders from the database and schedule the orders. The scheduled
events are stored in a second database where each robot has its own event list.
If a robot has finished an event or at regular time intervals a robot contacts the
second database client to get a new event (pickup or delivery) via its radio link
connection.

Transport orders for the service robots can be entered by means of a standard
WWW client such as Netscape Navigator or Internet Explorer. In our system
more pretentious requirements are made for the term service, i.e., the total sys-
tem must be highly available, user friendly, safe and transparent. Transparency
means, a simple view of the system is given to the user: a specific list of trans-
port orders is defined by the user and executed in time. System complexity, e.g.,
specifying which robot and how a robot executes an order, is hidden from the
user. 1

1 The dispatching system can be tested under URL http://lamu.gmd.de:8080/. Un-
registered users may enter transport orders using the account guest with password
guest. However these orders are not executed by the robots.
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In order to implement such a universal dispatching system the reliability
of the system is important. Among reliability the following service and safety
aspects are summarized:

– High availability of the system: The system should be at disposal 24 hours
a day to all users.

– Authentication of the users: The user who charges the system with a trans-
port order, must be uniquely identifiable. 180 computers in our offices are
connected to the system.

– Privacy: Encryption of the transport orders. Users may access only the orders
charged by themselves.

– Integrity of the transport orders: The web server has to receive the orders
exactly as they were sent by the user.

– System administration: a large system with numerous robots must support
treatment of unforeseen situations and overcoming system errors.

Figure 3 illustrates physical and software components of the system. The
mission server fetches unfinished orders and schedules them for execution by
some robot depending on the availability, the position of the robot and on the
execution time window of the order defined by the user. The radio server connects
the other system components through radio links, e.g., it transmits orders to the
robots, informs the mission server about robot positions and notifies the door
and elevator server about the state of each door and elevator respectively. The
door server stores the state of each door and decides when to change it, i.e., when
to open/close doors. The elevator server similarly operates for the elevators, e.g.,
when a robot requests an elevator, the server decides whether this is in conflict
with human transportation requirements of the elevator and eventually serves
the robot.

While each robot forms a control unit of its own, other control units like
the elevator server support more than one physical component. This reduces
complexity by reducing the number of system components. In a system with a
larger number of physical components, several server instances can run parallel,
e.g., one elevator server for each building. A cluster structure can be used for
the parallel servers to keep communication requirements low.

3.1 High availability

A user enters transport orders through a web interface (Fig. 4). Among other
things, redundancy provides high availability. Several PCs can be used as a hard-
ware platform for the web server. Here, standard PCs with the Linux operating
system (v. 2.4.4) and Apache web server (v. 1.3.19) have been selected.
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Figure 3: System structure overview

Figure 4: Web formula for transport orders

Linux provides a fast and reliable disk system by supporting software RAID
[Vep99]. RAID level 5 allows the system to continue an operation even if one
of its hard disk fails. The database ensures the integrity of the transport orders
with its atomic transactions: each order is either stored completely or not at all.
Even in case of a failure there is no in-between state with corrupted data.

The Apache server as well as the stateless HTTP-protocol increase the avail-
ability because inquiries are forked to independent child processes. If one of these
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child processes dies, the total system is not endangered. A further aspect for high
availability is the information throughput, which amounts up to 1000 inquiries
per minute for the current implementation. The Apache server is world-wide the
most frequently used web server. In particular the source code is available and
therefore its bugs are well-known and documented.

Software components of the building management system are implemented
as CGI scripts [DG96], [Inc98]. This additionally increases the service. So on the
one hand, data (orders, robot positions, states of doors and elevators etc.) can
be stored in and queried from a database. Detailed debugging protocols can be
created from the database if necessary. On the other hand a modular system
is achieved, which can be extended de-centrally. Further components are easily
added by implementing new CGI scripts (add-ons).

3.2 Privacy

Privacy is achieved by encryption. Since a web-based client-server system is
realized, the Secure Socket Layer protocol (SSL) [Cor98],[Lau98] is used for the
encryption. All data that requires an Authentication is transmitted encrypted
by the client to the server. So transport orders, order lists (Fig. 5), deletions of
orders, passwords, password modifications etc. are protected against reading by
unauthorized persons. The SSL protocol is particularly user friendly, since the
encryption is done by the browser and web server and is transparent for the
user. The software in use is OpenSSL 0.9.6b with the appropriate Apache patch.
The server uses self-created certificates. On server side encryption up to 128 bits
is possible, if the browser supports this. Otherwise the keys have a minimum
length of 40 bits.

4 The experimental environment

The robots currently move in the GMD-ROBOBENCH, an typical multistorey
H-shaped building of about 1600 m2 (Fig. 6) which servers as a general prototype
for other multistorey buildings. The building is departed into 84 office rooms and
15 corridors on 3 levels reachable by elevators. All elevators and 17 fire protection
doors can be automatically controlled by every robot via an internet radio link.
Office room doors can be opened by humans only. Web cameras on some floors
allow live observation of robot actions.

4.1 A language for modeling the buildings

The spatial geometry and topology of the buildings is the base for the schedul-
ing algorithms and has to be modeled. Modeling is the name of the game in any
intelligence, be it human or machine. With the model and its exercising we can
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Figure 5: Order list
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Figure 6: Layout of the prototype environment.

look forward in time with predictions and prescriptions and backward in time
which diagnostics and explanations. With these time binding information struc-
tures we can make decisions and estimations in the here and now for purposes
of efficiency, efficacy and control into the future. We and our machines hope to
look into the future and the past so we may act efficiently now. Arkin pointed
out that: Deliberative systems permit representational knowledge to be used for
planning purposes in advance of execution and that a significant controversy ex-
ists regarding the appropriate role of knowledge within robotic systems [Ark98].
Our additional aim is to show the knowledge and data which has to be selected
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and how it can be organized to serve all modules from navigation over plan-
ning/scheduling up to the human machine interface (HMI) in time. In the case
of scheduling orders for mobile robots in indoor environments it means that we
have to model geometrical data, topological data and public data, e.g., names,
telephone numbers, email addresses ... of the people who work in the building.

The model introduced here contains a topological map to schedule orders
for robots as well as to plan robot behaviors. The planner is a graph planner
[KS96]. In addition a geometrical and feature map for the landmark recognition
and robot localization is implemented. The codes necessary for the handling of
the elevators and doors are likewise stored in the model. Additional references to
SQL databases are also included. The SQL database contains lists of persons with
their surname, first name, email address, telephone number and door designator.
Thus all information needed for the interaction of robots and humans is available
and it is possible to implement a user friendly interface [ST99].

The important point is that the model is a general prototype for multistorey
buildings and that it can be simple adapted to other buildings. Furthermore it
can be extended easily to deal with dynamic objects. Figure 7 shows a segment
of our language for the spatial modeling for multistorey buildings. Different
sections are parenthetical by <name> ... </name> like the XML specification.
Therefore, robots and/or other client/servers can exchange and update there
spatial model over the Internet.

The “corridor”structure is a part of the topological map and used by the
route planner. Each corridor has an internal unambiguous number, a name (C2-
basement), a corridor type (0: office corridor, 1: junction corridor, 2: elevator
...), dimensions (width, length, height, orientation), a global position (x,y,z) and
a list of connections to other corridors. Moreover, some control information for
automatic doors is included, i.e.: “doorControlCmdOpen”.

Further sections, e.g., <rightWall> or <leftWall> describes the geometric
dimensions of the right resp. left wall of a corridor. A wall includes different
objects, e.g., fire extinguisher, doors, door plates etc. It also can have protrusions
or niches. The content of a door plate is important because it builds the reference
to the SQL user database which includes telephone lists, email addresses etc.
Additional parts, e.g., <Office> . . . </Office> describe the dimensions of offices
and objects locate in the offices.

The geometric part of the world model could either be automatically gen-
erated from a floor plan or by a ride of the robot in the corridor. The names,
corridor interconnection as well as the control codes for the elevator and fire
doors have to added by hand.

One major point is that different internal and external descriptions of the
world model are generated on the base of the spatial geometry, e.g., VRML for
3D robot tracking, 2D floor plans for gnuplot and a Java applet. The floor plans
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<world name="GMD Building C2">
<corridor name="C2-basement" color ="grey" type="0" lenght="2190" width="206"

height="300" orientation="-90">
</globalReferencePoint posX="0" poxY="0" posZ="0">
<connection name ="fire door" number = "4" color="indoor-4.jpg" posX ="-103"

posY ="0" posZ="0">
<toCorridor>C2-crossing-corridor </entryPoint name="b"></toCorridor>
<doorControlCmdOpen>8 82 4 1</doorControlCmdOpen>
<doorControlCmdClose>8 82 4 0</doorControlCmdClose>
<doorControlCmdStatus>8 82 4 2</doorControlCmdStatus>

</connection>
<connection name = "Outdoor" color="out-door.jpg" posX="-103" posY="2190"

posZ="0">
<toCorridor> empty </toCorridor>

</connection>

<rightWall name="" type="2" color="blue" lenght="2190" width="30"
height="300">

<DoorFrame name="" color="white" height="300" width="180" depth="-50"
posX="0" posY="200" posZ="0">

<door name="" color="C2-116.jpg" height="300" width="80" depth="-50"
posX="0" posY="220" posZ="0">

<doorPlate name="C2-116" color="C2-116p.jpg" posX ="-103" posY ="2190"
posZ="0">

<doorPlateContent>Hartmut Surmann, Andreas Nuechter, Kai Lingemann
</doorPlateContent>

</doorPlate>
</door>

<DoorFrame>
<object name="fire extinguisher" color="fire-distinguisher.jpg">

<cylinder radiusX = 20 height=40" posX="0" posY="420" posZ="30">
<!--

<sphere radiusX = "20" radiusY=40" posX="0" posY="420" posZ="30">
<box lenght="40" height="30" width="30" posX="0" posY="420" posZ="30">

-->
</object>
</protrusion name="" color="white" height="300" width="180" depth="-50"

posX="0" posY="870" posZ="0">
.............

</rightWall>
<leftWall>
.....
</leftWall>
..............

</corridor>
</world>

Figure 7: Segment of the spatial model.

are also used for 2D tracking (Fig. 2) and simulations which is important for the
design of the behavior modules as well as the prediction of the near future.

The plan of the environment will be explain by an example. Let as assume
we have three corridors: Two office corridors, one connection corridor with an
elevator (Fig . 8). The elevator is regarded as a special transport corridor, so
at least we have to model four corridors. The two office corridors should have a
length of 21.9 m, a width of 2.1 m and a height of 3 m. Both have one connection
two the third corridor with the elevator. The connection corridor number 3 has
two connections to the office corridor and one connection to the elevator. The
elevator has a connection at each of the 3 layers.
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The following xml description describes the topological map:
<corridor name=”1” type=”0” lenght=”2190” width=”206” height=”300” orientation=”-90”>

</globalReferencePoint posX=”0” poxY=”0” posZ=”0”>

<connection name =”fire door” number = ”4” posX =”0” posY =”-103” posZ=”0”>

<toCorridor>3</entryPoint name=”a”></toCorridor>

<corridor name=”2” type=”0” lenght=”2190” width=”206” height=”300” orientation=”90”>

</globalReferencePoint posX=”380” poxY=”-206” posZ=”0”>

<connection name =”fire door” number = ”5” posX =”0” posY =”103” posZ=”0”>

<toCorridor>3</entryPoint name=”b”></toCorridor>

<corridor name=”3” type=”1” lenght=”380” width=”1000” height=”300” orientation=”0”>

</globalReferencePoint posX=”380” poxY=”-569” posZ=”0”>

<connection name =”fire door” number = ”4” posX =”-380” posY =”466” posZ=”0”>

<toCorridor>1</entryPoint name=”a”></toCorridor>

<connection name =”fire door” number = ”5” posX =”0” posY =”466” posZ=”0”>

<toCorridor>2</entryPoint name=”a”></toCorridor>

<connection name =”elevator” number = ”1” posX =”0” posY =”236” posZ=”0”>

<toCorridor>4</entryPoint name=”a”></toCorridor>

<corridor name=”4” type=”2” lenght=”200” width=”100” height=”900” orientation=”90”>

</globalReferencePoint posX=”380” poxY=”-283” posZ=”0”>

<connection name =”base” number = ”1” posX =”0” posY =”50” posZ=”0”>

<toCorridor>2</entryPoint name=”c”></toCorridor>
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<connection name =”1 floor” number = ”2” posX =”0” posY =”50” posZ=”300”>

<toCorridor>6</entryPoint ame=”c”></toCorridor>

<connection name =”2 floor” number = ”3” posX =”0” posY =”50” posZ=”600”>

<toCorridor>9</entryPoint name=”c”></toCorridor>

The “Connection” section expresses the spatial relation between the different
corridors and can be expressed in a graph like structure (Fig . 8). The “connec-
tion” definition is the basic description for the graph planner. The length, e.g.,
21.9 m of the two office corridors is the base for the calculation of the costs
of a schedule. Combined with the measured average speed of a robot, a time
estimation can be done.

5 Scheduling algorithms

The term “planning” for mobile robots has been rightly subdivided into two
questions: “Where am I going?” and “How do I get there?” [BF96]. Local and
global path planning deal with these two questions. We extend these two ques-
tions by “Where am I going first?” and “Why should I go there and not another
robot?”. The scheduling of multiple orders for a group of mobile service robots
regards these questions and extends local and global path planning by a third
block called scheduler.

The selection of possible scheduling algorithms is mainly restricted by two
constraints: the soft real-time and the moderate change of previous schedules
constraint. Especially the second constraint can not be guaranteed and conflicts
with the minimization of the routes. These two contradicting constraints should
be considered carefully.

Soft real-time means in our case response times from 100ms up to 3s de-
pending on the number of orders. The more orders to schedule, the less response
time the algorithm has. Therefore we compare some variations of the scheduling
algorithm with the optimal solutions achieved by exhaustive backtracking.

5.1 Formal description of the problem

First we give the basic notation of the scheduling problem.

Definition 1. Let Time = {ts | ts ∈ IN} with the granularity of seconds.

Definition 2. Let Offices be a set of locations (x, y, z) ∈ IR3. Each element of
Offices is related to the physical location in the middle of an office door. Offices
�= ∅ and contains a discrete number of elements.

Definition 3 Event. An event ev is a 2-tuple (o, t) where o ∈ Offices, and
t ∈ Time. Events is the set of events.
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Given the event ev = (o, t) we define the two expressions T (ev) = t and
O(ev) = o. An event represents the arrival of a robot to an office at time t.
Two useful definitions are related to an event:

Definition 4 Order. An order jo is a 3-tuple (ev1, ev2, (tw1, tw2)) with ev1, ev2

∈ Events and tw1, tw2 ∈ Time. An order jo = ((o1, t1), (o2, t2), (tw1, tw2)) is
valid if it fulfills the constraints:

1. o1 �= o2

2. tw1 ≤ t1 < t2 ≤ tw2. Order �= ∅ is a set of orders2.

ev1 is the pickup event and ev2 the delivery event in the time window [tw1, tw2]
of an order. An order is also called a job.

Definition 5 Cost. Let ev1 = (o1, t1), ev2 = (o2, t2) ∈ Events with o1 �= o2.
The cost for going from o1 to o2 is C(ev1, ev2) = (t2 − t1), with C : Events ×
Events −→ Time.

The Cost function measures the cost for going from the office o1 to the office o2

in seconds.

Definition 6 Schedule. Let OD ⊂ Order and EV ∈ Events a set of events.
A preemptive schedule is an indexed set of events SCHP = (ev1, ev2, . . . , evn)
where ∀jo = (evi, evj , [twi, twj ]) ∈ OD:

1. evi = (oi, ti), evj = (oj , tj) ∈ EV ,

2. i < j, i, j ∈ {1 . . . n},
3. twi ≤ ti < tj ≤ twj .

A non-preemptive schedule is an indexed set of events SCHN−P = (ev1, ev2,

. . . , evn) where ∀jo = (evi, evj , [twi, twj ]) ∈ OD:

1. evi = (oi, ti), evj = (oj , tj) ∈ EV ,

2. j = i + 1, i = 1, 3, 5, . . . , n − 1, j = 2, 4, 6, . . . , n,

3. twi ≤ ti < tj ≤ twj .

The second condition guarantees in the preemptive case that the delivery event
occurs sometime after the pickup event. In the non-preemptive case the delivery
event must be directly after the pickup event. The third condition ensures that
the estimated delivery dates fit into the time window.
2 The practical definition of an order contains more items: The owner who is respon-

sible for the order, the task to be performed, the object to carry, the status of the
order, and some restrictions. These items are not needed in this formal description.
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Definition 7 Cost of a schedule. The cost of a schedule SCH = (ev1, ev2,

. . . , evn) is defined as:

C(SCH) =
n−1∑
i=1

C(evi, evi+1) =
n−1∑
i=1

(ti+1 − ti)

The definition of the cost of a schedule is independent from the preemptive or
non-preemptive case. Now we can formulate more precisely our problem which
is to find a schedule SCH with minimal costs.

Definition 8 Minimal Schedule. Let OD a set of n/2 orders and EV the
related set of events, i.e., | EV |= n and SCHmin a schedule of the events with
| SCHmin |= n. SCHmin is called minimal, if ∀ SCHi of EV with SCHi �=
SCHmin and | SCHi |= n: C(SCHmin) < C(SCHi).

5.2 Scheduling Algorithms

Suppose we have a set of orders OD ∈ Order with | OD | = m. Since each
order has two events, the number of events in a schedule is n = 2 ∗ m. The goal
of the following algorithms is to provide a scheduled list of events (arrivals and
departures) that accomplish the time requirements for each order. Therefore,
some algorithms and the time complexity are given. In general, scheduling of
orders is NP-hard so first two optimal algorithms for the preemptive and for
the non preemptive case are presented. Next, some approximation algorithms
(suboptimal algorithms) are shown. The main goal of the suboptimal algorithms
is to minimize the computational costs to fulfill the soft realtime constraint.

Optimal algorithms
The optimal algorithms are those that find an optimal solution, i.e., a sched-

ule with minimal costs for a set of orders. The schedules from the optimal algo-
rithms are the references for the comparison with our proposed algorithms. They
are based on exhaustive search among all the possible combinations of events.

Algorithm 1: Non preemptive
Let IND = 1, . . . , m an index set and SCHN−P = (ev1,1, ev1,2, . . . , evm,1,

evm,2) a schedule. An optimal non-preemptive algorithm (O-N-PRE) has to gen-
erate all permutations of the index set 1, . . . , m to build the schedules, respec-
tively. The number of possible schedules is SCHn

N−P = m! = n
2 !.

Algorithm 2: Preemptive
Let IND = 1, . . . , n an index set and SCHP = (ev1, . . . , evn) a schedule.

An optimal preemptive algorithm (O-PRE) has to generate SCHn
P valid permu-

tations of the index set 1, . . . , n with SCHn
P = n!√

2n
(see Appendix for details).

The main problem of the optimal algorithms in dynamic environments is the
computation requirements. The whole schedule must be recalculated when a new
order is added to the list of orders, e.g., in the non preemptive case for m = 10
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orders (20 events) m! = 3.628.800. A Pentium III 400 Mhz needs 7.4 seconds to
build all the schedules and to calculate the minimal costs (Table 2). The minor
changing constraint can not be fulfilled. In the preemptive case for n = 10 events
(= 5 orders) | SCHn

P | = 113400. A Pentium III 400 Mhz needs 3.1 seconds to
build all the schedules and to calculate the minimal costs (Tab. 1). The minor
changing constraint can also not be fulfilled.

Approximation algorithms
Next, four different algorithms for a suboptimal solution are described. The

main goal of the suboptimal algorithms are to minimize the additional cost of
the schedules when adding a new order jo = (evφ,1,evφ,2,(twφ,1, twφ,2)) to a
previously scheduled list of events SCH = (ev1, . . . , evm). The output is a new
schedule SCH = (ev1, . . . , evm+2), with the previous events and the new job.
Hereinafter, we call this class of algorithms minimal additional costs (MAC) al-
gorithms. In the preemptive scheduling case the two events of an order can be
inserted at any position in the event list under the constraint that the deliv-
ery event must be placed after the pickup event. The following three different
strategies are used:

1. Forward or backward. The forward / backward scheduling strategy inserts
the pickup event at any position in the event list so that the additional cost is
minimal. The delivery event is inserted in the event list between one position
after the pickup event and the end of the event list. The condition for that
position is also to minimize the additional costs. Alternatively, the delivery
event is inserted first and then the pickup event between the first position
of the event list and the delivery event. Both strategies are nearly equal but
produce different schedules.

2. Forward-backward. A combination of both strategies. It checks a forward and
a backward insertion and takes the minimum for both events.

3. Complete. The complete scheduling strategies checks the insertion of the
pickup event at each position and the delivery event after the pickup event
until the end of the scheduling list. Finally it take that insertion with the
minimal additional cost for both events.

The cost for an insertion of an event ev at a position j are be calculated by:

fSCH(e, j) =




C(ev, ev1) , if j = 0
C(evj , ev) + C(ev, evj+1) − C(evj , evj+1), if 1 ≤ j < m

C(evm, ev) , if j = m

where SCH = (ev1, . . . , evm) is an indexed schedule and 0 ≤ j ≤ m. The formula
give the cost of an insertion of the event ev at the position j. If j is between two
events than we got additional costs to go from evj to ev and from ev to evj+1

but we have no more costs for going from evj to evj+1.
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Now, a more formal description of the three algorithms is given. Let jo =
(evφ,1, evφ,2, (twφ,1, twφ,2)) a new order with the pickup event evφ,1 and the
delivery event evφ,2. The time interval in which the order has to be processed
by the robot is [twφ,1, twφ,2].

Algorithm 3: Forward MAC (FMAC)
(1) find index j in SCHP = ev1, . . . , evm such that

fSCHP (evφ,1, j) is minimal and
twφ,1 ≤ T (evj) + C(evj , evφ,1) ≤ twφ,2

(2) find index k in SCH ′
P = evj+1, . . . , evm such that

fSCH′
P
(evφ,2, k) is minimal and

twφ,1 ≤ T (evk) + C(evk, evφ,2) ≤ twφ,2

(3) the result is
SCH ′′

P = ev1, . . . , evj , evφ,1, evj+1, . . . , evk, evφ,2, evk+1, . . . , evm

Algorithm 4: Forward-Backward MAC (FBMAC)
(1) find index j in SCHP = ev1, . . . , evm such that

fSCHP (evφ,1, j) is minimal and
twφ,1 ≤ T (evj) + C(evj , evφ,1) ≤ twφ,2

(2) find index k in SCH ′
P = evj+1, . . . , evm such that

fSCH′
P
(evφ,2, k) is minimal and

twφ,1 ≤ T (evk) + C(evk, evφ,2) ≤ twφ,2

(3) SCHf
P = ev1, . . . , evj , evφ,1, evj+1, . . . , evk, evφ,2, evk+1, . . . , evm

(4) costfP = fSCHP (evφ,1, j) + fSCH′
P
(evφ,2, k)

(5) find index p in SCHP = ev1, . . . , evm such that
fSCHP (evφ,2, p) is minimal and
twφ,1 ≤ T (evp) + C(evp, evφ,2) ≤ twφ,2

(6) find index q in SCH ′′
P = ev1, . . . , evp such that

fSCH′′
P
(evφ,1, q) is minimal and

twφ,1 ≤ T (evq) + C(evq, evφ,1) ≤ twφ,2

(7) SCHb
P = ev1, . . . , evq, evφ,1, evq+1, . . . , evp, evφ,2, evp+1, . . . , evm

(8) costbP = fSCHP (evφ,2, p) + fSCH′′
P
(evφ,1, q)

(9) the result is

{
SCHf

P , if costf ≤ costb
SCHb

P , else
Algorithm 5: Complete MAC (CMAC)

(1) ∀j = 0 . . .m and ∀k = j + 1 . . .m compute:
gj,k = fSCHP (evφ,1, j) + fSCH′

P
(evφ,2, k)

(2) the result is
SCH ′

P = ev1, . . . , evp, evφ,1, evp+1, . . . , evq, evφ,2, evq+1, . . . , evm

with: gp,q ≤ gj,k, j = 1 . . .m, k = j + 1 . . . m and
twφ,1 ≤ T (evp) + C(evp, evφ,q) ≤ twφ,2 and
twφ,1 ≤ T (evq) + C(evq, evφ,2) ≤ twφ,2
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In the non-preemptive case the delivery event must be directly after the
pickup event in the list of events. This condition reduces the number of effective
strategies to a modified CMAC algorithm.

Algorithm 6: Non preemptive MAC (MAC-N-PRE)
(1) ∀j = 0 . . .m compute:

gj = fSCHN−P (evφ,1, j) + fSCH′
N
−P (evφ,2, j + 1)

(2) the result is SCH ′
N − P = ev1, . . . , evk, evφ,1, evφ,2, evk+1, . . . , evm

with: gk ≤ gj , j = 1 . . .m and
twφ,1 ≤ T (evk) + C(evk, evφ,q) + C(evk+1, evφ,2) ≤ twφ,2

All of the above approximation algorithms minimizes the cost function only
locally and can not find the global optimum in any case but the minor changing
constraint from section 1 is fulfilled.

Note: Empty list of schedules are not considered in the description of the
algorithms. Since each robot has a current position this position is the start
event and the last event is the return to the depot. They will be always the first
and the last event and will not have a schedule time.

We formulate the scheduling algorithms for one service robot. The extension
to multiple robots is obvious, i.e., each robot has his own scheduling queue
and the scheduling is tested for each robot and scheduled to the robot with the
minimal additional costs. Two strategies called “equal balanced” and “non-equal
balanced” are distinguished. Equal balanced means that all of the robots have
nearly the same number of orders whereas in the non-equal case these number
is highly different. Results will be given in the next section

6 Implementation and results

All algorithms have been implemented in C. For the comparison we suppose
that all time intervals are equal and long enough. All time values are given for a
Pentium III 400 Mhz. Two kinds of values have to be considered. The first one
is the cost of a schedule which is the time in seconds a robot needs to execute
the schedule and the second the computation time required for generating the
schedule. The following tables summarize the results. In each table four columns
for each algorithms are given. First, the name of the algorithm. Next, the average
and worst difference to the best solution (schedule costs) and last the compu-
tation time needed to build the schedule on a Pentium III. Since the order of
the orders is important for the schedules, random list of orders are generated in
1000 experiments, scheduled and statistically analyzed.

Table 1 shows the summarize results for 5 orders (= 10 events) which is the
practical maximum number of orders for the optimal algorithms in the preemp-
tive case. The table shows that the average difference between the preemptive
and the non-preemptive case is around 32%. So, for robots it is important to
have a high load capacity to increase throughput.
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Alg. average
diff. %

worst
diff. %

calculation
time (ms)

Randomly 47.74 250.00 0.13
MAC-N-PRE 33.01 204.30 0.25
O-N-PRE 31.50 204.30 1.67

FMAC 8.12 59.00 0.17
FBMAC 4.76 49.30 0.23
CMAC 4.08 50.10 0.33
O-PRE 0.00 0.00 3068.96

Table 1: Comparison of the scheduling algorithms. In 1000 cycles 5 orders are
selected randomly and scheduled.

Alg. average
diff. %

worst
diff. %

calculation
time (ms)

Randomly 51.40 276.60 0.22
MAC-N-PRE 8.14 48.70 0.48
O-N-PRE 0.00 0.00 7404.74

Table 2: Comparison of the different non-preemptive scheduling algorithms. In
1000 cycles 10 orders are selected randomly and scheduled.

Table 1 also shows that the time consumption for the suboptimal algorithms
is low but the time difference (costs) in the worst case could be around 50%.
The large value of the computation time for optimal preemptive case is related
to combinatorial explosion and the exhaustive nature of the algorithm. The
scheduling result in the preemptive case is the reference for all other algorithms.

The next two tables 2 and 3 show the results for the non-preemptive and pre-
emptive algorithms separately. Table 2 shows the summarize scheduling results
for 1000 trials and 10 orders. Regarded to the computation time, 10 orders are
the practical maximal number of orders which could be scheduled from the opti-
mal non-preemptive algorithm. The approximation algorithms in table 2 is much
faster than the optimal but could lead to 50% more traveling costs of the robot.
On the other hand a random insertion algorithm, e.g., first come, first serve with
the cheapest computation time (nearly zero) leads really worst schedules.

The last table 3 shows the results of the different approximation algorithms
for 100 orders. Since no optimal solution is available in table 3 (for 100 orders),
the average and worst difference between the schedules found by the algorithms
and the know best solution is given.
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Alg. average
diff. %

worst
diff. %

calculation
time (ms)

FMAC 22.53 122.90 15.26
FBMAC 5.68 62.90 28.20
CMAC 1.01 18.50 972.55

Table 3: Comparison of the three different suboptimal scheduling algorithms. In
1000 cycles 100 orders are selected randomly and scheduled. Since the optimal
solution is not available the difference are given to the best known schedule.

As expected, the CMAC algorithm is the best preemptive approximation al-
gorithm but with higher computation requirements then the FMBAC or FMAC
algorithms. FBMAC obtains better results than FMAC and similar to CMAC
but with double computational effort than FMAC. Figure 9 left shows the
scheduling costs of the preemptive approximation algorithms for different num-
ber of orders. Each order number (5 - 100) is simulated and summarized 1000
times.
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Cost function of scheduling algorithms
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Comparison of average cost functions for 3 robots
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FMAC, non−equal
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Figure 9: Left: Scheduling costs of the preemptive algorithms for 1-100 orders and
one robot. Right: Average scheduling costs of the FMAC and CMAC algorithms
for three robots (equal balanced / non equal balanced) and 100 jobs per robot

Figure 9:right and figure 10 show some results for multiple robots. Each of
the robot has its own list of events whereas the scheduler schedules new orders
to these different lists of events. Two different strategies are compared called
equal balanced and non equal balanced. In the equal balanced case the scheduler
schedules the job to the event queue of the robot with the lowest number of
events. If multiple events are in the event list a MAC algorithm is used to insert
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Figure 10: Scheduling costs of the FMAC algorithm for three robots. Left: non
equal balanced; Right: Equal balanced (100 jobs per robot).

the new events. Figure 10:right show that the cost function is nearly equal for
all of the robots. In the non equal case a new order is scheduled to the list of
events with the global minimal additional costs of all robot queues. Figure 10:left
shows that one robot is loaded after each other. This behavior results from the
fact that a new order generates lower costs if a robot has a tour to the buildings
compared to a new robot coming out of the robot depot. This change when the
order could not be scheduled in the time interval which leads to additional costs
(punishment). Then it is cheaper to take a new robot. Figure 9:right compares
the two different approximation algorithms CMAC and FMAC according to the
equal and non equal strategy. It shows the average cost functions for all of the
three robots. The non equal distribution strategy generates lower average costs
especially for lower number of jobs. The distribution strategy has a higher impact
to cost function than the approximation algorithm. If all robots operate at nearly
full capacity the quality of the approximation algorithms mainly determines the
costs and the CMAC algorithm is the best.

6.1 Implementation details

We presented above some definitions and formal descriptions of the algorithms.
It is not difficult to develop practical implementations from these descriptions,
but some practical aspects have to be considered.

In the model the physical location of an office is the location of its doors, since
this is the point that should be reached by the mobile robots. Due to the structure
of the environment the doors are grouped to corridors and corridors to floors. All
the floors are connected by elevators. The model of the environment influences
the schedule by means of the cost function. Indeed, a detailed description of
the model is the base of the path planner at the higher abstraction levels. The
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planner generates appropriate paths from pickup office to the delivery office.
The cost function of definition 5 is only a value that represents the cost of

going from one office to another one. In our case this costs are measured in units
of seconds. From the practical point of view it is very important to have an
accurate estimation of some parameters (see below) in order to obtain a good
performance of the algorithms. This accuracy has been obtained following an
adjusting process. The average of the time values observed in the real operation
of the robots has been used to build the estimations. The important average
values are:
The average speed of the robots going through the corridor, the average
time to open a fire protection door at the end of the corridor and the
average time using the elevator and moving to different floors. Further
parameter are the average stopping time for loading / unloading the robot. These
values are monitored from the server and updated once a day. The scheduler
adapts/learn the working environment while office environments are different.
The schedule could be fine tuned if an array of adaptation values is used, e.g., for
different corridors. Nevertheless, the time estimation with only one average value
is quite good while the estimations are updated always if an event occurs, e.g.,
after a pickup or a delivery event or when a new order is entered. Furthermore
the unprocessed orders are rescheduled at regular time intervals, e.g., every 5
minutes and updated with current time values to reach an actual time estimation
especially when unexpected problems occur.

The scheduling strategy for multiple robots, i.e., having a scheduling queue
for each robot and selecting the queue with the minimal additional cost leads
to load one robot after each other. Unused robots are waiting in the depot and
usually the scheduling costs from the depot to two offices are higher than for a
moving robot. Additional costs are added to a schedule if a time window fails. If
one robot could not fulfill an order in time, i.e., a schedule runs out of its time
window then the order will be scheduled to the next roboter because of the extra
costs (non equal balanced strategy).

7 Conclusion

We have presented a general approach for scheduling orders for a fleet of au-
tonomous mobile service robots in indoor environments. Each of the autonomous
mobile robots has a queue of events and new orders will be scheduled to the
robots queues. It has been developed, implemented and validated in the frame-
work of the finished ARIADNE project. An online version is available at http://-
lamu.gmd.de:8080.

The multi robot cooperation, which is one key problem, has been studied by
several scheduling algorithms and by giving autonomy to the service robots. We
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have presented the scheduling algorithms, their quality and timing capabilities.
The quality of the schedules depends on the number of orders and the calcula-
tion time. Furthermore a customer friendly web based interface and a general
language for modeling multistorey buildings was also presented.

The main feature of our approach is the combination of nearly optimal routes
in terms of time and space and customer-orientation. Customer-orientation re-
quires a customer friendly interface and it takes into account all the needs of
users like privacy, online capability, up-to-date scheduling information, planning
certainty, time estimations and real-time response. The soft real-time response is
achieved by cost effective insertions of new orders in the order lists of the robots
and guarantees good routes and the online running of the whole system.
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A APPENDIX

Let Pn = {σ|σ a permutation over n} then the number of permutation or the
size of |Pn| = n!

For i < n let posσ(i) be a function with posσ(i) denotes the position of
i in σ(1, . . . , n) e.g. σ(1, 2, 3, 4) = (3, 1, 2, 4) then posσ(1) = 2, posσ(2) = 3,

posσ(3) = 1, posσ(4) = 4
Let n even e.g. (n = 2, 4, 6, . . .) and Sn = {σ| ∀ odd i (i = 1, 3, 5, . . .) :

posσ(i) < posσ(i + 1)} then

Lemma 1 The number of the schedules SCHn = n!√
2n

in the preemptive case

Note:
The pickup event must precede its delivery event, so only a half of the schedules
make semantic sense. The rest are discarded.

Proof induction over all even n (n = 2, 4, . . .)
For n=2: SCH2 = 2!√

22 = 1 and Pn = {σ1 = (1, 2) and σ2(2, 1)} with
|Pn| = 2. σ1 ∈ SCH2: posσ1 = 1 < posσ2 = 2 σ2 /∈ S2: posσ2 = 2 ≥ posσ1 = 1.
So S2 = {σ1} and SCH2 = 1 .

n → n+2 For n is: SCHn = n!√
2n

. Now, two new elements have to be added.
The first one can be placed at any position, i.e., we will have n + 1 possibilities.
Than for the second event we have n +2 possibilities to place in the schedule. If
σ ∈ SCHn e.g. for all odd i = 1, 3, . . .: σ(i) < posσ(i + 1)
Therefore, we have (n+1)(n+2) possibilities to insert n+1 and n+2 but only half
of them are valid e.g. pos(n + 1) < pos(n + 2) (because of the symmetry).

So, SCHn+2 = SCHn ∗ (n + 1)(n + 2)/2

=
n!√
2n

∗ (n + 1) ∗ (n + 2)
2

=
(n + 2)!√
2n ∗

√
22

=
(n + 2)!√

2n+2
(1)
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