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Abstract: Observation is a fundamental interaction pattern in today’s computer-
based systems. Adopting observation as the main modelling criterion, computer-based
systems can be represented as composed by three class of entities: observers, observ-
ables (or sources), and coordinators, that is, the entities managing the observer/source
interaction.

Also, agents and agent societies are fundamental abstractions in modelling today’s
complex systems. When exploiting observation in the context of agent-based systems,
the most natural interpretation for agents is to see them as either observers or co-
ordinators. However, their situatedness and autonomy, their peculiar perception and
representation of the environment, and their typical ability to infer new knowledge
– in short, their individual viewpoint over the world –, make agents suitable for an
interpretation as observable sources.

Accordingly, this paper discusses the implications of using observation to model agent
systems, and focuses on the interpretation of agents as observables. A formal framework
is developed where multiagent systems are modelled as the composition of agents inter-
acting by observing each other and by mutually affecting their observable behaviour.
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1 Observation, Computer Systems, and Agents

The impetuous development of information technologies is rapidly changing the
computer science scenario. On the one hand, the increasing complexity of com-
puters and computer applications is making impractical or even impossible to
completely model their behaviour. On the other hand, computer systems are typ-
ically built as aggregations of components, often knowable only in terms of the
services they ask for and offer – in other words, through their observable proper-
ties. Notions as interface and encapsulation, paradigms like the object-oriented
and the component-based ones, have promoted observation to a first-class issue,
by implicitly stating that complexity of computer systems could be handled only
by abstracting away from the essence (in a broad sense) of the elements (like
objects, or components), and focusing instead on their observable behaviour.
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Agent-based technologies – one of the most promising approaches for the
engineering of complex systems – are contributing to this trade-off as well. In
multiagent systems (MAS henceforth), a multiplicity of autonomous, possibly
intelligent agents have to set up well-constructed interaction patterns to deal
with heterogeneous, distributed, and unpredictable knowledge sources – making
observation at the same time a relevant and complex issue in agent-based sys-
tems. Even more, it is often the case that agents cannot be known but in terms
of their interaction history [Wegner, 1997] – for instance, because they are used
to wrap practically unknowable legacy systems, or because they are inherently
unknowable, as in the case of open systems. Thus, the precise characterisation of
the observable behaviour of an agent, and the study of how this can be affected
by the external environment, seem necessary efforts for harnessing the intrinsic
complexity of current and forthcoming agent-based systems.

In this paper, observation is applied as the fundamental criterion to model
the behaviour of agents and MAS. From this viewpoint, it is natural to view
agents as observers of information sources, – e.g. information agents –, or as
coordinators managing the patterns of interaction among observers and sources
– e.g. broker agents. Instead, this paper elaborates on the idea of representing
an agent as an observable source, that is, an entity manifesting its knowledge or
competence through its observable behaviour. In order to cope with agents’ par-
tial knowability, and with the typical need of abstracting away from their inner
details, our approach is based on the ideas of (i) modelling only the observation
core of a source – that is, the part of an agent that directly affects its observable
behaviour –, and (ii) explicitly representing how the agent’s observable core de-
termines its observable manifestations, and how, conversely, the core is affected
by the agent’s interactions.

Based on this simple ontology, this paper develops the formal framework for
observation in computer systems introduced in [Viroli et al., 2001], and applies it
to agent-based systems. In particular, a calculus is presented where MAS are seen
as the composition of agents interpreted as observable sources, and multiagent
systems’ evolution is represented in terms of the source agents exchanging their
individual knowledge and competence over time. This model being grown on top
of a precisely-defined ontology, an alternative and original viewpoint is given
over well-known features of agent-based systems, based on concepts related to
observation.

1.1 Modelling Styles for Software Components

Several modelling styles can be adopted for interacting software components,
which differ for their different degrees of completeness in the description of how
components’ interactions affect and are affected by their inner status.
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In the white-box approach, the component’s behaviour is completely mod-
elled. Typically this is done by providing an operational semantics for the com-
ponent which completely defines its dynamics and its interactions with the en-
vironment. However, in a wide set of domains – agent-based systems being a
relevant case – this approach is unlikely to be effective, both because the soft-
ware component is intrinsically too complex to be fully characterised, and also
because – independently from its complexity – its actual behaviour is not com-
pletely known, as in the case of legacy systems.

Typically, this inadequacy is addressed by exploiting a black-box approach,
where the component’s behaviour is characterised only by means of its admissible
interaction histories – that is, by the sequences of input and output communi-
cation acts the component exhibits while interacting with its environment. The
most notable example of this approach, is the one underlying the observational
equivalence issue [Milner, 1989]. This is the standard framework exploited in
the field of process algebras [Bergstra et al., 2001] – by languages such as CCS
[Milner, 1989] and π-calculus [Milner, 1999] –, for stating whether two inter-
active behaviours are equivalent, or also, when one is a subcase of the other.
This approach promotes the idea of characterising a software component only
by its interactive behaviour, while abstracting away from any detail concerning
its actual inner machinery. While this framework provides a basic and valuable
foundation for reasoning about interactive systems in general, and for stating
properties of interest about communication protocols, it is not completely sat-
isfactory for modelling software components of any kind. As for the white-box
approach, agents are a case where the black-box approach, too, seems not to
succeed.

Agents are intrinsically stateful software entities. The ways they interact with
the environment are not fixed once and for all, but tightly depends on their evo-
lution over time, as well as on the decisions they autonomously take, reflecting
internal deliberation, planning, and inference activities – namely, their proac-
tive behaviour. Even more, very often the agent’s communication acts cannot
be simply expressed in terms of events occurring in it. For instance, an agent
receiving a request for executing a given action never guarantees that action to
be actually executed, for the agent can simply ignore the request.

So, in between the black-box and the white-box approaches, a grey-box ap-
proach is taken as an underlying model for the framework developed in this
paper [Viroli and Omicini, 2002c], which seems a suitable approach for repre-
senting agents’ behaviour. This is based on the idea of partitioning an agent’s
internal aspects in two parts: one which is completely modelled (the white part),
as it is responsible for the interactions with the environment, and the other (the
black part) – representing internal deliberation process – that is abstracted away,
but is anyway taken into account as far as it affects the former part. Correspond-
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ingly, in this paper we refer to the agent’s observable behaviour as the dynamics
of its interactions along with the dynamics of its modelled part’s status, which
are conceptually driven by both the external environment and by the agent’s
hidden status dynamics.

In order to apply the grey-box approach, however, it is necessary to provide
an ontology for defining: (i) what agent’s aspects are better to be included either
in the modelled or in the hidden part, (ii) what is the model for the dynamics
of the modelled part, (iii) how the modelled part’s dynamics are influenced by
and can affect the interactions with the environment, and (iv) how the modelled
part’s dynamics are influenced by and can affect the hidden part’s dynamics.
As argued in [Viroli and Omicini, 2002b], choosing such an ontology – or equiv-
alently, defining an agent abstract machine on which the actual model is based
– is a definitely crucial issue, in particular as far as wide applicability to vari-
ous agents’ implementation is concerned. To this end, in this paper a grey-box
model for agents is defined which is grown on an a general ontology for the ob-
servation issue in computer systems developed in [Viroli et al., 2001]. Such an
ontology is focussed on representing how software components provide facilities
for allowing their status and its dynamic to be perceived and possibly affected
by external entities. As a result, the corresponding model turns out to be fairly
abstract so as to provide a reasonable architecture-independent specification tool
for agent-based systems [Viroli and Omicini, 2002b].

1.2 Observation in Computer Systems

The ontology for observation introduced in [Viroli et al., 2001] interprets com-
puter systems as made of three kinds of entities: observable sources, observers
and coordinators. A source is a component storing some knowledge and/or com-
petence, and intrinsically able to manifest a part of its state – or of its dynamics –
by delivering chunks of information in the form of asynchronous messages, called
manifestations. Observers are those entities receiving these messages, namely, ob-
serving the source manifestation. Finally, coordinators are entities managing the
pattern of interaction between observers and sources. This is done by condition-
ing the source’s observable behaviour, that is, by interacting with a source so as
to affect the dynamics of its manifestations.

Roughly speaking, according to our ontology, the basic observation pattern
can be sketched as follows: a coordinator conditions a source so as to affect
its observable behaviour, the source elaborates the conditioning and manifest
part of its knowledge and competence, then an observer receives the source’s
manifestation(s). Since coordinators and observers are more or less the ends of
this observation pattern, they can be easily modelled as black boxes, represented
in terms of their outputs – coordinators producing conditionings – and inputs –
observers receiving source manifestations.
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Instead, a source evidently constitutes the core of the observation pattern,
and its inner state and dynamics are worth to be represented explicitly – at least
partially, that is, as far as they affect the way in which a source participates
in different kinds of observation patterns. As a result, the ontology focuses on
characterising the dynamics of the source’s manifestations, how manifestations
are related to the state of the source, and how they can be manipulated through
conditionings. To this end, the source is modelled in terms of its (observation)
core, that is, the part of the source that determines its observable behaviour over
time. At any time during its evolution, the core of a source is said to be in a
given (observable) position. In turn, a position consists of the (observable) place,
representing the part of the source’s current state that can in any way affect the
source’s observable behaviour, and the (observation) configuration, determining
its dynamics and manifestations over time.

At any time during its evolution, a source is either in equilibrium or in mo-
tion. When in equilibrium, a source is characterised by its current position. The
equilibrium of a source can be perturbed in two ways: by a conditioning from a
coordinator, or by a spontaneous move of the source. On the one hand, a source
can allow a coordinator to change the source’s configuration, so as to determine
new interaction patterns between the source and the observers. On the other
hand, a source can spontaneously change its place: this is meant to model either
an interaction with the external environment that is not desirable (or useful)
to interpret in terms of observation, or an internally-triggered event affecting
the source’s core, such as the tick of an internal clock, or the inference of new
knowledge resulting from an internal process.

When in motion, the source’s configuration determines the observation trajec-
tory of the source, that is, how the source produces manifestations to observers,
and changes its position. At the end of the trajectory – that is, when the source’s
configuration requires no more manifestations or changes to the source’s core –,
a source goes back to equilibrium.

1.3 Observation in Agent Systems

The most natural approach to modelling agents’ interactions through the ob-
servation pattern is to view agents as observers of information sources. In fact,
knowledge sources often populate the environment of a MAS, where agents play
the role of information agents in charge of obtaining information from sources,
and possibly elaborating it. On the other hand, agents are likely to be modelled
as coordinators as well. Typically, agents (and in particular, intelligent ones)
have some awareness of their context, and often feature some ability to set up
the agent-environment interaction patterns that better favour the accomplish-
ment of their goals.
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While it is a quite natural viewpoint to interpret an agent as either an ob-
server or a coordinator, this paper takes a seemingly less obvious stance, and
focuses on interpreting agents as sources. First of all, this interpretation concep-
tually matches the idea that each single agent, with its own knowledge, com-
petence, and unrepeatable “experience” – in a broad acceptance of the term
–, provides a unique individual viewpoint over the world. Then, within a MAS,
agents not only aim at individually pursuing their goals, but often manifest some
kind of cooperative attitude, too, being ready to help other agents pursuing their
own goals, and, more generally, wishing to contribute to the accomplishment of
the system’s global goal. Accordingly, the social ability of an agent can be rep-
resented in terms of the knowledge, competence, resources, and abilities made
available to other agents. While preserving agent autonomy, this feature, too,
makes agents good candidates for being modelled as observable sources.

The way our ontology characterises the source’s internal details and dynamics
turns out to fit the typical agent’s properties. So, the core represents the part
of an agent that can determine its observable behaviour as perceived by the
environment – in general, this is only a limited and well-defined portion of an
agent, or rather some abstract view of it, thus satisfying the typical need of
abstraction that agent-based approaches require.

The spontaneous change of a source’s core can be used to take into account
the agent’s intrinsic proactiveness, with no need to model the details related
to most of its internal aspects. Agents are typically seen as independent loci of
control, driven by the aim of pursuing their goals. However, to our end it is not
relevant to explicitly model the detail of control – which is often too complex
to be fully characterised –, but rather to account for how this can affect the
agent’s observable behaviour. As a result, our ontology represents the agent’s
inner modifications that cause some manifestations as spontaneous moves, that
is, as unpredictable changes of its core.

The configuration of a source models how the dynamics of an agent is man-
ifested. For instance, when a spontaneous move occurs, the current state of the
configuration determines what manifestations should be produced and what is
the next equilibrium state of the agent. Also, a cooperative agent could be de-
signed so as to deliberately allow the environment to partially modify its config-
uration – namely, to condition the agent – so as to affect its observable behaviour
over time, and set up the desired patterns of interaction. For instance, this is how
our ontology accounts for requests coming from other agents, (i) asking for some
service or information, (ii) being answered by some manifestation, and also (iii)
possibly causing a change in the agent status keeping track of the interaction
that occurred.

As a whole result, modelling an agent as an observable source seems quite
appropriate for taking into account its relevant aspects, features, and behaviour.
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So, this ontology is taken as a reference for applying a grey-box modelling ap-
proach to agents. This choice makes it possible to concentrate on representing
the agent’s part directly affecting they way it interacts with the environment – as
well as taking into account the definitely relevant aspect of an agent’s proactive
behaviour –, while abstracting away from details concerning agent’s deliberation
process – that are very difficult to model whereas they only marginally affect
the dynamics of MAS.

1.4 Overview

The main goal of this paper is to develop a formal framework for modelling
the behaviour of a MAS, based on the idea of representing each agent as
an observable source according to the ontology for observation developed in
[Viroli et al., 2001]. In order to obtain this result, we conceptually divide the
framework in three parts, each focussing on a different level of abstraction in
specifying the overall MAS dynamics.

In Section 2, the agent’s inner dynamics is studied. Based on the formal
framework introduced in [Viroli et al., 2001] – which is used to specify how soft-
ware components let their status and its dynamics to be observed – here an
operational semantics for the agents inner status is developed. The agent is
interpreted in terms of an observable source which can either (i) receive a con-
ditioning, (ii) perform a spontaneous move, (iii) evaluate its configuration, and
(iv) produce manifestations.

Section 3 is devoted to specify the agent’s interactive behaviour. In particu-
lar, the four events characterising the agent’s inner behaviour are related to the
actual interactions of the agent with its environment. In this model, the agent is
seen as an interactive component that either (i) proactively sends output mes-
sages to the environment (which are manifestations fired by spontaneous moves),
or (ii) receives a message from the environment and reactively replies with one
or more output messages (which are manifestations fired by a conditioning).

Finally, Section 4 addresses the agents cooperation level. A MAS is seen as
a composition of agents interacting with each other. In particular, the MAS dy-
namics is described in terms of an agent’s manifestations eventually becoming
conditionings for another agent. On the one hand, (i) an agent can sponta-
neously produce output messages, on the other hand, (ii) an agent can accept
one message as input and correspondingly produce new output messages for
other agents.

A simple application example is provided and developed according to the
corresponding abstraction level throughout Sections 2,3, and 4. Such an example
is intentionally simple yet complete enough to help understanding the formalism
and the most relevant related concepts and applications.
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Section 5 is devoted at giving an interpretation of the typical features of
agents and MAS, such as autonomy and social ability, in terms to aspects related
to the observation ontology, and according to the formal framework presented. In
turn, this is meant to provide further insights on our model, as well as alternative
and innovative viewpoints over well-established concepts.

Section 6 concludes by discussing related works and directions for future
studies in this research direction.

2 The Formal Framework for Observation

The ontology for observation sketched in the previous section provides the con-
ceptual basis for the uniform description, classification, and comparison of the
seemingly different approaches supporting observation as they emerge indepen-
dently from computer science and artificial intelligence [Viroli et al., 2001]. In
the following, a formal framework for observation is defined, grounded on the
observation ontology. In particular, this is meant to provide a tool to denote and
specify the observable behaviour of a source, focusing on the way in which in-
teraction may influence the source’s manifestation. Also, this formal framework
provides the basis for the agents’ calculus presented in Section 3 and Section 4.

2.1 Formal Background

Throughout this paper, variables written in uppercase letters denote sets, and
variables written in lowercase letters denote the corresponding elements. So, let
X be any set, variable x and its variations (x′, x′′, . . . , x1, x2, . . . ) range over X .
Sometimes the content of a set is specified in terms of a grammar, that is, using
a BNF-like production. In particular, in its right-hand side the occurrences of a
variable x are meant to denote that any element of the set X can be used in their
place. The left-hand side specifies instead the name of the set whose elements are
the strings generated by the grammar production. For instance, the semantics
of the expression:

X ::= elem(y) | zero

where Y = {1, 2, 3}, is to define the set X as the set:

{zero, elem(1), elem(2), elem(3)}

Also, the right-hand side is said to be the language of X , or the language defining
X .

Given any set X , the special symbol ⊥X is used to denote an exception value
in the set X⊥ defined as X ∪ {⊥X}. The set of multisets over X is denoted
by X, and its elements (which are multisets over X) by the variable x and its
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variations (x′, x′′, .. ). The content of a multiset can be specified by enumerating
its elements through the symbol {}M – e.g. writing x = {x′, x′, x′′, x′′′, ...}M – or
by the union of two multisets through the binary operator |, as in x = x′|x′′. The
void multiset is denoted by ε. For any x, x′ and x′′, the following equivalences
are supposed to hold:

x|x′ = x′|x x|ε = x (x|x′)|x′′ = x|(x′|x′′)

With an abuse of notation, sometimes x denotes a singleton element either in
a multiset {x}M or in a set {x}. So, the expression x|x denotes a multiset
containing the element x. Furthermore, we also suppose ⊥X |x = x to hold. The
symbol � is used for the difference between either sets and multisets: so, for
instance, (x|x) � x = x.

A finite sequence of elements x, y, z, . . . is denoted by the symbol 〈x, y, z, . . . 〉
and considered as an element of the cartesian product X ×Y ×Z × . . . . The set
of functions from subsets of X to subsets of Y is denoted by X �→ Y . A function
fun ∈ X �→ Y can be specified using the notation {x′ �→ y′, x′′ �→ y′′, ..}. Often,
when applying a function to a finite sequence, we avoid the bracket notation,
writing fun(x, x′) instead of fun(〈x, x′〉). The function obtained by updating f

so as to map the element x into y is denoted by f [x �→ y].
In this paper, the formal framework of labelled transition systems is adopted

as a means for describing the behaviour of systems – for a more exhaustive
introduction see [Glabbeek, 2001]. Formally, a (labelled) transition system over
a set of processes X , is a pair 〈X,−→〉 where −→⊆ X × Act × X is a ternary
relation, associating processes to other processes through actions. In particular,
the presence of a certain triplet 〈x, act, x′〉 in −→, also denoted by the syntax
x

act−−→ x′, is meant to represent the process x moving to x′ due to the transition
characterised by the action act.

Typically, processes are used to model the state of a certain computational
activity, and transitions are used to model changes on that state. Actions charac-
terise the kind of transition, modelling either an interaction of the computational
activity with the environment, or simply a spontaneous change of the activity’s
state – typically modelled by the silent action τ , which in this paper is taken as
default when none is specified.

The content of −→, that is, the semantics of the transition system, is then
given by rules of the kind

cond

x
act−−→ x′

and is defined as the least relation satisfying all the rules – in particular, when the
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formula cond is true, the triplet 〈x, act, x′〉 is considered as an element of −→. 1 In
order to simplify the understanding of the rules, actions are generally divided in
sorts, each identified by a different symbol or character tagging the transition,

such as S in act−−→S , which has same semantics of
〈S,act〉−−−−→. As a result, often

labelled transition systems are defined by means of a set of labelled transition
systems, each identified by a different tag – as in the case of the transition system
for sources defined in the following subsection.

2.2 The Core Calculus for Sources

A class of source systems is defined as a quartet 〈P , C, M, J 〉. P is the set
of the admissible (observable) places for a source system of the class. A place
models at any time the part of the current state of a source that can influence
its observation behaviour. C is the set of the admissible configuration atoms, or
c-atoms for short, determining the dynamics of a source and its manifestation.
In fact, the (observation) configuration of a source is defined as a multiset of
c-atoms. The pair 〈place, configuration〉 determines the current position of the
source’s core. More precisely, the set of the admissible positions of a source is
P ×C, and the position of a source is represented by a pair 〈p, c〉 ∈ P ×C, which
is denoted through the syntax p [ c ]. So, the state of a source in equilibrium is
fully characterised by its current position p [ c ].

A move of the source’s core is defined as a change in the source’s place,
denoted by elements 〈p, p′〉 of the set P ×P . Furthermore, P ×P ×C is defined
as the set of the admissible motions of the source, keeping track of the move
and of the current configuration. A generic motion 〈p, p′, c〉 is denoted by the
syntax 〈p, p′〉[ c ], where p is the source’s previous place, and p′ [ c ] the source’s
new position – or, in other terms, where 〈p, p′〉 is the source’s move, and c its
new configuration. So, the state of a source in motion is fully characterised by
its current motion 〈p, p′〉[ c ].

The third element of a source class’ specification, M , is the set of messages
that a source of the class can produce. The syntax for messages is not defined
in general: instead, each class of sources specifies its own.

Finally, J = 〈eval, select 〉 is a pair of functions giving semantics to c-atoms.
The evaluation function (eval ) models the effect of a c-atom on both the source’s
core and manifestation. The selection function (select ) determines which c-atom
in the current source’s configuration should be evaluated at a given time. In
particular,

eval ∈ C �→ (P × P �→ C⊥ × P⊥ × M)
select ∈ C �→ (P × P �→ C⊥)

1 More precisely, in case 〈x, act, x′〉 contains free variables, if the bound triplet
〈x̂, âct, x̂′〉 can be obtained from 〈x, act, x′〉 with variable substitution σ – i.e.,

〈x, act, x′〉σ = 〈x̂, âct, x̂′〉 –, then 〈x̂, âct, x̂′〉 is an element of −→ if cond σ holds.
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Given a source’s motion 〈p, p′〉[ c ], the evaluation eval(c)(p, p′) of the c-atom
c ∈ c produces a triplet 〈c′, p′′, m〉 = eval(c)(p, p′), to be interpreted as follows:

– c′ is the c-atom to be written in the configuration c replacing c. c′ =⊥C means
that no c-atom replaces c, i.e., c is simply dropped from the configuration c

after its evaluation.

– p′′ is the new place of the source after the evaluation of the current c-atom.
In the case that p′′ =⊥P , the source’s place does not change further, that is,
p′ = p′′. This is supported by the operator 〈p, p′〉 :> p′′, accepting the move
〈p, p′〉 and the new place p′′, and yielding the move defined as:

〈p, p′〉 :> p′′ =

{
〈p′, p′′〉 if p′′ 	=⊥P

〈p, p′〉 otherwise

– m is the multiset of messages to be sent out by the source due to the evalu-
ation of the current c-atom.

Given the configuration c and the move 〈p, p′〉, select(c)(p, p′) returns the c-atom
to be evaluated – or ⊥C , meaning that no c-atoms should be evaluated and the
source can return to equilibrium.

The selection and evaluation of the c-atoms in a source’s configuration de-
termine the trajectory of the source – in terms of core modifications and ob-
servable manifestations – after it has been stimulated by either the registration
of a c-atom or a spontaneous move. This dynamics is described by means of a
labelled transition system with four kinds of transitions: move (−→M ), condi-
tioning (−→C), evaluation (−→E), and stop (−→S). More precisely,

−→M ∈ (P × C) × (P × P × C)
−→C ∈ (P × C) × C × (P × P × C)
−→E ∈ (P × P × C) × M × (P × P × C)
−→S ∈ (P × P × C) × (P × C)

Move and conditioning transitions make a source move from equilibrium (P ×C)
to motion (P × P × C), the latter transition being labelled by a c-atom (C) –
so as to model an input from the environment. Evaluation transition makes a
source move from motion to motion and is labelled by a multiset of messages
(M) – modelling an output to the environment –, while stop transition makes
the source return to equilibrium from motion without any label.2 The semantics
2 This labelled transition system is somehow different with respect to the general

definition given in Subsection 2.1, being of the kind X × Act × X ′ with X �= X ′.
On the one hand, it would be easy to show how the transition system defined here
could be seen as a special case of the general definition – e.g. considering the set
of processes X as the union of sources in equilibrium state and motion state, by
choosing X = (P × C) ∪ (P × P × C) in each transition. On the other hand, we
believe that our definition more naturally leads to the intuition of equilibrium state,
motion state, and their dynamics.
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for these transitions is given by the following rules:

p [ c ] −→M 〈p, p′〉[ c ] (T-MOVE)

p [ c ] c−→C 〈p, p〉[ c|c ] (T-COND)

select(c|c)(p, p′) = c eval(c)(p, p′) = 〈c′, p0, m〉 〈p, p′〉 :> p0 = 〈p′′, p′′′〉
〈p, p′〉[ c|c ] m−→E 〈p′′, p′′′〉[ c′|c ]

(T-EVAL)

select(c)(p, p′) =⊥C

〈p, p′〉[ c ] −→S p′ [ c ]
(T-STOP)

A source in equilibrium is fully characterised by its current position p [ c ], and
the only applicable transitions are (T-MOVE) and (T-COND). This corresponds
to the ontological notion that the equilibrium of a source can be perturbed only
by either a spontaneous move (T-MOVE)3 or a conditioning by a coordinator
(T-COND). Here, in particular, the act of conditioning a source is modelled as
the addition of a single c-atom to the multiset of c-atoms currently constituting
the source’s configuration – in other words, a coordinator can condition a source
by registering a single c-atom in the source’s configuration. 4 5

After its equilibrium has been perturbed, a source starts a new trajectory
towards a new equilibrium state. During its evolution, the source is fully char-
acterised by its current motion 〈p, p′〉[ c ], and the only applicable transitions
are (T-EVAL) and (T-STOP). In particular, (T-EVAL) selects (through select)
3 For the sake of simplicity, in the transition (T-MOVE) the source’s place p is al-

lowed to move to any other place p′. In general, however, it could be desirable to
constrain the dynamics of spontaneous moves, so as to prevent moves that the system
component modelled as source does not actually perform. This can be done e.g. by
adding to the tuple specifying the source semantics a relation S ⊆ P ×C×P stating
that from current position 〈p, c〉, a source can spontaneously perform move 〈p, p′〉
only if 〈p, c, p′〉 ∈ S. Although this could be supported by simply adding condition
〈p, c, p′〉 ∈ S to rule (T-MOVE), this is avoided here in order to keep the source
specification and semantics as simpler as possible.

4 Defining conditioning as the registration of a single c-atom is not a severe limitation:
configuration modifications other than adding a c-atom (such as deleting a c-atom)
can be the whole result of a trajectory caused by the registration of a single c-atom.

5 Typically, every source defines, either implicitly or explicitly, who is allowed to modify
its configuration (in other words, who can act as a coordinator for that source),
and how this can be done. Then, in general, only a subset of the admissible c-
atoms are available to given coordinators for conditioning a source. For every class
of coordinators, a source defines the set D ⊆ C of the admissible conditioning atoms,
or d-atoms, for short. However, the focus on the source’s behaviour, rather than on
the coordinator’s, makes this issue not relevant in the context of this paper. As a
result, the distinction between c-atoms and d-atoms is not considered in the following,
implicitly assuming D = C as an acceptable approximation.
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one c-atom c from the source’s configuration c and evaluates it (through eval),
leading to a new source’s motion and to new manifestations towards the ob-
servers (the possibly empty multiset of messages m). After a number of c-atom
evaluations, the source’s motion stops (T-STOP) when no more c-atoms in the
configuration can be evaluated (select returns ⊥C), so that the source concludes
its trajectory and comes back to equilibrium.

In general, this model is able to represent the dynamic of sources with non-
finite trajectories that never restore the source’s equilibrium. This happens when
the selection function keeps finding c-atoms to be evaluated, leading to infinitely
many evaluation transitions. However, this situation is apparently not interesting
in the context of this paper, so it is ignored in the following.

2.3 An Example

As an example of how to model a system component as a source, and how
its behaviour can be represented through the transitions of the above labelled
transition system, a simple Internet application is introduced in the following. A
monitor agent aM is in charge of getting information from m sites of the network,
each having a local agent aj

L (1 ≤ j ≤ m) responding to the queries. The monitor
agent can delegate its work to n gatherer agents ak

G (1 ≤ k ≤ n), roaming
over sites and gathering information. Thus, the monitor agent autonomously
determines the list of sites assigned to each gatherer, and sends a request message
to it. Each gatherer autonomously roams the assigned sites, and finally reports
results to the monitor.

As argued in Subsection 1.3 the formal framework described in this paper
is built on the idea of modelling agents as sources. As a result, this example
application is modelled here as composed by three classes of sources, locals,
gatherers and a monitor, respectively with names idj

L, idk
G, and idM . Their

semantics is specified by providing the tuple 〈P, C, M, J〉 for each class, as follows.
The simplest kind of agent is the local agent, which is modelled as a purely

reactive source that can be conditioned so as to manifest the result of a certain
query. The semantics of a generic local agent idj

L is given in Figure 1. The place
of a local agent is represented as a function assigning to each query q ∈ Q a
datum d ∈ D representing the corresponding result to be replied. The c-atom
ask (q, id) represents the conditioning made by a certain observer id – which in
our application is a gatherer idG – asking for the local knowledge q. The local
agent with name idj

L can emit messages of the kind id ⇑ info(idj
L, d), which

contains the information d to be provided to id. The selection function is trivial,
since it simply makes each c-atom in the source’s configuration be immediately
evaluated. When the c-atom ask(q, id) is evaluated, (i) it is dropped from the
configuration, (ii) it does not change the observable place, and (iii) it produces
the manifestation of the message containing the reply.
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PL = Q �→ D

CL ::= ask(q, id)
ML ::= info(sj

L, d)

select(c|c) = {〈pL, p′L〉 �→ c}
eval(ask (q, id)) = {〈pL, p′L〉 �→ 〈⊥C , p′L, id ⇑ info(sj

L, p′L(q))〉}

Figure 1: The semantics of a local agent idj
L as a source

PG = P(ID) × Q⊥ × (ID �→ D⊥) × ID⊥
CG ::= info(id, d)|gath(ID ′, q)|query |end
MG ::= id ⇑ ask(q, idi

G)|id ⇑ res(f, idi
G)

select(query |c) = {〈〈ID ′, q, f, id〉, 〈ID ′, q, f, id′〉〉 �→ query : if id 	= id′}
select(end |c) = {〈〈ID ′, q, f, id〉, 〈{},⊥I, f,⊥ID 〉〉 �→ end : if ID ′ 	= {}}

select(c|c) = {〈pG, pG′〉 �→ c : if c ∈ {info(id, d), gath(ID ′, q)}}

eval(info(id, d)) =
{ 〈pG, 〈ID ′, q, f, id〉〉 �→

〈⊥C , 〈ID ′ \ {id}, q, f [id �→ d], id〉, ε〉
}

eval(gath(ID ′, q)) = {〈pG, 〈{},⊥I , {}, id〉〉 �→ 〈⊥C , 〈ID ′, q, {},⊥ID〉, ε〉}
eval(query) =

{ 〈pG, 〈ID ′, q, f, id〉〉 �→
〈query , 〈ID ′, q, f, id〉, id ⇑ ask (q, idi

G)〉
}

eval(end) =
{ 〈pG, 〈ID ′, q, f,⊥ID〉〉 �→

〈end , 〈{},⊥I , {},⊥ID〉, idM ⇑ res(f, idi
G)〉

}

Figure 2: The semantics of a gatherer agent idi
G as a source

Figure 2 reports the semantics of the gatherer idi
G. The place 〈ID ′, q, f, id〉

of a gatherer contains four kinds of information: (i) the subset ID ′ of sites to
visit6, (ii) the information q to ask, (iii) the information already gathered f (as
a function from ID to D) and (iv) the next site to visit id. There are four kinds
of c-atom, two of which represent conditionings possibly coming from outside,
the others representing a part of the configuration that always persists and
is used to manifest internal changes to the outside. The conditioning of the
6 To this end, for the sake of simplicity, the site to be visited is identified by the name

of the corresponding local agent. This technique, on the other hand, also provides
for location transparency, making it possible to abstract from a site’ actual position,
and from the path an agent needs to go through in order to reach the site.
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PM = P(ID) × Q⊥ × ID �→ D⊥ × ID
CM ::= res(f, id)|mon
MM ::= id ⇑ gath(ID ′, q)

select(mon |c) = {〈〈{},⊥I , f,⊥ID〉, 〈ID ′, q, f, id〉〉 �→ mon}
select(c|c) = {〈pM , p′M 〉 �→ c : if c ∈ {res(f, id)}}

eval(mon) =
{ 〈pM , 〈ID ′, q, f, id〉〉 �→
〈mon , 〈{},⊥Q, f,⊥ID〉, id ⇑ gath(ID ′, q)〉

}
eval(res(f, id)) = {〈pM , 〈ID ′, q, f ′, id〉〉 �→ 〈mon, 〈ID ′, q, f ⊗ f ′, id〉, ε〉}

Figure 3: The semantics of a monitor agent as a source

c-atom info(id, d) represents the information d returned by id in response to
a query. The conditioning of the c-atom gath(ID ′, q) is sent by the monitor
agent asking to search for information q in all the sites of the set ID ′ ⊆ ID .
The c-atom query is selected when the agent decides to visit a new site, and
is meant to fire the corresponding query request. The c-atom end is selected
when no more sites are to be visited, and is meant to fire the results message
to the monitor. As shown in Figure 2, while the latter two c-atoms are selected
when a particular condition holds on the move 〈pG, p′G〉 – so as to model the
manifestation of a proactive behaviour –, the former two c-atoms are selected
as they occur in the configuration – as a means for modelling the manifestation
of a reactive behaviour. The evaluation of info(id, d) causes an update on the
knowledge gathered and erases the information on the next site to visit. The
evaluation of gath(ID ′, d) causes the update of the lists of sites to be visited
and of the query to ask, and also erases the next site to visit. When query is
evaluated, the query message is sent to the local agent in the next site to visit,
while end causes the gathered knowledge to be sent to the monitor, and its place
to be initialised.

Finally, the semantics of the monitor is shown in Figure 3. A generic place
〈ID ′, q, f, id〉 specifies the knowledge it has already received f , and the next
knowledge it needs, that is: (i) the set ID ′ of sites to visit, (ii) the agent id

that should be charged with the request and (iii) the kind of information needed
q. The only kind of conditioning c-atom is res(f, id), representing an agent id

communicating the knowledge it has retrieved by means of the function f from
sites ID to data D. The c-atom mon is selected when the monitor decides it is
time to ask for a new gathering, and causes the c-atom gath(ID ′, q) to be sent to
a gatherer agent. When the c-atom res(f ′, id) is evaluated, it causes the current
knowledge of the monitor f to be updated, by means of the binary operator ⊗
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defined as:

f ⊗ f ′ =

{
id �→ f(id) if f ′(id) =⊥D

id �→ f ′(id) otherwise

As a brief example to help understanding the notation, and to clarify the be-
haviour of the labelled transition system for sources, consider the case in which
a gatherer autonomously decides to query one of the sites it was asked to visit.
Initially, the gatherer is in equilibrium, with state

〈{id1
L, id2

L}, q, {},⊥ID〉 [ query |end ]

representing the fact that it is expected to visit id1
L and id2

L, asking them the
query q, having no information retrieved yet, nor future site to roam to already
decided. Its deliberation to visit id2

L first is modelled by a move transition making
its place changing to 〈{id1

L, id2
L}, q, {}, id2

L〉:
〈{id1

L, id2
L}, q, {},⊥ID〉 [ query|end ] −→M

〈〈{id1
L, id2

L}, q, {},⊥ID〉, 〈{id1
L, id2

L}, q, {}, id2
L〉〉[ query |end ]

As a result, an evaluation transition is triggered, where the selection function
selects c-atom query , and its evaluation causes (i) query being reinserted in the
configuration, (ii) the place remaining unmodified, and (iii) a message being sent
to id2

L asking q.

〈〈{id1
L, id2

L}, q, {},⊥ID〉, 〈{id1
L, id2

L}, q, {}, id2
L〉〉[ query |end ]

id2
L⇑ask(i,sG)−−−−−−−−−→E

〈〈{id1
L, id2

L}, q, {},⊥ID〉, 〈{id1
L, id2

L}, q, {}, id2
L〉〉[ query |end ]

At the next step, the selection function does not find further c-atoms to be
evaluated, so after a stop transition the gatherer returns to a new equilibrium
state:

〈〈{id1
L, id2

L}, q, {},⊥ID〉, 〈{id1
L, id2

L}, q, {}, id2
L〉〉[ query |end ] −→S

〈{id1
L, id2

L}, q, {}, id2
L〉 [ query |end ]

3 Agents as Sources

Based on the formal framework for modelling sources defined in the previous sec-
tion, here a calculus for the behaviour of agents is developed. Since the starting
point is to interpret an agent as a source, it may seem natural to straightfor-
wardly exploit the model for sources, and represent the agents’ behaviour in
terms of move, conditioning, evaluation, and stop transitions. However, the need
for higher levels of abstraction calls for models where the details of the inter-
nal machinery handling interactions are hidden, and where the focus is put on
modelling the effects of the agent’s interactions on its observable core.
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3.1 The Calculus

According to the above considerations, the calculus for agents as sources is built
based on the idea of abstracting away from the trajectory details making a
source move from an equilibrium state to another. In this way, the observable
behaviour of an agent can be characterised only in terms of how conditionings
and spontaneous moves affect the dynamics of its equilibrium state and its man-
ifestations, hiding the resulting sequences of motion states. To this end, a new
labelled transition system over agents (modelled as sources) is defined, wrapping
the one presented in Subsection 2.2. This is made by two kinds of transition:

−→P ∈ (P × C) × M × (P × C)
−→R ∈ (P × C) × C × M × (P × C)

whose operational semantics is defined by the rules:

p0 [ c0 ] −→M 〈p0, p
′
0〉[ c0 ]

〈pi, p
′
i〉[ ci ] mi−−→E 〈pi+1, p

′
i+1〉[ ci+1 ] 0 ≤ i < n

〈pn, p′n〉[ cn ] −→S p [ c ]

p0 [ c0 ]
m0|...|mn−1−−−−−−−−→P p [ c ]

(AGENT-P)

p0 [ c0 ] c−→C 〈p0, p
′
0〉[ c′0 ]

〈pi, p
′
i〉[ c′i ] mi−−→E 〈pi+1, p

′
i+1〉[ c′i+1 ] 0 ≤ i < n

〈pn, p′n〉[ c′n ] −→S p [ c ]

p0 [ c0 ]
c � m0|...|mn−1−−−−−−−−−→R p [ c ]

(AGENT-R)

The former transition (−→P ) is called proactive (agent) transition, and models
the situation where the agent proactively produces a manifestation and changes
its core. In particular, a proactive transition

p0 [ c0 ]
m0|...|mn−1−−−−−−−−→P p [ c ]

moves an agent from the equilibrium state p0 [ c0 ] to the the equilibrium state
p [ c ], and produces the multiset of manifestations m0|...|mn−1. According to
the rule [AGENT-P], starting from an equilibrium state where a spontaneous
move on the agent’s place occurs, this transition moves the agent to the first
equilibrium state reached after n motion states 〈pi, p

′
i〉[ ci ] (0 ≤ i < n). This

transition, then, is labelled by the multiset of all the messages sent out by the
agent during the corresponding trajectory.

The latter transition (−→R) is called reactive (agent) transition, and models
the agent receiving a conditioning from its environment and reactively producing
manifestations. A reactive transition

p0 [ c0 ]
c � m0|...|mn−1−−−−−−−−−→R p [ c ]
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is triggered by a configuration conditioning c, and makes an agent in the equilib-
rium state p0 [ c0 ] move towards a new equilibrium state p [ c ], while producing
the multiset of manifestations m0|...|mn−1. According to the rule [AGENT-R],
starting from an equilibrium state the agent receives a c-atom which is treated as
a conditioning. Correspondingly, the reactive transition makes the agent move
to the first equilibrium state reached after a number of motion states, and is
labelled by both the conditioning c-atom that triggers the agent’s motion, and
the multiset of all the messages sent out by the agent during the corresponding
trajectory.

In all, this transition system models an agent as a situated source, interacting
with its environment in two ways: by proactively sending a multiset of messages
to it – through the transition p0 [ c0 ] m−→P p [ c ] –, or by receiving a c-atom from
it and reactively replying with a multiset of messages – through the transition
p0 [ c0 ] c � m−−−→R p [ c ].

3.2 An Example

Based on the example application introduced in Subsection 2.3, here some ex-
amples of transitions are described that emphasise the flavour of our calculus for
agents as sources.

First of all, consider the case of a monitor agent. A monitor is modelled as a
situated source performing a number of proactive transitions – each producing
a request for knowledge to be gathered from a given list of sites – as well as a
number of reactive transitions – each receiving knowledge gathered from one site
list. For instance, the following transitions represent the dynamics of a monitor
agent asking agents id1

G and id2
G to gather information q from site lists ID1 and

ID2, respectively, then receiving a reply from id2
G:

〈{},⊥Q, f,⊥ID〉 [mon ]
id1

G⇑gath(ID1,q)−−−−−−−−−−−→P

〈{},⊥Q, f, id1
G〉 [mon ]

id2
G⇑gath(ID2,q)−−−−−−−−−−−→P

〈{},⊥Q, f, id2
G〉 [mon ]

res(f2,id2
G) � ε−−−−−−−−−→R

〈{},⊥Q, f ⊗ f2, id
2
G〉 [mon ]

On the other hand, the behaviour of a gatherer agent can be characterised as
follows: (i) the agent receives a gathering request specifying a list of sites (reactive
transition) where to look for information q, then, while there is still at least one
site to query, (ii) autonomously chooses the next site to explore, ask it about
q (proactive transition), and (iii) get the required information back (reactive
transition). When all the sites in the initial list have been explored, the last
reactive transition also packs all the information gathered about q and emits
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it as a single knowledge chunk. For instance, the transitions below represent
the case in which gatherer idG gets a request for the sites id1

L and id2
L, and

deliberates to roam first id2
L and then id1

L.

〈{},⊥Q, {},⊥ID〉 [ query |end ]
gath({id1

L,id2
L},q) � ε−−−−−−−−−−−−−→R

〈{id1
L, id2

L}, q, {},⊥ID〉 [ query |end ]
id2

L⇑ask(q,idG)−−−−−−−−−−→P

〈{id1
L, id2

L}, q, {}, id2
L〉 [ query |end ]

info(id2
L,d2) � ε−−−−−−−−−→R

〈{id1
L}, q, {id2

L �→d2}, id2
L〉 [ query |end ]

id1
L⇑ask(q,idG)−−−−−−−−−−→P

〈{id1
L}, q, {id2

L �→d2}, id1
L〉 [ query |end ]

info(id1
L,d1) � idM⇑res({id2

L �→d2,id1
L �→d1},idG)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→R

〈{},⊥Q, {},⊥ID〉 [ query |end ]

Finally, the local agent is modelled as a simple reactive source. The following
transitions represent a local agent id1

L replying to a couple of queries, then
updating its own knowledge according to some event not to be interpreted in
terms of observation – modelled here accordingly as a spontaneous move 〈f, f ′〉.

f [ ε ]
ask(q1,id1

G) � id1
G⇑info(id1

L,f(q1))−−−−−−−−−−−−−−−−−−−−−→R

f [ ε ]
ask(q2,id2

G) � id2
G⇑info(id1

L,f(q2))−−−−−−−−−−−−−−−−−−−−−→R

f [ ε ] ε−→P f ′ [ ε ]

In all, this example should help making clear how this calculus makes it possible
to concentrate on agent’s interactions with the environment where it is situated,
as well as on the corresponding effects on the agent’s observable core.

4 MAS as Source’s Composition

Agents are situated entities, living and (inter)acting within a MAS as individuals
within a society. They manifest a social attitude by making their knowledge,
capabilities, and services available to other agents, which may require them in
order to achieve their own goals.

In the following, a calculus for MAS is introduced based on the one described
in previous section. Here, a MAS is seen as a composition of individual agents
interpreted as sources, and interactions among agents and between the agents
and the environment are modelled as source’s manifestations and coordinator’s
conditionings.
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4.1 The Calculus

In our framework, a MAS is denoted by the following syntax:

Agents: A ::= id : p [ c ]

Messages: M ::= id ⇑ c

MAS: Γ ::= εM an empty MAS
| a an agent of the MAS
| m a multiset of messages pending in a MAS
| γ ⊕ γ a composition of MAS

An agent id : p [ c ] is represented as a source in the equilibrium state p [ c ], and
is characterised by a unique name id ranging over the set of agent names ID .
As shown in the previous section, agents’ evolution is amenable to a representa-
tion as sources moving through sequences of equilibrium states. So, growing the
calculus for MAS on top of this model basically means viewing a MAS as a com-
position of sources in equilibrium state. This makes it possible to concentrate
on agents’ interactions, abstracting away from details about their trajectories.

Agents interact with each other and with the environment by exchanging
messages of the kind id ⇑ c, where id is the name of the destination agent, and
the content of the message is c-atom c. On the one hand, the messages emitted
by an agent (represented as a source) are to be interpreted as manifestations
of its observable behaviour. On the other hand, they are sent to other (source)
agents and contain a c-atom, so they are also suitable for an interpretation as
conditionings. As a result, although each agent is formally specified as a source,
it might also be interpreted as a coordinator or an observer as well, depending
on whether it is sending or receiving a message. In particular, when a message
is emitted, the sender agent idS is viewed as a source producing a manifestation
message, while the destination agent idR can be seen as an observer for the
source idS. At the time the source agent idR receives the message, instead, the
sender idS can be seen as a coordinator for idR.

A MAS γ can be either an empty MAS, a multiset of messages, or a com-
position of two MAS. The intent of this calculus is to represent a MAS as an
unordered composition of agents interacting by the exchange of asynchronous
messages, and evolving through the interleaved evolution of each agent. This
kind of representation is obtained by borrowing typical techniques introduced in
the field of process algebras [Bergstra et al., 2001] as follows.

The following properties are supposed to hold for MAS7:

γ1 ⊕ γ2 ≡ γ2 ⊕ γ1 εM ⊕ γ ≡ γ (γ1 ⊕ γ2) ⊕ γ3 ≡ γ1 ⊕ (γ2 ⊕ γ3)
7 These rules, which assume (γ, ⊕ , ε) to be an Abelian monoid, are commonly used in

the definition of process algebras, such as in the case of π-calculus [Parrow, 2001a].
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In particular, two MAS are considered the same when they are similar up to
the congruence relation ≡ defined as the least relation satisfying the three above
rules8. As a result, ⊕ now can be seen as a n-ary commutative operator com-
posing agents and (multiset of) messages in an unordered way. The reason for
having messages and agents at the same level – namely, floating in the same
soup9 –, comes from the typical techniques used to model asynchronous mes-
sages [Boudol, 1992]. When a process P intends to send an asynchronous message
M and then behave like P ′, it is seen as the composition of P ′ and the process
emitting the message and having no continuation, the latter process being sim-
ply denoted by the message M itself. The actual consumption of M by a process
Q can actually take place later than the processing of P ′, thus modelling asyn-
chrony. So, according to this kind of modelling, our calculus interprets a MAS
as composed by multisets of asynchronous messages and agents10.

The interleaved semantics of our model – where the evolution of a system
is modelled in terms of the interleaved evolution of their sub-parts11 – can be
naturally defined by means of a labelled transition system over MAS, composed
by the following transitions:

−→π ∈ Γ × Γ

−→ρ ∈ Γ × Γ

−→ω ∈ Γ × M × Γ

−→ι ∈ Γ × M × Γ

whose semantics is specified by the operational rules:

p0 [ c0 ] m−→P p [ c ]

γ ⊕ id : p0 [ c0 ] −→π γ ⊕ id : p [ c ] ⊕ m
(MAS-π)

p0 [ c0 ] c � m−−−→R p [ c ]

γ ⊕ id : p0 [ c0 ] ⊕ (id ⇑ c)|m0 −→ρ γ ⊕ id : p [ c ] ⊕ m ⊕ m0

(MAS-ρ)

8 Including void multiset εM in the syntax for MAS, along with the composition oper-
ator ⊕, makes our model for MAS a process algebra [Bergstra et al., 2001]. Although
in this paper this fundamental aspect is not further considered, in general it allows
us to exploit a rich framework of existing tools for verifying properties on system’s
specifications [J.F.Groote, 2001], such as the ones concerning process equivalence
[Glabbeek, 2001].

9 The figurative idea of a concurrent system as a soup of floating processes derives
from the chemical abstract machine model [Berry and Boudol, 1992].

10 Our syntax deals with multiset of messages – and not just messages – simply because
agents generally emit multiset of messages in an atomic way. As a result, it is also
convenient to suppose a void multiset of messages be equal to an empty MAS, that
is ε ≡ εM , or analogously adding the rule ε ⊕ γ ≡ γ. In fact, this hypothesis makes
it possible to completely loose track of a multiset of messages from the specification
of a MAS after all of them have been consumed.

11 For a discussion on the semantics and formal differences between interleaving process
semantics and non-interleaving ones, see e.g. [Parrow, 2001b].

443Viroli M., Omicini A.: Modelling Agents as Observable Sources



γ ⊕ m
m−→ω γ (MAS-ω)

γ
m−→ι γ ⊕ m (MAS-ι)

It is worth noting that the former two transitions propagate reactivity and proac-
tiveness from the individual agent level to the MAS level, modelling a MAS where
one agent performs a −→P and −→R transition, respectively. In particular, tran-
sition −→π is called MAS proactive transition, and models an agent in the MAS
proactively sending a multiset of messages. For instance, transition

γ ⊕ a0 −→π γ ⊕ a ⊕ m

models agent a0 in MAS γ proactively sending the messages m and becoming
a, according to the semantics of rule [MAS-π]. Transition −→ρ is called MAS
reactive transition, and models an agent in the MAS consuming one message
and reactively sending a multiset of messages. For instance, transition

γ ⊕ a0 ⊕ (id ⇑ c)|m0 −→ρ γ ⊕ a ⊕ m ⊕ m0

models agent a0 – with name id within MAS γ – consuming the message id ⇑ c

(by interpreting the content of the message c as a conditioning), producing the
messages m and becoming a, according to the semantics of the rule [MAS-ρ].

The transitions −→ω and −→ι, called MAS output transition and MAS in-
put transition, allow messages to be respectively dropped and put in the MAS.
Since transitions with non-void labels are typical meant to represent interactions
with the external environment from which the model abstracts away, −→ω and
−→ι can be exploited in order to represent the MAS’ environment respectively
consuming messages in the MAS and sending messages to the MAS. As obvious,
which agents should be directly modelled as part of the MAS, and which instead
are to be considered as part of the MAS’ environment is an arbitrary choice.

4.2 An Example

As an application example for this calculus, consider an agent-based system
composed by one monitor agent idM , one gatherer agent idG, and n local agents
idi

L (1 ≤ i ≤ n). As the initial state, consider the following MAS:

id1
L : f1 [ ε ] ⊕ id2

L : f2 [ ε ] ⊕
idM : 〈{},⊥Q, {},⊥ID〉 [mon ] ⊕
idG : 〈{},⊥Q, {},⊥ID〉 [ query |end ]

which is composed of the monitor, the gatherer and the local agents id1
L and id2

L.
Local agents have initially a void configuration, and knowledge f1 and f2. The
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id1
L : f1 [ ε ] ⊕ id2

L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {},⊥ID〉 [mon ] ⊕
idG : 〈{},⊥Q, {},⊥ID〉 [ query |end ]
−→π (1)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {}, idG〉 [mon ] ⊕

idG : 〈{},⊥Q, {},⊥ID〉 [ query |end ] ⊕ idG ⇑ gath({id3
L, id2

L}, q)
−→ρ (2)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {}, idG〉 [mon ] ⊕

idG : 〈{id3
L, id2

L}, q, {},⊥ID〉 [ query |end ]
−→π (3)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {}, idG〉 [mon ] ⊕

idG : 〈{id3
L, id2

L}, q, {}, id2
L〉 [ query |end ] ⊕ id2

L ⇑ ask (q, idG)
−→ρ (4)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {}, idG〉 [mon ] ⊕

idG : 〈{id3
L, id2

L}, q, {}, id2
L〉 [ query |end ] ⊕ idG ⇑ info(id2

L, f2(q))
−→ρ (5)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {}, idG〉 [mon ] ⊕

idG : 〈{id3
L, id2

L}, q, {id2
L �→ f2(q)}, id2

L〉 [ query |end ]
−→π (6)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {}, idG〉 [mon ] ⊕

idG : 〈{id3
L, id2

L}, q, {id2
L �→ f2(q)}, id3

L〉 [ query |end ] ⊕
id3

L ⇑ ask (q, idG)
id3

L⇑ask(q,idG)−−−−−−−−−−→ω (7)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {}, idG〉 [mon ] ⊕

idG : 〈{id3
L, id2

L}, q, {id2
L �→ f2(q)}, id3

L〉 [ query |end ]
idG⇑info(id3

L,f3(q))−−−−−−−−−−−−−→ι (8)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {}, idG〉 [mon ] ⊕

idG : 〈{id3
L, id2

L}, q, {id2
L �→ f2(q)}, id3

L〉 [ query |end ] ⊕
idG ⇑ info(id3

L, f3(q))
−→ρ (9)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idM : 〈{},⊥Q, {}, idG〉 [mon ] ⊕

idG : 〈{id3
L, id2

L}, q, {id2
L �→ f2(q), id3

L �→ f3(q)}, id3
L〉 [ query |end ] ⊕

idM ⇑ res({id2
L �→ f2(q), id3

L �→ f3(q)}, idG)
−→ρ (10)
id1

L : f1 [ ε ] ⊕ id2
L : f2 [ ε ] ⊕ idG : 〈{},⊥Q, {},⊥ID〉 [ query|end ] ⊕

idM : 〈{},⊥Q, {id2
L �→ f2(q), id3

L �→ f3(q)}, idG〉 [mon ]

Figure 4: A case of MAS evolution
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monitor agent has neither knowledge nor gathering requests pending, whereas
the gatherer is waiting for a gathering request: the initial place for both agents
is then modelled by the tuple 〈{},⊥Q, {},⊥ID〉.

Figure 4 shows an example of evolution of this MAS, where the monitor
asks and receives from the gatherer information on the local agents id2

L and id3
L,

the latter being an agent outside the MAS, i.e., living in the MAS’ environ-
ment. As a first step (1), the monitor autonomously decides to get information q

from sources id2
L and id3

L through the gatherer agent, so it proactively produces
the request message idG ⇑ gath({id3

L, id2
L}, q) . Consequently (2), the gatherer

consumes the request, updates its place to 〈{id3
L, id2

L}, q, {},⊥ID〉, and starts de-
liberating which site it should visit first. At a given time (3), it chooses id2

L and
produces a request message: this is consumed by the local agent (4), which reacts
with a message idG ⇑ info(id2

L, f2(q)) , providing the result f2(q). Then (5), the
gatherer receives the reply and correspondingly updates its current knowledge
to {id2

L �→ f2(q)}. Later (6), the gatherer decides it is time to explore id3
L and

to produce a request message. Since the source id3
L is not modelled as an agent

of the MAS, the consumption of that message is modelled as the environment
getting the message through an input transition (7), and the reply is modelled as
the environment producing the response message through an output transition
(8). The gatherer consumes that message (9) and since all the sites have been
queried, it returns to the monitor the whole result of its gathering through the
message idM ⇑ res({id2

L �→ f2(q), id3
L �→ f3(q)}, idG). Finally (10), the monitor

receives and processes the message, updating its knowledge.

5 Interpretation

Growing a system’s model on top of a precisely-defined ontology enjoys an in-
teresting property: through formalisation, the system’s sub-parts, evolution, be-
haviour, and properties are straightforwardly mapped onto the ontology, thus
providing for an original viewpoint over the system. In this paper, agent-based
systems are modelled using an ontology for observation, so that aspects such as
agent’s behaviour, interactions, reactivity, proactiveness, autonomy, social abil-
ity, as well as MAS’ evolution, MAS’ environment, and the like, are interpreted in
terms of the ontology’s concepts, such as source’s manifestations, conditionings,
spontaneous moves, trajectory, and so on.

As a first step, the issues related to individual agents are taken into account.
Among the several definitions of the agent abstraction, here the one given in
[Wooldridge, 2000] is considered, where the (rational) agent is seen as an en-
tity situated in an environment – which the agent senses and acts upon –, and
featuring reactivity, proactiveness, autonomy and social ability. Since agents are
modelled as sources, the agent’s environment is correspondingly modelled as the
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collection of all the entities that can condition it (coordinators) or can observe its
manifestations (observers). As a result, acting is modelled as the agent manifest-
ing to the observing environment, while sensing is modelled as the environment
conditioning the agent’s observable behaviour.

An agent’s reactivity is modelled as its ability of producing manifestations in
response to conditionings. A conditioning models the intention of a coordinator
to interact with an agent in order to affect its observable behaviour. In fact, when
an agent receives a conditioning from its environment that changes its configura-
tion, it reacts by moving to a new equilibrium state and by producing observable
manifestations according to its (new) configuration. An agent’s proactiveness is
modelled as its ability of producing manifestations due to spontaneous moves. A
spontaneous move models some change to the agent’s observation core – by def-
inition, affecting the agent’s observable behaviour – depending on some internal
events, independently of any interaction with the agent’s environment. Proac-
tiveness then results from the observable manifestations produced following a
spontaneous move according to the agent’s configuration.

Our model accounts for agent’s autonomy as well – until autonomy, roughly
speaking, is the agent’s capability to drive its own control, and not to be driven
by others. On the one hand, details related to the inner (autonomous) agent’s
deliberation process, driving its control, are typically abstracted away – an agent
remains in equilibrium until its autonomous computation does affect its observ-
able behaviour, captured by the concept of agent’s core. When the effects of the
deliberation process become perceivable by the environment, these are modelled
as spontaneous moves of the place, producing an agent’s motion and possibly
causing some manifestations. On the other hand, the ability of mediating the
environment’s requests is a crucial aspect related to the agent’s autonomy: con-
figuration works as a control layer that prevents such requests to directly influ-
ence the agent’s inner status and dynamics. In fact, the environment’s requests
are expressed as conditionings inserted in the agent’s configuration, affecting the
agent’s internal behaviour only as far as their evaluation produces a change on
the place. In turn, changes to the places actually affect the agent’s dynamics and
observable behaviour depending again on the agent’s configuration.

Then, in order to capture the idea of agent’s social ability, the framework
is extended from individual agents to MAS, so that a MAS is viewed as the
composition of agents modelled as sources. A MAS’ evolution is based on the
agents interacting with each other through the exchange of asynchronous mes-
sages – each specifying a c-atom and a target agent – and on the interactions
with the MAS’ environment, modelled as a black-box entity able to put and
drop messages from the MAS. An agent interacts with another by conditioning
it, and possibly receiving as a reply a manifestation of its observable behaviour.
As a result, it seems natural to interpret the social ability of an agent as its
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disposition to let other agents to perceive its observable behaviour, meant to
represent its beliefs, capabilities, competence – roughly, in one word, the knowl-
edge an agent encapsulates as a source, representing its own viewpoint on the
world. Correspondingly, the inner evolution of a MAS – taking place through
the exchange of messages between its agents – is naturally interpreted as the
continuous exchange of information amongst agents. This information exchange
can be seen as each agent’s knowledge flowing through the MAS agents.

Nevertheless, our model does not just represent a MAS as a closed system
evolving in isolation. Instead, a key aspect concerns the MAS’ ability to in-
teract with its environment. On the one hand, the environment can contribute
to the flowing of knowledge within the MAS by inserting new messages, so as
to contribute to the global MAS’ knowledge – and, vice versa, information is
also allowed to flow outside the MAS into the environment. On the other hand,
the observation pattern for the interaction between the MAS and its environ-
ment also enables an interpretation where the MAS is either seen as a whole
source, that the environment can condition so as to affect its global observable
behaviour, or as a single observer for the environment’s manifestations.

6 Related Works and Conclusions

The goal of this paper is to provide a framework – both conceptual and for-
mal – for reasoning about the observation issue in agent-based systems, for
representing agent’s and MAS’ behaviour, and for interpreting them in terms
of aspects related to observation. This work carries on the research started in
[Viroli et al., 2001], where the observation issue is introduced in the context of
computer systems in general. There, an ontology and a formal framework are
developed so as to compare the expressiveness of software components coming
from different areas – such as object orientation, DBMS and coordination mod-
els [Omicini et al., 2001] – from the viewpoint of observation. In this paper –
which is an extension to [Viroli and Omicini, 2001] – the ontology is applied to
agent-based systems by interpreting agents as sources, and the formal framework
is developed so as to better fit the typical needs of abstraction of agent-based
systems. A simple application example of our framework is provided, which is
meant to ease the understanding of formulae’s syntax and semantics, and which
was designed to be as small and simple as possible, while being complete enough
to show and emphasise all the relevant aspects of the framework. On the other
hand, in order to verify the applicability of the framework, more complex exam-
ples are required. Even though this issue goes beyond the scope of this paper, it
is in fact addressed by many of our current research efforts.

For instance, in [Viroli and Omicini, 2002a] the applicability of the frame-
work to the specification of an agent’s observable behaviour is studied, consid-
ering a number of interaction patterns that are very common in agent-based
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systems. Each of them is mapped in the framework, showing the power of the
model as a tool for specifying complex interactive behaviours in agent-based
systems. As a further application, in [Viroli and Omicini, 2002b] the framework
is exploited to provide a semantics to agent communication languages. In par-
ticular, the framework is shown to be suitable for describing agents’ interactive
behaviour in a rather architecture-independent way, which is a property quite
relevant for organisations aiming at the definition of standardised platforms for
agents, such as FIPA [FIPA, 2000]. Finally, in [Viroli and Omicini, 2002c] the
framework is also put to test as a formal framework for coordination media
[Omicini et al., 2001] – that is, for those software abstractions meant to rule
and govern interaction in distributed systems. The flavours of the model are de-
scribed focussing on both how it captures the media’s details of interest with the
desired level of abstraction, and how it can be used to explicitly model complex
behaviours of coordination media [Omicini and Denti, 2001].

The mathematical framework supporting the formalisation developed
here is based on techniques introduced in the field of process algebras
[Bergstra et al., 2001], where they are exploited as a tool to describe the be-
haviour of interactive systems and to provide a foundation for issues such as
communication and concurrency. Since the observation model interprets an agent
as an interactive system, and a MAS as a concurrent system evolving through
the interactions of its sub-parts, process algebras provide for a suitable concep-
tual and formal basis. Nevertheless, modelling an interactive system through the
classical process algebra approach has rather different goals from the observation
approach presented here.

From an engineering perspective, one of the main aims of the research field
on process algebras is to define equivalences between processes – that is, to
which extent interactive software components are to be considered equivalent
with respect to a given semantics [Glabbeek, 2001]. On the one hand, the study
of these properties is fundamental in order to ensure that a system keeps working
in a correct way after the substitution of a sub-components of its. On the other
hand, process equivalence can also be exploited to verify whether the implemen-
tation of a given component satisfies its formal specification. As discussed in
Subsection 1.1, this general framework follows the so-called black-box modelling
approach, where a software component’s behaviour is modelled by completely
abstracting away from aspects related to its internal machinery. Instead, the
observation framework presented here follows a grey-box modelling approach,
characterising the so-called observable behaviour of a software component in
terms of how its interactions with the environment affect its status and, con-
versely, how such a status is made perceivable to and can be affected from the
outside.

Nevertheless, our model of the interactive behaviour of an agent within a
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MAS is suitable for a comparison with existing process algebra approaches.
Considering the framework of name-passing and value-passing calculi – such
as CCS [Milner, 1989], π-calculus [Milner, 1999], and asynchronous π-calculus
[Boudol, 1992] – our agent’s model can be thought of as a process evolving by
performing actions. On the one hand, an agent can asynchronously produce mes-
sages for other processes, similarly to name sending in asynchronous π-calculus.
Correspondingly, the formalisation of asynchrony provided here borrows from
asynchronous π-calculus – that is, it relies on the concept of pending messages
floating in the same soup of interacting processes [Berry and Boudol, 1992]. On
the other hand, an agent can perform a more complex action by atomically re-
ceiving an asynchronous message and sending zero, one, or more asynchronous
messages to other agents – which can be commonly referred to as a reactive
behaviour. Finally, despite in our model interactions resemble asynchronous π-
calculus, their content is a generic value analogously to value-passing calculi such
as CCS.

Our approach is also related to others defining architectures for software
component’s behaviour, whose most notable example is the Actors model
[Agha, 1986, Hewitt, 1977]. An actor is defined as a purely reactive software en-
tity, which receives message and correspondingly changes its behaviour and send
other messages. Conversely, as in most agent models the observation framework
deals with agent proactiveness [Wooldridge, 2000], that is, with agents featuring
an inner control responsible for changing its status and sending messages to the
environment.

Another approach to modelling an agent communications in terms of
labelled transition systems has been developed in [van Eijk et al., 2000b,
van Eijk et al., 2000a]. In [van Eijk et al., 2000b], for instance, a programming
language is defined where agents are characterised by their mental state – includ-
ing belief states and a goal state – and where agent communications follow the
rendezvous schema, a version of the classic remote procedure call (RPC) where
the target agent processes requests using an interleaved pattern. Then, the lan-
guage is defined through an operational semantics, describing how agents evolve
by internal computations (such as believes update) and through communica-
tions. There, however, the focus is put on modelling an agent’s mental state and
its dynamics, while the goal of the observation framework is more to emphasise
the agent’s collaborative aspects – namely, its interactive behaviour. Another
relevant difference is related to the technical treatment: instead of describing
agents’ aspects through a programming language, here a generic architecture
is developed – the model of an agent as an observable source – which can be
specialised to different behaviours by changing the source’s specification.

Further work along this research direction will be devoted to the study of
the impact of this approach on the engineering of MAS – on all the places
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of the engineering process, from specification and design, to implementation,
verification, and monitoring.

Acknowledgements

The authors would like to thanks MIUR (the Italian “Ministero dell’Istruzione,
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