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Abstract: A metric defined by Fine induces a topology on the unit interval which
is strictly stronger than the ordinary Euclidean topology and which has some inter-
esting applications in Walsh analysis. We investigate computability properties of a
corresponding Fine representation of the real numbers and we construct a structure
which characterizes this representation. Moreover, we introduce a general class of Fine
computable functions and we compare this class with the class of locally uniformly Fine
computable functions defined by Mori. Both classes of functions include all ordinary
computable functions and, additionally, some important functions which are discontin-
uous with respect to the usual Euclidean metric. Finally, we prove that the integration
operator on the space of Fine continuous functions is lower semi-computable.
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1 Introduction

The Fine metric is the metric on the unit interval [0, 1] which is induced by the
Cantor metric on {0, 1}ω via the binary representation of the reals2. To be more
precise, let us define the binary representation ρ2 :⊆ {0, 1}ω → [0, 1] by

ρ2(p) :=
∞∑

i=0

p(i)
2i

.

Here, the inclusion symbol indicates that ρ2 is partial (only defined for those
p such that the infinite sum is actually a value in [0, 1]). To make ρ2 injective,
we can restrict the representing sequences to those, which do contain infinitely
many 0’s. In this way, we obtain a restriction ρF :⊆ {0, 1}ω → [0, 1], defined by
ρF (p) := ρ2(p) for all p such that 1ω = 111... is not a suffix of p. In all other
cases ρF (p) is undefined. We will call this mapping the Fine representation of
[0, 1]. Clearly, ρF is injective and surjective and hence it admits an inverse Ψ :=
ρ−1

F : [0, 1] → {0, 1}ω. Now, using the Cantor metric dC : {0, 1}ω ×{0, 1}ω → R,
defined by

dC(p, q) :=
∞∑

i=0

|p(i) − q(i)|
2i

,

we obtain the Fine metric dF : [0, 1]× [0, 1] → R by dF (x, y) := dC(Ψ(x), Ψ(y)).
The Fine topology τF induced by the Fine metric on [0, 1] can be generated by
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the intervals [a, b) with dyadic rationals a, b ∈ Q2 := {n/2k : n, k ∈ N, n ≤ 2k},
which form a countable base of this topology. Besides the ordinary open intervals
(x, y), x, y ∈ R also the intervals [x, y) with dyadic rationals x ∈ Q2, and y ∈ R
are open with respect to the Fine topology. Let us denote by τE the Euclidean
topology on R, induced by the Euclidean metric dE : R×R → R with dE(x, y) :=
|x − y| and let us denote by τ ′

E the subspace topology of τE on [0, 1]. Then

dE(ρF (p), ρF (q)) =

∣∣∣∣∣
∞∑

i=0

p(i) − q(i)
2i

∣∣∣∣∣ ≤
∞∑

i=0

|p(i) − q(i)|
2i

= dF (ρF (p), ρF (q)).

Altogether we obtain τ ′
E ⊆/ τF . In the following we will call (τF , τE)–continuous

functions f : [0, 1] → R simply Fine continuous.
In a sequence of two papers [Mori, Mori 2000] Mori studied an approach

to computability with respect to the Fine metric. His investigation is based
on the sequential approach to computable analysis, which has been initiated
by Pour-El and Richards [Pour-El and Richards 1989] and which has been fur-
ther developed by Washihara, Yasugi, Mori and Tsujii, cf. [Washihara 1995,
Yasugi, Mori and Tsujii 1999]. One drawback of the sequential approach to com-
putable analysis is that it requires some technical tools to handle computability
properties of functions which are not uniformly continuous. This problem es-
pecially appears with respect to the Fine metric since it is easy to see that
[0, 1] is not complete and hence not compact with respect to the Fine metric
dF . Thus, Fine continuous functions f : [0, 1] → R are not uniformly (dF , dE)–
continuous in general. The purpose of these brief notes is to discuss the notion
of Fine computability from the point of view of the representation based ap-
proach to computable analysis, which has been developed by Weihrauch and
others [Weihrauch 2000] under the name “Type-2 Theory of Effectivity”.

We will start to recall some basic facts and notions of the representation based
approach to computable analysis; for details see [Weihrauch 2000]. By Σω we
denote the set of infinite sequences over some finite alphabet Σ, in the following
we typically assume Σ := {0, 1}. A function F :⊆ Σω → Σω is called computable,
if there exists a Turing machine M which computes infinitely long, and which
in the long run transforms each input sequence p into the corresponding output
sequence F (p) (written on a one-way output tape of the machine). Here the
inclusion symbol indicates that F might be partial. This notion of computability
can be transferred to other spaces with the help of representations. In general,
a representation of a set M is a surjective partial mapping δ :⊆ Σω → M . If
δ and δ′ are representations of sets M and M ′, respectively, then a function
f :⊆ M → M ′ is called (δ, δ′)–computable, if there exists a computable function
F :⊆ Σω → Σω such that

δ′F (p) = fδ(p)

for all p ∈ dom(fδ). Correspondingly, f is called (δ, δ′)–continuous, if there exists
a continuous F which fulfills the same equation as stated above. Here, we use the
Cantor topology on Σω. If we have two representations δ, δ′ of the same set M ,
then we call δ reducible to δ′, if the identity id : M → M is (δ, δ′)–computable
(in other words, if there exists a computable function F :⊆ Σω → Σω such that
δ(p) = δ′F (p) for all p ∈ dom(δ)). We also write δ ≤ δ′ to indicate that δ is
reducible to δ′. If δ ≤ δ′ and δ′ ≤ δ, then we write δ ≡ δ′. If δ ≤ δ′ and δ′ �≤ δ,
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then we write δ < δ′. Correspondingly, δ is called topologically reducible to δ′, if
the identity is (δ, δ′)–continuous. In this case we write δ ≤t δ′.

A certain class of representations has specifically nice topological properties: a
representation δ of a topological space M is called admissible, if it is continuous
and maximal among all continuous representations of M , i.e. if δ′ ≤t δ holds
for all continuous representations δ′ of M . If M and M ′ are T0–spaces with
countable bases and topologies τ and τ ′ and admissible representations δ and δ′,
respectively, then a function f :⊆ M → M ′ is (δ, δ′)–continuous, if and only if it
is (τ, τ ′)–continuous in the ordinary sense. Thus, for admissible representations
the notion of relative continuity and the notion of ordinary continuity coincide.
This is called the “Main Theorem” of the representation based approach to
computable analysis (cf. [Weihrauch 2000]). If δ is admissible with respect to a
T0–topology τ with countable base, then τ is the final topology of δ.

Finally, we mention that a sequence (xn)n∈N in M is called δ–computable, if
it is (δN, δ)–computable as a function N → M , where δN denotes some standard
representation of the natural numbers N := {0, 1, 2, ...} (e.g. δN(0n1ω) := n). A
point x ∈ M is called δ–computable, if the constant sequence with value x is
computable.

We close this section with a short survey on the organization of this paper.
In the next section we exhibit some basic properties of the Fine representation
and in Section 3 we will characterize this representation in a structural way.
In Section 4 we characterize the notion of Fine continuity and in Section 5 we
study different notions of Fine computability for functions. We close the paper
in Section 6 with a discussion of computability properties of the integration
operator on the space of Fine continuous functions.

2 The Fine representation

The purpose of this section is to state some elementary facts about the Fine
representation. Especially, we will locate it in the lattice of real number rep-
resentations. We recall that the Fine representation ρF :⊆ Σω → [0, 1] of the
unit interval [0, 1], roughly speaking, represents real numbers by their binary
expansion with digits 0, 1 with the restriction that binary rationals Q2 are only
represented by sequences p ∈ Σω which contain infinitely many 0’s. Since the
definition guarantees that ρF is injective, one can deduce that ρF is an admissi-
ble representation of [0, 1] with respect to the Fine topology τF (cf. Proposition
14 in [Brattka and Hertling]).

Since the Fine representation is a restriction of the binary representation ρ2,
it is clear that ρF ≤ ρ2. There are some other related representations of the real
numbers. First of all, let ρE denote some admissible standard representation
of the reals with respect to the Euclidean topology τE (cf. [Weihrauch 2000]).
Moreover, there are the representations via characteristic functions of left and
right cuts, ρL and ρR, respectively, and the continued fraction representation ρcf

which is known to be the infimum of ρL and ρR with respect to reducibility. Deil
[Deil 1984] has studied representations of real numbers extensively3 and from
his results we obtain the picture given in Figure 1 (we tacitly assume that all
representations are restricted to [0, 1]). Here a line from a representation δ below

3 Deil’s representation δ′′′′(2) is equivalent to ρF on [0, 1] and he proved ρR ≤ ρF .
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to some representation δ′ above means δ < δ′. Besides transitivity the diagram
is complete (i.e. if there is no line, then the corresponding representations are
incomparable).

ρcf

ρRρL

ρL � ρR

ρ2

ρE

ρF

�
�

�
�

�
� �

�

�
�

Figure 1: Lattice of real number representations.

The final topologies of ρL, ρR and ρcf are generated by the intervals (a, b], [a, b)
and [a, b] with a, b ∈ Q, respectively. The final topology of ρE , ρ2 and ρL � ρR is
the Euclidean topology τ ′

E . Since δ ≤ δ′ implies τ ′ ⊆ τ for the final topologies
τ and τ ′ of δ and δ′, respectively, we immediately obtain ρ2 �≤ ρF �≤ ρR and
ρL � ρR �≤ ρF . Using some non-dyadic rational number one can finally prove
ρF �≤ ρL � ρR. Consequently, ρL � ρR and ρF are incomparable.

What can be said about the class of ρF –computable real numbers? On the
one hand, δ ≤ δ′ implies the corresponding inclusion of the associated classes
of computable points. On the other hand, ρR < ρF < ρ2 and it is known that
the classes of ρR– and ρ2–computable real numbers coincide with the class of
ordinary computable real numbers (i.e. ρE–computable real numbers). Thus, we
directly obtain the following corollary.

Corollary 1. A real number x ∈ [0, 1] is ρF –computable, if and only if it is
computable.

A direct proof would also be straightforward: obviously, an irrational real
number is ρF –computable, if and only if it is ρ2–computable; rational numbers
are all computable anyway. Typically, the notion of a computable sequence is
much more sensitive to the choice of the representation than the notion of a
computable number [Mostowski 1957]. This does also hold in case of the Fine
representation, as the following easy example shows (which also proves ρ2 �≤ ρF ).

Proposition2. Each ρF –computable sequence is ρ2–computable, but there ex-
ists a ρ2–computable sequence which is not ρF –computable.

Proof. The positive part of the statement is a direct consequence of ρF ≤ ρ2.
Let a : N → N be some computable function with non-recursive range(a). The
sequence (xn)n∈N, defined by

xn :=
{

1 − 1
2k if k = min{i : a(i) = n}

1 if n �∈ range(a)

is ρ2–computable but not ρF –computable. �
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3 The Fine structure of the real numbers

In this section we want to characterize the Fine representation by a correspond-
ing structure. Hertling has characterized the standard representation ρE in a
structural way [Hertling 1999] and we have generalized these results to a larger
class of topological structures [Brattka 1999a, Brattka]. Let us start to consider
the space ([0, 1], dF ) as a computable metric space.

Definition 3 (Computable metric space). We will call a triple (X, d, α) a
computable metric space, if

(1) d : X × X → R is a metric on X ,
(2) α : N → X is dense in X ,
(3) N → R, 〈i, j〉 
→ d(α(i), α(j)) is a computable sequence of real numbers.

Here 〈i, j〉 := 1/2(i + j)(i + j + 1) + j is used as a notation for Cantor pairs
and a sequence of real numbers is called computable, if it is ρE–computable. An
example of a computable metric space is (R, dE , νQ), where νQ denotes some
standard numbering of the rational numbers such as νQ〈i, j, k〉 := (i−j)/(k+1).
If we define e : N → [0, 1] by

e〈i, j〉 := e〈i,j〉 :=
2j −· i

2j
,

where −· denotes the arithmetical difference (with the convention that j −· i is
0, if j ≤ i), then it is straightforward to see that ([0, 1], dF , e) is a computable
metric space.

Proposition4. ([0, 1], dF , e) is a computable metric space.

Given a computable metric space (X, d, α), we can define the Cauchy repre-
sentation δα of X by

δα(01n001n101n2 ...) := lim
i→∞

α(ni)

for all ni ∈ N such that d(α(ni), α(nj)) ≤ 2−i for all j > i. In the following
we can assume without loss of generality ρE = δνQ

(cf. [Weihrauch 2000]). It is
easy to see that in case of the computable metric space ([0, 1], dF , e), we obtain
δe ≡ ρF .

Proposition5. δe ≡ ρF .

Proof. “δe ≤ ρF ” We sketch the construction of a Turing machine M which
translates δe into ρF . Given a sequence p = 01n001n101n2... with x := δe(p) ∈
[0, 1] we know that dF (x, eni) ≤ 2−i for all i ∈ N. Let vi be the prefix of
ρ−1

F (eni+1) of length i + 2 and let wi be the prefix of length i + 1. Then

dF (x, ρF (vi0ω)) ≤ dF (x, eni+1) + dF (eni+1 , ρF (vi0ω)) < 2−i−1 + 2−i−1 = 2−i

and thus wi is a prefix of wi+1 for all i ∈ N. Since (ρ−1
F (en))n∈N is a computable

sequence in Σω, the machine M can compute wi in step i and extend the output
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of the previous step to wi. In this way, M produces an output sequence q ∈ Σω

such that ρF (q) = x.
“ρF ≤ δe” We sketch the construction of a Turing machine M which trans-

lates ρF into δe. Given a sequence p ∈ Σω with x := ρF (p) ∈ [0, 1] the machine
M works in steps i = 0, 1, 2, ... as follows: in step i it reads the prefix wi of p
of length i + 2 and computes some value ni ∈ N with eni = ρF (wi0ω) and then
M writes 01ni on the output tape. Altogether, M produces an output sequence
q = 01n001n101n2... with dF (eni , x) < 2−i−1 and thus dF (eni , enj ) ≤ 2−i for all
j > i. Hence δe(q) = x. �

Now we will formulate a theorem which characterizes the Fine represen-
tation with the help of a structure. Therefore, we mention that whenever we
have two representations δ and δ′ of sets X and Y , respectively, then a canon-
ical representation [δ, δ′] of the Cartesian product X × Y and a canonical rep-
resentation δω of the set of sequences XN can be defined [Weihrauch 2000].
For short we write δ2 := [δ, δ]. For the following theorem we will use the
limit operation LimF :⊆ [0, 1]N → [0, 1], (xi)i∈N 
→ limi→∞ xi, defined for all
rapidly converging Cauchy sequences (xi)i∈N with respect to the Fine metric
dF , i.e. dF (xi, xj) ≤ 2−i for all j > i. Moreover, we will use the operation
⊕ :⊆ [0, 1] × [0, 1] → [0, 1], (x, y) 
→ dF (x, y), restricted to the following domain
of continuity: dom(⊕) := {(x, y) : |Ψ(x)(i) − Ψ(y)(i)| = 0 for infinitely many i}.
Theorem 6 (Fine structure). Up to equivalence, ρF is the only representa-
tion such that the following structure becomes effective:(

[0, 1], 0, 1, x⊕ y,
1
2
x, dF , LimF

)

More precisely, if a representation ρ of [0, 1] has the property that

(1) 0, 1 are ρ–computable numbers,
(2) ⊕ :⊆ [0, 1]× [0, 1] → [0, 1] is (ρ2, ρ)–computable,
(3) [0, 1] → [0, 1], x 
→ 1

2x is (ρ, ρ)–computable,
(4) dF : [0, 1]× [0, 1] → R is (ρ2, ρE)–computable,
(5) LimF :⊆ [0, 1]N → [0, 1] is (ρω , ρ)–computable,

then ρ is equivalent to the Fine representation, i.e. ρ ≡ ρF .

Proof. We sketch the proof using techniques from [Brattka 1999a, Brattka].
There we have proved that whenever (X, d, α) is a computable metric space,
then δα is, up to computable equivalence, the only representation such that
(X, α, id, d, Lim) becomes effective. Using Propositions 4 and 5, it follows that
ρF is, up to computable equivalence, the only representation such that the struc-
ture S = ([0, 1], e, id, dF , LimF ) becomes effective. It remains to prove that struc-
ture S is equivalent to the structure S′ = ([0, 1], 0, 1, x⊕ y, 1

2x, dF , LimF ). Since
id(x) = x ⊕ 0, it follows that id is recursive over S′. Moreover, e〈0,0〉 = 1,
e〈i+1,0〉 = 0, e〈2i,j+1〉 = e〈i,j〉 for all i, j ∈ N and

e〈2i+1,j+1〉 =
2j+1 − (2i + 2)

2j+1
+

1
2j+1

= e〈i+1,j〉 ⊕
(

1
2

)j+1
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for all i, j ∈ N such that 2i + 1 < 2j+1, e〈2i+1,j+1〉 = 0 otherwise. Thus, e is
recursive over S′ too. Additionally, this shows that 0, 1 are computable over S.
Finally, ρF (p) ⊕ ρF (q) = ρF (r) with r(i) := |p(i) − q(i)| for all p, q such that
(ρF (p), ρF (q)) ∈ dom(⊕), i.e. ⊕ is (ρ2

F , ρF )–computable and 1
2ρF (p) = ρF (0p)

for all p ∈ dom(ρF ), i.e. x 
→ 1
2 is (ρF , ρF )–computable and thus both functions

are computable over S. Altogether, it follows by the Equivalence Theorem 3.2.13
in [Brattka 1999a] that S is equivalent to S′. �

4 Fine continuous functions

In [Mori] Mori has proved that the class D = {f : [0, 1] → R : there exists a
total continuous g : Σω → R such that f(x) = gΨ(x) for all x ∈ [0, 1)} coincides
with the class of uniformly Fine continuous functions (i.e. with the class of
uniformly (τF , τE)–continuous functions). We derive a similar characterization
of the class of Fine continuous functions as an easy corollary of the Main Theorem
[Weihrauch 2000]. The only difference will be the fact that g is allowed to be
partial.

Theorem 7 (Fine continuity). A function f : [0, 1] → R is Fine continuous,
if and only if there exists some continuous g :⊆ Σω → R such that f(x) = gΨ(x)
for all x ∈ [0, 1).

Proof. Let f : [0, 1] → R be Fine continuous, i.e. (τF , τE)–continuous. By the
Main Theorem and by admissibility of ρF and ρE this implies that f is (ρF , ρE)–
continuous and thus there exists a continuous function F :⊆ Σω → Σω such
that ρEF (p) = fρF (p) for all p ∈ dom(ρF ). This implies the first direction of
the claim since g := ρEF :⊆ Σω → R is continuous (because ρE is continuous)
and Ψ = ρ−1

F . The situation of the proof is illustrated in Figure 2.

Σω �

[0, 1] �

F

f

�

ρEρF

Σω

R

�

�
�

�
�

�
�

��

g

Figure 2: Relative continuity of a function f : [0, 1] → R.

On the other hand, the existence of a continuous g :⊆ Σω → R such that
f(x) = gΨ(x) for all x ∈ [0, 1) implies that the function g′ :⊆ Σω → R, defined
by

g′(p) :=

{
g(p) if p ∈ dom(ρF ) and ρF (p) �= 1
f(1) if ρF (p) = 1
↑ else

,
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is continuous, since ρ−1
F (1) is an isolated point in the subspace topology of the

Cantor topology on dom(ρF ). Thus, f(x) = g′ρ−1
F (x) for all x ∈ [0, 1] and f is

Fine continuous since ρ−1
F is continuous. �

5 Fine computable functions

In this section we will compare different notions of Fine computable functions.
On the one hand, we will call a function f : [0, 1] → R Fine computable, if it
is (ρF , ρE)–computable. On the other hand, we will use the notion of a locally
uniformly Fine computable function, as it has been defined by Mori [Mori 2000].
We will start to recall his definition. In the following we denote the open balls
with respect to the Fine metric dF by BF (x, r) := {y ∈ [0, 1] : dF (x, y) < r}.
Definition 8 (Local uniform Fine computability). A real-valued function
f : [0, 1] → R is called locally uniformly Fine computable, if

(1) f is sequentially computable, i.e. if it maps ρF –computable sequences to
ρE–computable sequences,

(2) there are recursive functions γ, α : N → N with γ〈i, j〉 ≥ j such that

(a)
∞⋃

i=0

BF (ei, 2−γ(i)) = [0, 1],

(b) |f(x)− f(y)| ≤ 2−k for all x, y ∈ BF (ei, 2−γ(i)) with dF (x, y) ≤ 2−α〈i,k〉.

For the following, intervals are always considered as subsets of [0, 1], for
instance [a, b) := {x ∈ [0, 1] : a ≤ x < b} for all a, b ∈ R. It should be mentioned
that γ〈i, j〉 ≥ j implies

BF (e〈i,j〉, 2−γ〈i,j〉) = [e〈i,j〉, e〈i,j〉 + 2−γ〈i,j〉).

Since ρF ≤ ρE we can directly conclude that all ordinary computable func-
tions f : [0, 1] → R are Fine computable too. Moreover, this also implies that
all ρF –computable sequences are ρE–computable. Since dE(x, y) ≤ dF (x, y) and
a function f : [0, 1] → R is computable in the ordinary sense, if and only if it
maps ρE–computable sequences to ρE–computable sequences and if it admits a
uniform computable modulus of continuity with respect to dE , we can conclude
that all ordinary computable functions are locally uniformly Fine computable.

Theorem 9. All computable functions f : [0, 1] → R are Fine computable, as
well as locally uniformly Fine computable.

It is also easy to see that definition by cases with dyadic border leads to Fine
computable functions (because intervals [0, a) with dyadic a are decidable with
respect to the Fine representation ρF ).

Proposition10. If f, g : [0, 1] → R are Fine computable functions and a ∈ Q2

is a dyadic rational, then h : [0, 1] → R, defined by

h(x) :=
{

f(x) if x < a
g(x) if x ≥ a

is Fine computable too.
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Now the question appears, how Fine computable and locally uniformly Fine
computable functions are related. The following theorem shows that all locally
uniformly Fine computable functions are Fine computable too.

Theorem 11. All locally uniformly Fine computable functions f : [0, 1] → R are
Fine computable.

Proof. Let us assume that f : [0, 1] → R is locally uniformly Fine computable
with respect to computable functions γ, α : N → N. Thus, (1) and (2) of Defini-
tion 8 hold. We sketch the construction of a Turing machine M which proves that
f is (ρF , ρE)–computable. Given a ρF –name p of some point x := ρF (p) ∈ [0, 1]
the machine M first determines a number i ∈ N such that p and Ψ(ei) agree on a
prefix of length γ(i)+1. Such an i must exist, since

⋃∞
i=0 BF (ei, 2−γ(i)) = [0, 1] by

(2)(a). Now the machine M continues to work in steps k = 0, 1, 2, ... to produce
rational approximations qk of f(x) with precision 2−k−1. In step k the machine M
determines some j ∈ N such that ej ∈ BF (ei, 2−γ(i)) and dF (x, ej) < 2−α〈i,k+2〉.
Since f is sequentially computable by (1), we know that (f(en))n∈N is a ρE–
computable sequence of real numbers and we can effectively determine some
rational number qk ∈ Q with |qk − f(ej)| < 2−k−2. It follows by (2)(b)

|f(x) − qk| ≤ |f(x) − f(ej)| + |f(ej) − qk| < 2−k−2 + 2−k−2 = 2−k−1.

Thus, it suffices if M in step k writes qk (properly encoded) on the output tape.
�

The next results shows that the converse statement is not true by construct-
ing an explicit counterexample.

Theorem 12. There exists a Fine computable function f : [0, 1] → R which is
not locally uniformly Fine computable.

Proof. A point p ∈ dom(ρF ) either contains infinitely many 0’s and infinitely
many 1’s, i.e. p is of type

p = 0n01k00n11k10n21k2 ...

or p contains infinitely many 0′s but only finitely many 1′s, i.e. p is of type

p = 0n01k00n11k1 ...0nm1km0ω,

where n0, k0, m ∈ N and ni+1, ki+1 ∈ N \ {0} for all i ∈ N, and k0 = 0 implies
n0 = 0. Using these normal forms we define a function F :⊆ Σω → R by

F (p) :=




∞∑
i=0

(ki mod 2) · 2
−ni−

i−1∑
j=0

(nj+kj)

if p = 0n01k00n11k1 ...

m∑
i=0

(ki mod 2) · 2
−ni−

i−1∑
j=0

(nj+kj)

if p = 0n01k00n11k1 ...0nm1km0ω

Here k mod 2 is defined to be 0, if and only if k is even, and 1 otherwise. It is
straightforward to construct a Turing machine which proves that the function
f := Fρ−1

F : [0, 1] → R is (ρF , ρE)–computable. The machine works in steps
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j = 0, 1, 2, ... and in the jth step it determines the output with precision 2−j .
In order to do this the machine simply has to verify whether a consecutive word
of 1’s with odd length starts in position j of the input sequence p. Since the
machine only has to work correctly for inputs p ∈ dom(ρF ), the machine does
not have to produce a reasonable output in the case that the input p ends with
an infinite suffix of 1’s.

Now we will show that f is not locally uniformly Fine computable. Let us
assume that f is locally uniformly Fine computable with corresponding functions
α, γ : N → N. Consider some i ∈ N. Then there is some word w ∈ Σ∗ such that
ρF (wΣω) = BF (ei, 2−γ(i)) (since γ〈i1, i2〉 ≥ i2 for all i1, i2 ∈ N). Let k := |w|+2,
where |w| denotes the length of w. Let n := α〈i, k〉 and let p := w012n+10ω, q :=
w012n0ω, x := ρF (p) and y := ρF (q). Then x, y ∈ ρF (wΣω) = BF (ei, 2−γ(i))
and dF (x, y) = dC(p, q) < 2−n = 2−α〈i,k〉, but |f(x) − f(y)| = 2−|w|−1 > 2−k.
Contradiction! �

In the proof by contradiction we have neither used the fact that f is sup-
posed to be sequentially computable nor the fact that α, γ are supposed to be
computable. Thus, the proof even shows that the constructed function f is not
locally uniformly Fine continuous (defined in the obvious sense).

Finally, we want to characterize Fine computable functions in a way similar
to the definition of locally uniformly Fine computable functions. The second half
of the proof will be analogous to the proof of Theorem 11. The condition given
in the following theorem is related to the notion of relative computability, as it
has been defined by Tsujii, Yasugi and Mori [Tsujii, Yasugi and Mori 2001].

Theorem 13 (Fine computability). A function f : [0, 1] → R is Fine com-
putable, if and only if

(1) f is sequentially computable,
(2) there is a recursive function γ : N → N with γ〈〈i, j〉, k〉 ≥ j such that

(a)
∞⋃

i=0

BF (ei, 2−γ〈i,k〉) = [0, 1] for all k ∈ N,

(b) |f(x) − f(y)| ≤ 2−k for all x, y ∈ BF (ei, 2−γ〈i,k〉).

Proof. Let f : [0, 1] → R be Fine computable. It directly follows that f maps
ρF –computable sequences to ρE–computable sequences, i.e. (1) holds. Further-
more, there is a computable function F :⊆ Σω → Σω such that ρEF (q) =
fρF (q) for all q ∈ dom(ρF ). Consequently, there exists a computable mono-
tone word function ϕ : Σ∗ → Σ∗ such that F (q) = supw�q ϕ(w) for all q ∈
dom(F ) [Weihrauch 2000]. We recall that we assume ρE(01n001n101n2 ...) :=
limi→∞ νQ(ni) for all ni ∈ N such that |νQ(ni) − νQ(nj)| ≤ 2−i for all j > i.
Then there exists a computable function γ : N → N such that γ〈〈i1, i2〉, k〉
is the smallest number n ≥ i2 such that the prefix w of Ψ(e〈i1,i2〉) of length
n + 1 is mapped to a word ϕ(w) with at least k + 4 symbols 0. Now let
Ii,k := [ei, ei + 2−γ〈i,k〉) = BF (ei, 2−γ〈i,k〉). Then f(Ii,k) ⊆ B(f(ei), 2−k−1) and
(2)(b) holds. We claim [0, 1] =

⋃∞
i=0 Ii,k for all k ∈ N, i.e. (2)(a) holds too. This

follows, since for any q ∈ dom(ρF ) and k ∈ N there is some finite prefix w of q
of minimal length j + 1 such that ϕ(w) contains at least k + 4 symbols 0. Thus,
if we choose i ∈ N such that e〈i,j〉 = ρF (w0ω), then γ〈〈i, j〉, k〉 = j and

ρF (q) ∈ ρF (wΣω) = [e〈i,j〉, e〈i,j〉 + 2−γ〈〈i,j〉,k〉) = I〈i,j〉,k.
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Now let us assume that f : [0, 1] → R fulfills (1) and (2) with respect to
some computable function γ : N → N. We sketch the construction of a Turing
machine M which proves that f is (ρF , ρE)–computable. Given a ρF –name p of
some point x := ρF (p) ∈ [0, 1] the machine M works in steps k = 0, 1, 2, ... in
order to compute rational approximations qk of f(x) with precision 2−k−1, i.e.
|f(x)− qk| < 2−k−1. In step k the machine determines a number i ∈ N such that
p and Ψ(ei) agree on a prefix of length γ〈i, k+2〉+1. Such an i must exist, since⋃∞

i=0 BF (ei, 2−γ〈i,k+2〉) = [0, 1] by (2)(a). Since f is sequentially computable by
(1), it follows that (f(en))n∈N is a ρE–computable sequence of real numbers and
the machine M can effectively determine some rational number qk ∈ Q with
|qk − f(ei)| < 2−k−2. It follows by (2)(b)

|f(x) − qk| ≤ |f(x) − f(ei)| + |f(ei) − qk| < 2−k−2 + 2−k−2 = 2−k−1.

Thus, it suffices if M in step k writes qk (properly encoded) on the output tape.
�

6 Integration of Fine continuous functions

In this section we want to study computability properties of operators on Fine
continuous functions such as integration. Therefore we need a representation of
the space of Fine continuous functions.

We briefly mention that whenever δ and δ′ are admissible representations
of spaces X and Y with second-countable T0–topologies τ and τ ′, respectively,
then there is a canonical representation [δ → δ′] of the set C(X, Y ) of total
(τ, τ ′)–continuous functions [Weihrauch 2000]. A characteristic feature of this
representation is that it allows evaluation and type conversion. Evaluation means
that the evaluation function C(X, Y )×X → Y, (f, x) 
→ f(x) is ([[δ → δ′], δ], δ′)–
computable and type conversion means that a function f : Z × X → Y is
([δ′′, δ], δ′)–computable, if and only if the associated function f ′ : Z → C(X, Y )
with f ′(z)(x) := f(z, x) is (δ′′, [δ → δ′])–computable (these operations are also
known as currying and uncurrying). It follows from results of Schröder [Schröder]
that [δ → δ′] is admissible with respect to (the sequentialization of) the compact-
open topology on the function space C(X, Y ).

Now let CF [0, 1] denote the set of Fine continuous functions f : [0, 1] → R.
Then [ρF → ρE ] is an admissible representation of CF [0, 1] (endowed with the
sequentialization of the compact-open topology with respect to τF and τE). Us-
ing evaluation and type conversion we can immediately conclude that whenever
f : Rn → R is a computable function, then the corresponding pointwise de-
fined operation F : CF [0, 1]n → CF [0, 1], F (f1, ..., fn)(x) := f(f1(x), ..., fn(x))
on the function space is computable with respect to [ρF → ρE ]. The following
proposition summarizes some typical examples.

Proposition14. The following operations are computable with respect to the
representation [ρF → ρE ] of CF [0, 1]:

(1) CF [0, 1] × CF [0, 1] → CF [0, 1], (f, g) 
→ f + g,
(2) CF [0, 1] × CF [0, 1] → CF [0, 1], (f, g) 
→ f · g,
(3) CF [0, 1] → CF [0, 1], f 
→ |f |.
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Since the [ρF → ρE ]–computable points are exactly the Fine computable
functions and computable operations map computable points to computable
points, we directly obtain the following closure properties of the class of Fine
computable functions.

Corollary 15. If f, g : [0, 1] → R are Fine computable functions, then the func-
tions f + g, f − g, f · g, |f | : [0, 1] → R are Fine computable too.

As a further operation we will treat integration. We will see that in general
integration has weaker computability properties for Fine continuous functions
as the forementioned algebraic operations.

Since any open set with respect to the Fine topology can be represented as a
union of intervals [a, b), it follows that all Fine open sets are Fσ–sets with respect
to the Euclidean topology τE . Thus, all Fine continuous functions are Borel
measurable with respect to the Euclidean topology. Hence a Fine continuous
function f : [0, 1] → R is Lebesgue integrable if

∫ 1

0 |f(x)| dx < ∞. We simply
consider the integration operator as operator from CF [0, 1] to the extended real
line R := R ∪ {∞}. As a representation of R we use the Dedekind left cut
representation ρ<, defined by

ρ<(p) = x : ⇐⇒ p = 01n001n101n2 ... and {q ∈ Q : q < x} = {νQ(ni) : i ∈ N}.
Using this representation we can prove the following uniform result on the
Lebesgue integral (defined with respect to the Lebesgue measure µ on the real
line) which shows that the integration operator on the space of Fine continu-
ous functions is lower semi-computable. The first part of the proof is a uniform
version of the first part of the proof of Theorem 13.

Theorem 16 (Integration). The operator

T : CF [0, 1] → R, f 
→
∫ 1

0

|f(x)| dx

is ([ρF → ρE ], ρ<)–computable.

Proof. By Proposition 14(3) it suffices to consider non-negative Fine continu-
ous functions f : [0, 1] → R. Let p be a [ρF → ρE ]–name of a non-negative
function f : [0, 1] → R. Given p, we can effectively determine a monotone word
function ϕ : Σ∗ → Σ∗ such that F (q) = supw�q ϕ(w) for all q ∈ dom(F ),
where the function F :⊆ Σω → Σω is some continuous (ρF , ρE)–realization of
f , i.e. ρEF (q) = fρF (q) for all q ∈ dom(ρF ). This allows us to determine a
function γ : N → N such that γ〈〈i1, i2〉, k〉 is the smallest number n ≥ i2 such
that the prefix w of Ψ(e〈i1,i2〉) of length n + 1 is mapped to a word ϕ(w) with
at least k + 3 symbols 0. Let Ii,k := [ei, ei + 2−γ〈i,k〉) = BF (ei, 2−γ〈i,k〉). Then
f(Ii,k) ⊆ B(f(ei), 2−k). We claim [0, 1] =

⋃∞
i=0 Ii,k for all k ∈ N. This follows,

since for any q ∈ dom(ρF ) and k ∈ N there is some finite prefix w of q of minimal
length j +1 such that ϕ(w) contains at least k +3 symbols 0. Thus, if we choose
i ∈ N such that e〈i,j〉 = ρF (w0ω), then γ〈〈i, j〉, k〉 = j and

ρF (q) ∈ ρF (wΣω) = [e〈i,j〉, e〈i,j〉 + 2−γ〈〈i,j〉,k〉) = I〈i,j〉,k.
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Now we compute a sequence yk,n of real numbers for any k ∈ N as follows. Let

yk,n :=
n∑

i=0

µ


Ii,k \

i−1⋃
j=0

Ij,k


 · (f(ei) − 2−k)

and let yk := supn∈N yk,n. Then we obtain either yk =
∫ 1

0 |f(x)| dx = ∞ or∫ 1

0
|f(x)| dx − yk < 2−k+1 and thus y := supk∈N yk =

∫ 1

0
|f(x)| dx. Altogether,

given p we can effectively compute a ρ<–name r of y. �

Since the so-called left-computable real numbers are just the ρ<–computable
real numbers, we directly obtain the following corollary.

Corollary 17. If f : [0, 1] → R is a Fine computable and Lebesgue integrable
function, then the integral

∫ 1

0 |f(x)| dx is a left-computable real number.

The following simple example shows that the integral operator on Fine con-
tinuous functions cannot be computable from above. Thus the previous results
are the best possible in a certain sense.

Proposition18. There exists a locally uniformly Fine computable function
f : [0, 1] → R such that

∫ 1

0 |f(x)| dx is a non-computable real number.

Proof. Let a ∈ R be some non-negative left-computable but non-computable real
number. Without loss of generality, we can assume that there exists a computable
sequence (an)n∈N of non-negative real numbers such that a =

∑∞
n=0 an. Consider

the intervals In := [1 − 2−n, 1 − 2−n−1) and define f : [0, 1] → R by

f(x) :=
{

2n+1an if x ∈ In

0 if x = 1

It is easy to see that f is locally uniformly Fine computable. We obtain∫ 1

0

|f(x)| dx =
∞∑

n=0

µ(In)f(1 − 2−n) =
∞∑

n=0

an = a.

�

The proof can be extended to a proof which shows that the integration op-
erator T admits a (ρ<, [ρF → ρE ])–computable right-inverse (on non-negative
real numbers). Moreover, this implies that T is not ([ρF → ρE ], ρE)–continuous
since otherwise ρ< ≤t ρE would follow (on non-negative real numbers).

Since the Fine topology is not locally compact, it follows that the compact-
open topology on CF [0, 1] is not first-countable and thus especially neither second-
countable nor metrizable (cf. Exercise 3.4.E in [Engelking 1989]). Results of
Matthias Schröder seem to suggest that the sequentialization of the compact-
open topology on CF [0, 1] is also neither metrizable nor second-countable (per-
sonal communication). Thus, the result on integration shows that the represen-
tation based approach to computable analysis captures also complicated topo-
logical spaces in a reasonable way.

However, tasks which require integration, like computing the Walsh-Fourier
coefficients, should be restricted to some proper subclass of the class of Fine con-
tinuous functions which admit fully computable integration (cf. [Mori, Mori 2000])
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