
An Architecture for a Three-Tier Path-Finder

Michael Barley
(University of Auckland, New Zealand

barley@cs.auckland.ac.nz)

Hans W. Guesgen
(University of Auckland, New Zealand

hans@cs.auckland.ac.nz)

Gareth Karl
(University of Auckland, New Zealand

gkar004@ec.auckland.ac.nz)

Abstract: This paper describes the architecture of a route finding system that com-
putes an optimal route between two given locations efficiently and that considers user
preferences when doing so. The basis of the system is an A* algorithm that applies
heuristics such as the air distance heuristic or the Manhattan heuristic to compute
the shortest path between the two locations. Since A* is not tractable in general, is-
land search is used to divide the problem into smaller problems, which can be solved
more easily. In addition to that, search control rules are introduced to express user
preferences about the routes to be considered during the search.

Key Words: route finding, A* search, island search, search control rules

Category: I.2.8

1 Route Finding and Search

In most cities around the world, the number of cars on the roads is still increasing,
and therefore it becomes more and more important to implement support for
finding a good route from some point A in a city to some other point B. Printed
maps are still a valuable aid to determine such a route, but they have severe
deficiencies: they only capture the static aspects of the road network, but do not
capture dynamic aspects like rush hours or blockages due to accidents. Electronic
route finding systems can be more flexible in this respect, and therefore they are
likely to replace maps in the near future.

As described in [Guesgen and Mitra, 1999], the two main subsystems of any
route finding system are the route planning and route guidance subsystems.
Whereas the route guidance subsystem takes a given path through the road net-
work and provides the driver with a description or set of directions to accomplish
the task of navigating, the route planning subsystem finds a path through the
road network which conforms to the users preferences about the required route.
Although both subsystems are equally important, we focus in this paper on the

Journal of Universal Computer Science, vol. 8, no. 8 (2002), 739-750
submitted: 11/2/02, accepted: 29/4/02, appeared: 28/8/02  J.UCS

route planning subsystem of a route finding system (called the path-finder, for
short).

In the ideal case, the path-finder combines a basic search through the road
network with knowledge about which roads to prefer or which ones to avoid at
certain times. In particular, it should fulfill the following requirements:

Optimality. If there is an optimal solution to the problem of finding a route
from A to B, the system should be able to compute such a solution.

Tractability. In larger search spaces (which are typical for most cities around
the world), the system should still be able to compute an optimal solution
efficiently.

Customizability. The user should be able to add preferences to the system
easily and dynamically, which include or exclude certain (types of) roads in
the solution.

Most research work has focussed on the first two requirements [Pearson, 1998],
using approaches like heuristic search, island search, or hierarchical search. There
is little work that addresses the problem of incorporating additional knowledge
such as preferences into the search. In this paper, we will focus on the third
requirement, showing a way to express preferences and discussing problems that
this may cause.

Our view of an architecture for an adequate path-finder includes the following
components:

– The first component consists of a basic heuristic algorithm, which is applied
to find the shortest path between A and B. Such an algorithm can be the A*
algorithm, which uses a heuristic function to determine the shortest path.

– Depending on the heuristic used in the A* algorithm, the algorithm might
not be able to determine the shortest path in adequate time. Therefore, an
additional component is introduced, which divides the problem into a set of
smaller problems by applying an island search.

– Although the combination of island search and A* algorithm might find
a shortest path efficiently, it does not take care of additional knowledge,
like preferences of certain roads over other roads. Generally it is difficult
to incorporate such knowledge in the heuristic function so that it can be
updated easily. Therefore we allow for additional search control rules to be
added to the system.

Consider, for example, the situation illustrated in Figure 1, which shows a
sketch of the area around the main harbor bridge in Auckland. To get from
a point A in central Auckland to a point B on the North Shore, you have to

740 Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

B

A

C

Figure 1: Schematic route map of the Auckland harbor bridge area. The thick
lines indicate freeways and the medium thick ones ordinary roads. The thin
dashed lines are shore lines, separating central Auckland from the North Shore.

cross the harbor using the bridge indicated by C. An A* algorithm applied to
the problem of finding the best route from A to B explores the search space
and finally results in a path that uses some ordinary roads to get to the harbor
bridge, then enters the freeway to get across the harbor, and finally exits the
freeway and uses some ordinary road again to get to point B.

The search can be focussed by introducing C as an island. Instead of search-
ing for the shortest from A to B directly, the search is decomposed into two
subsearches: one from A to C and the other from C to B. Generally, two smaller
searches are more efficient than one larger search, because of the combinatorial
explosion in the search tree.

Although the A* algorithm computes the shortest path, assuming that the
heuristic is admissible, the resulting route might not be satisfactory from a dif-
ferent point of view. For example, traveling along ordinary roads might be less
attractive than taking the freeway, even if this results in a slightly longer route.

741Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

Such a preference can be captured in a search control rule, which can be added
to the system by the user.

In the rest of this paper, we discuss the three components of the proposed
path-finder, focusing on the component that comprises the search control rules.
Our emphasis is on the robustness of the search control rules: If new rules are
added to the system through interaction with the user, can we guarantee that
the system doesn’t produce counterintuitive results. More precisely, given a set
of control rules which produce intuitive results and given a new rule that on its
own produces intuitive results, does the original set of rules and the new rule
together produce intuitive results?

2 Optimality: Heuristic Search for Finding the Shortest Path

Most heuristic search algorithms used for finding the shortest path from a point
A in a city to a point B are based on the A* algorithm [Hart et al., 1968]. This
algorithm attempts to find an optimal path from A to B in a network of nodes
by choosing the next node x in a search that minimizes a given cost function
f(x) = g∗(x) + h(x). The cost function adds to the costs from A to x, given by
g∗(x), the estimated cost from x to B, given by h(x). If h(x) never overestimates
the real costs from x to B, the heuristic is admissible (i.e., it is guaranteed
to find an optimal solution). The special case of h ≡ 0 is often referred to as
uniform-cost search [Korf, 1996].

A number of heuristics are suggested in the literature which are applicable
to the route finding. These heuristic evaluation functions include those that are
based on a distance measure dist(x, B), in particular the air distance heuristic
and the Manhattan heuristic [Pearl, 1984]. The air distance heuristic is an ad-
missible heuristic while the Manhattan heuristic is inadmissible, as the latter has
the potential to overestimate the actual shortest distance. To test the pruning
power of the heuristics on a real road network, we performed some experiments
in the road network of Auckland, using heuristic search as well as uniform-cost
search to find a path from a point A to a point B in the city [Pearson and
Guesgen, 1998]. We found that uniform-cost search expands almost every node
in the circular area that has A in the center and the distance between A and
B as radius. With the air distance heuristic, the search is more focussed and
the node expansions describe a more elliptical path. The Manhattan heuristic is
even more focussed than the air distance heuristic with a decrease in the size of
the minor axis of the ellipse over the air distance estimate.

Despite the promising capabilities of the A* search algorithm to prune the
search space, search solely guided by heuristics like the air distance or Manhattan
heuristics might be inefficient. In a real-time decentralized route finding system
(e.g., like the ones used in cars), the user expects to receive an answer almost

742 Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

instantaneously. Systems that are purely based on an A* search are intractable.
The next section discusses a way of making the search tractable.

3 Tractability: Using Island Search to Improve Heuristic
Search

A drawback of standard heuristic search techniques is that they do not use any
sources of knowledge other than an evaluation function to guide a search from
a start to a goal state. If we know, for example, that the best route from A
to B has to pass through point C, we can use this knowledge to establish an
intermediate state in the search. Rather than search for the shortest path from
A to B directly, we split the search into two smaller searches and look for the
shortest path from A to C and from C to B, respectively. This idea is utilized in
the island search algorithm [Dillenburg and Nelson, 1995].

We can use an arbitrary number of islands for our search. If at least one of
the islands lies on the optimal path to the goal state, then directing a heuristic
search through this island to the goal has the potential of dividing the exponent
in the complexity term. Often, however, there is more than one island that may
occur on the optimal path. Island sets that contain more than one island on the
optimal path are called multiple level island sets. In the domain of route finding
systems, islands correspond to road intersections that are most commonly used
when planning a route, such as intersections and bridges.

Chakrabarti et al. [1986] were the first to implement an algorithm that com-
bined heuristic search with sub-goal knowledge. Their algorithm, Algorithm I,
guides the search through a single island out of a larger island set IS, finding the
shortest path from A to B through the most favorable node in IS. If the path
from A to the current node x does not yet contain an island, a new heuristic
is used, h(x) = mini∈IS{dist(x, i) + dist(i, B)}. However if the path to x does
already contain an island, the original heuristic h(x) = dist(x, B) is used. Dillen-
burg and Nelson [1995] implemented an algorithm, Algorithm In, that is similar
to Algorithm I but which makes use of multiple level island sets. Given an island
set and an additional parameter that specifies the total number of island nodes
(parameter E) on an optimal path between A and B, the algorithm will provide
an optimal path passing through the island nodes.

Although Algorithm In never expands more nodes in its search than Algo-
rithm I (provided the optimal path contains E islands) [Dillenburg and Nelson,
1995], which in turn never expands more nodes than A* [Chakrabarti et al.,
1986], it suffers from “island interference”. This occurs when the heuristic used
by Algorithm In guides the search towards the islands in the wrong order because
the node which minimizes dist(x, i)+dist(i, B) (i.e., the island most directly be-
tween the current node and the goal node) is not the next island on the optimal

743Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

solution. In this situation, guiding the search towards the correct island could
expand many less nodes. Dillenburg and Nelson do this by altering the heuristic
in Algorithm In to create Algorithm Inp. This heuristic tries all ordered permu-
tations of the island set with length E and guides the search towards the first
island in the permutation that resulted in the lowest heuristic value. While this
decreases the number of nodes, it does not necessarily increase the efficiency of
the algorithm. Let IS represent the island set, then the number of permutations
that must be checked for each node expansion is of the order O

(
|IS |!

(|IS |−E)!

)
,

whereas with Algorithm In it is clearly only O(|IS |). Therefore, Algorithm Inp

becomes unusable when the size of the island set is large or E is large. This prob-
lem can be avoided if an a-priori ordering of islands is known. We implemented
an algorithm that works on the assumption that the islands in the island set have
an ordering. Unlike the original algorithm, the new algorithm can restrict itself
to finding a choice of E islands in the given ordering with the lowest heuristic
value. The number of permutations checked by this algorithm’s heuristic is of
the more reasonable order O

(
|IS |!

E! (|IS |−E)!

)
. Details about this algorithm can be

found elsewhere [Pearson and Guesgen, 1998].
Although Algorithm I and Algorithm In have the potential to make route

finding more tractable, they are reliant on the input of an island set that contains
at least one node on the optimal path (E nodes in the case of Algorithm In).
The selection of islands for the algorithms is not an obvious process. The time
taken to select the islands must be so small that it does not offset the gain of
the island search over A*; correct islands must be selected all or almost all the
time; and the island set must be small enough so that the island search is fast. If
an island selection algorithm turns out to be too slow, then preconditioning can
be used: the island sets can be precalculated and stored with the graph data. If
the algorithms are likely to return all incorrect islands for some searches, then
an ε-admissible version of island search can be used. An ε-admissible search
always returns a path with a length no more than that of the optimal path plus
some constant (ε) specified by the user, whether or not the islands are correct.
Chakrabarti et al. wrote an ε-admissible version of island search that reverts to
A* when the island search will not yield a short enough path. This will expand
more nodes than A* in some extreme cases. Dillenburg and Nelson also gave
instructions on how to modify Algorithm In and Algorithm Inp to make them
ε-admissible.

Possible approaches to selecting islands include selecting the nodes with the
most neighbors; selecting the busiest intersections; modeling obstacles in the
road network; and creating rules for individual islands that specify whether that
island should be in the island set. Large intersections, i.e. nodes with many
edges, are more likely to be on faster roads and therefore optimal routes between
nodes. Clearly only nodes that are near or between the start and goal nodes are

744 Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

good prospects for islands. For this reason we wrote an algorithm that creates
a subgraph of the road graph containing only those nodes in a rectangle that
has the start and goal nodes at opposite corners and then finds the nodes in
the subgraph with the most edges. This algorithm is linear with respect to the
number of nodes in the graph and proved to be effective at selecting islands.
Over testing done on the Auckland road map, it returned island sets with an
average of 20% correct islands. Also, the number of islands returned can be easily
specified as required.

Dillenburg and Nelson [1995] suggest selecting islands based on the most used
intersections in the network. Both Dillenburg and Nelson; and Pearson [1998]
tested this. Pearson broke Auckland up into 4km2 regions, calculated all shortest
paths between a pair of regions and chose the top 5% of most common nodes
in these paths as islands. He observed that for many pairs of regions the most
common nodes occurred on only 65% of routes, but as long as E members of
the island set occur on the route, then the algorithm finds an optimal solution.
Since all the shortest paths between the regions must be calculated, this island
selection algorithm is very slow and the island sets must be stored. However,
breaking Auckland up into 4km2 regions would result in around 600 regions.
Since an island set would be required for each combination of two regions, around
360,000 island sets would have to be stored. Therefore larger regions than this
may be required. As the regions become larger, the amount to be stored reduces
but the accuracy of the island sets decreases, it would be important to find a
compromise.

Dubois and Semet [1995] suggest modeling obstacles in the road network.
These obstacles are then represented by line segments. For example, a long thin
obstacle may be represented by a single line segment while a concave shape may
need up to three. They used the ends of these line segments not as islands in a
form of island search (indeed, these ends may not even be nodes in the graph)
but only in a heuristic for calculating a lower bound on the distance between
these nodes. This new heuristic, while still being admissible, has a value always
more than or equal to the air distance heuristic and so is a better heuristic to
use in an A* search. This idea could be altered so as to create line segments that
stretch from one node to another. When a line from the start to the goal node
intersects one or more of these line segments, the ends of the segments would be
included in the island set.

Alternatively, nodes with strong potential as islands could be chosen and
rules written to specify when and when not to add them to the island set. These
rules would be based on the longitude and latitude of the start and goal nodes.
For example, if one of the nodes has coordinates that indicate it is on the North
Shore while the other is in central Auckland, then the harbor bridge node would
be added to the list.

745Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

For shorter search distances the gains made by island searches over A* are
minimal, and with some selection algorithms the difficulty of selecting correct
islands increases. It therefore makes sense to calculate the air distance between
the start and goal nodes and only use island search if the distance is above a
certain threshold.

4 Customizability: Search Control Rules

We know that A* can come up with optimal routes given an admissible heuris-
tic. We have talked about decreasing the cost of finding an acceptable path by
using islands to decompose the global path problem into a sequence of local
path problems. However, we have not addressed the problem of constraining the
solution to satisfy user-defined constraints and capabilities.

Different users have different constraints and different capabilities. While
we want to design a general path-finder, we want to be able to easily tailor
it to fit individual users. One user might want to constrain the path-finder to
use freeways over using side streets whenever freeways are available and won’t
impose too much extra cost, while another user might want to avoid traffic circles
at all times, etc. In short, constraints say when to eliminate certain alternatives
(edges) from the search space.

In addition to having different preferences, users also can have different ca-
pabilities. For example, a driver of a 4-wheel Jeep might consider driving across
unpaved roads, across “fordable” streams, etc., that drivers of most other ve-
hicles would not consider suitable. Since most users would not consider these
possibilities as being appropriate, they would be excluded from the path-finder’s
default search space. If the user want to extend the default search space, they
would need to describe how to extend the space (i.e., what edge to add) and un-
der what conditions. For example, a person owning an amphibian vehicle might
want the path-finder to consider routes that included water paths from publicly
accessible beach to publicly accessible beach whenever the beaches are less than
2 miles apart. We are defining capabilities to be these descriptions of how and
when to extend the search space.

Prodigy [Minton, 1988] is perhaps the best known system that affords the
user the capability or adding and/or removing edges from the default search
space. Prodigy does this via search control rules. Prodigy search control rules
have preconditions and postconditions. The preconditions test the state of the
current partial solution candidate and/or the state of the problem-solver. The
postconditions describe an edge and whether they are adding or removing it.
Rules that add edges are called generation rules and rules that remove edges are
called rejection rules.

Our path-finder would generate its search space in phases. Given a node in
the search tree, a default set of children would be generated, generation rules

746 Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

are then run to possibly add candidate edges to the set, then the rejection rules
are run to possibly remove edges from that set. The candidate set is passed from
phase to phase, being updated by each phase. Those candidates remaining in
the set at the end would be added into the open set of nodes for A* to select
from.

Example encodings of the amphibian car’s generation rule and the “avoid
side roads when freeway is affordable” rejection rule are:

IF: (AND (CURRENT-LOCATION <B1>)
(IS-PUBLIC-BEACH <B1>)
(IS-PUBLIC-BEACH <B2>)
(SHORTEST-WATER-PATH <B1> <B2> <P>)
(DISTANCE <P> <D>)
(< <D> 2))

THEN: (GENERATE-PATH <P>)

IF: (AND (CURRENT-LOCATION <L>)
(CANDIDATE-PATH <L> <P1>)
(CANDIDATE-PATH <L> <P2>)
(NOT (FREEWAY <P1>))
(FREEWAY <P2>)
(LOW-EXTRA-COST <P1> <P2>))

THEN: (REJECT-PATH <P1>)

These types of search control rules seem a reasonable approach to allowing
the user to incrementally modify the space searched by A* as their preferences
and capabilities change. However, are there hidden dangers in using these types
of search control rules? In particular, we would like the user to be able to look
at the rule and have an intuitive idea of its effect upon the search space. For
example, if the user adds a generation rule to the search control rule set, then
intuitively they would expect the search space to be a superset of what it was
before the rule was added. Since one of the often touted advantages of rule-based
systems is the relative additivity/independence of rules [Barr and Feigenbaum,
1981, page 193], we would expect this to be the case. If users cannot predict the
effects of a rule in isolation, then they must try to understand the interactions
between the proposed new rule and the current set of rules. This is an unrealistic
demand on most users.

Unfortunately, it turns out that for these types of search control rules, the
effects of adding a rule cannot be predicted from looking at it in isolation from
the current set of rules. In fact, the effects of modifying the rule set in any way
can be counterintuitive. For example, adding a generation rule can cause the
search space1 to be smaller, etc.

We illustrate this with the following example. Assume that the default gen-
eration of path candidates includes all roads that our local database describes
as intersecting our current location and as not being under construction. Also
assume that our current set of search control rules consists solely of the “avoid
1 Where we only focus on the topology of the space, not its traversal.

747Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

side roads when freeway is affordable” rejection rule shown previously. Finally,
assume that in our local database the only freeway that intersects our current
location is a proposed freeway that is still under construction.

Given this situation, the default generation phase will not propose any free-
way candidates since the proposed freeway is still under construction and no
other freeway intersects our current location. There are no generation rules; no
additional candidates will be added to the default set. Thus the set of candi-
dates passed to the rejection phase will not have any freeway candidates and the
“avoid side road . . . ” rejection rule will not be triggered, leaving the path-finder
to use side roads to get closer to the destination location.

Now, consider the following generation search control rule:

IF: (AND (CURRENT-LOCATION <L>)
(FREEWAY <P>)
(INTERSECTS <P> <L>))

THEN: (GENERATE-PATH <P>)

This rule proposes any freeway as a candidate that intersects the current
location. This is an overly general rule, it will propose candidates that turn
out not to be useful (e.g., because they are under construction, etc.). However,
because it is a generation rule, one’s intuition from looking at the rule in isolation
is that its affect upon the search space is to possibly add edges, i.e., that the
edges in the new search space will be a superset of the edges in the original
search space). Unfortunately, examination of the current rule set and analyzing
the interactions between this new generation rule and the “avoid side road . . . ”
rejection rule show that the side road edges will be removed from the search
space. In other words, adding a new generation rule can indeed cause the search
space to contain fewer edges. In this particular case, the addition of this new
generation rule has eliminated all solutions to this route-finding problem from
the search space.

This is clearly unacceptable behavior from the user’s viewpoint. They added
a rule which appeared to be simply adding edges to the search space, but, which
because of interactions with existing rules, also removed edges and consequently
prevents the path-finder from being able to solve navigation problem which were
previously solvable.

Does this mean that search control rules are an inappropriate mechanism for
allowing a user to describe their constraints and capabilities? Not necessarily,
it depends upon what aspects of the search control rules allow the effects of
adding new rules to be counterintuitive and upon what alternatives we have for
handling those aspects.

What is it about this search control rule language and/or search control
architecture that enable these counterintuitive changes to occur? In our example,
it is the test for the presence of freeway candidates that led to the rejection of
the side roads. This type of counterintuitive behavior would be eliminated if the

748 Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

preconditions of search control rules were limited to testing for the candidate
appearing in the rule’s postcondition and to testing for commitments already
made in the current partial solution to the user’s route-finding problem.

This approach to avoid allowing counterintuitive behavior to arise from the
modification of the search control set may solve the problem, but does so at the
cost of prohibiting the rules from examining which alternatives are available at
a choice point. Unfortunately, such examinations are often desirable, e.g., in our
example rejection rule we only want to reject the side roads if a freeway is an
acceptable alternative. So, it is not obvious that such restrictions would be the
best way to avoid these counterintuitive behaviors. This is something that needs
more research.

5 Summary

In this paper, we introduced an architecture for an optimal, tractable, and cus-
tomizable route finding system. The main components of the system are based
on the following:

– An A* algorithm to compute the shortest path from a given starting point
A to a destination point B.

– An island search algorithm to make the search tractable.

– Search control rules to express user preferences.

The three components use different types of knowledge. Search control rules es-
tablish the search space and determine the potential successors of the nodes.
Island search divides the resulting search into subspaces. Heuristic search tra-
verses the search subspaces.

We have implemented the first two components of the path-finder and tested
them with the Auckland road map. Implementation on the third component
is yet to be done, and it remains to be seen whether the problem of adding
search control rules incrementally and obtaining counterintuitive results does
occur frequently and therefore has be catered for.

References

[Barr and Feigenbaum, 1981] A. Barr and E.A. Feigenbaum, editors. The Handbook
of Artificial Intelligence, volume 1. William Kaufmann, Los Altos, California, 1981.

[Chakrabarti et al., 1986] P.P. Chakrabarti, S. Acharaya, and S.C. de Sarkar. Heuris-
tic search through islands. Artificial Intelligence, 29:339–348, 1986.

[Dillenburg and Nelson, 1995] J.F. Dillenburg and P.C. Nelson. Improving search effi-
ciency using possible subgoals. Mathematical and Computer Modelling, 22(4–7):397–
414, 1995.

749Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

[Dubois and Semet, 1995] N. Dubois and F. Semet. Estimation and determination of
shortest path length in a road network with obstacles. European Journal of Opera-
tional Research, 83:105–116, 1995.

[Guesgen and Mitra, 1999] H.W. Guesgen and D. Mitra. A multiple-platform decen-
tralized route finding system. In Proc. IEA/AIE-99, pages 707–713, Cairo, Egypt,
1999.

[Hart et al., 1968] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107, 1968.

[Korf, 1996] R.E. Korf. Artificial intelligence search algorithms. Technical Report
TR 96-29, Computer Science Department, UCLA, Los Angeles, California, 1996.

[Minton, 1988] S. Minton. Learning Search Control Knowledge. Kluwer, Dordrecht,
The Netherlands, 1988.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, Reading, Massachusetts, 1984.

[Pearson and Guesgen, 1998] J. Pearson and H.W. Guesgen. Some experimental re-
sults of applying heuristic search to route finding. In Proc. FLAIRS-98, pages 394–
398, Sanibel Island, Florida, 1998.

[Pearson, 1998] J. Pearson. Heuristic search in route finding. Master’s thesis, Com-
puter Science Department, University of Auckland, Auckland, New Zealand, 1998.

750 Barley M., Guesgen H.W., Karl G.: An Architecture for a Three-Tier Path-Finder

