
Membrane Computing: The Power of (Rule) Creation

Fernando Arroyo
Dpto. de Lenguajes, Proyectos y Sistemas Informáticos

Escuela de Informática – U.P.M.
Carretera de Valencia Km. 7, 28031 Madrid, Spain

E-mail: farroyo@eui.upm.es

Angel Baranda
Dpto. de Inteligencia Artificial

Facultad de Informática – U.P.M.
Campus de Motegancedo, Boadilla del Monte, 28660 Madrid, Spain

Juan Castellanos
Dpto. de Inteligencia Artificial

Facultad de Informática – U.P.M.
Campus de Motegancedo, Boadilla del Monte, 28660 Madrid, Spain

E-mail: jcastellanos@fi.upm.es

Gheorghe Păun1

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 70700 Bucureşti, Romania

E-mail: gpaun@imar.ro

Abstract: We consider a uniform way of treating objects and rules in P systems:
we start with multisets of rules, which are consumed when they are applied, but the
application of a rule may also produce rules, to be applied at subsequent steps. We
find that this natural and simple feature is surprisingly powerful: systems with only one
membrane can characterize the recursively enumerable languages, both in the case of
rewriting and of splicing rules; the same result is obtained in the case of symbol-objects,
for the recursively enumerable sets of vectors of natural numbers.

Key Words: Molecular computing, Membrane computing, Chomsky hierarchy,
Rewriting, Splicing
Category: F.1.1, F.4.2, F.4.3

1 Introduction

P systems are a class of theoretical computing models [9] abstracting from the
way in which the living cell works. Informally, in the regions delimited by a
membrane structure (a membrane is understood as a three dimensional vesicle),
certain objects evolve according to given rules; both the objects and the rules are
localized, associated with the regions. The objects can also pass through mem-
branes, sometimes the membranes can dissolve or divide. In this way, transitions
between configurations of the system are obtained; a sequence of transitions is
a computation, and the result of a (halting) computation consists of all objects
which leave the system during the computation.
1 Work supported by a grant of NATO Science Committee, Spain, 2000–2001, and by

Facultad de Informatica, Universidad Politecnica de Madrid

Journal of Universal Computer Science, vol. 8, no. 3 (2002), 369-381
submitted: 21/2/01, accepted: 1/3/02, appeared: 28/3/02  J.UCS

Two main classes of P systems were considered: with objects described by
symbols (then we work with multisets of symbols placed in regions), or with
objects described by strings of symbols (then we can work with sets or with
multisets of strings placed in regions). By using the rules in a nondeterminis-
tic maximally parallel manner (in each time unit, all objects which can evolve
should evolve), one defines transitions among the configuratins of the system.
A sequence of transitions is a computation with which a result can be associ-
ated in certain ways, as a language or as a set of vectors of natural numbers. In
most cases, the computational completeness is obtained, that is, characteriza-
tions of recursively enumerable (Turing computable) languages or sets of vectors
(relations) of natural numbers. When posssibilities to generate an exponential
working space are provided, e.g., by membrane division or by string-objects repli-
cation, then NP-complete problems can be solved in polynomial (often, linear)
time.

An up-to-date bibliography of the area, including papers which illustrate the
above assertions, can be found at the web address http://bioinformatics.
bio.disco.unimib.it/psystems.

We emphasize the fact that P systems are abstract (symbolic) computing
devices, of automata and language theory type, only inspired by the cell structure
and functioning, and are not at all intended to be a model of the living cell with
a biochemical relevance. For motivations, relations to biochemistry or to other
computing models based on multiset processing (e.g., the Gamma language –
a comprehensive survey in [1]) using or not membranes (like in the Chemical
Abstract Machine, [3]), etc., we refer to [9], [12], [13]. Also, we stress the obvious
fact that this paper is just a technical contribution, of a theoretical computer
science type, to the rather vivid area of research which is membrane computing,
using its already well established terminology and notations; the topic can be
of a larger relevance, for instance, when placing it in the framework of non-
monotonic (linear) logics, or with respect to the trade-off between universality
(programmability), efficiency, and learnability ([4]), etc2.

Specifically, the starting point of our work is the fact that in all variants
of P systems which were investigated up to now, the rules are considered as
inexhaustible: the same rule can be used for processing arbitrarily many objects,
at arbitrarily many steps.

We consider here a very natural variant, related to the observation that in the
cell biochemistry the “evolution rules” correspond to chemical reactions which
are controlled/enhanced/promoted by certain chemical compounds (enzymes,
catalysts, etc), which cannot be distinguished from the other “objects” in the
cell, hence they also appear in a certain amount, and are modified during the
chemical reactions. Formally, this means that also the rules are present in each
region of a P system in the form of a multiset, they are consumed and reproduced
during using them.

This way of influencing the next-rule-to-be-applied proves to be a very pow-
erful programming technique for the work of a P system, for all variants: with
symbol-objects and with string-objects, in the latter case with rewriting and
2 As one of the referees has suggested, the paper could have the title “On the power

of a non-monotonic multiset rule based computational paradigm”, which however
looks too general (hence dishonest), as we strictly refer to the specific formal model
introduced in [9].

370 Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

with splicing. In all these cases, the computational completeness is obtained,
even for systems using only one membrane.

The idea of rules (“program instructions”) which evolve when they ar applied
(executed) can be related to a very modern and attractive area of computer
science, that of evolving programs/computers, which are modified during their
work, learning from their “experience”. For P systems, the idea of handling
objects and rules in the same way was already considered, in a different form,
in [6], and it was also formulated as a general research topic in [11].

2 Rewriting P Systems with Rule Creation

We introduce here only the class of P systems that we will investigate in this
paper. As usual, a membrane structure is represented by a string of labeled
parentheses, and with each membrane we associate a region, which is referred
to by the label of the membrane. For an alphabet V we denote by V ∗ the free
monoid generated by V under the operation of concatenation; λ is the empty
string. The family of recursively enumerable languages is denoted by RE, while
the Parikh mapping associated with an alphabet V is denoted by ΨV . The family
of all Parikh images of languages from R is denoted by PsRE (this is the family
of all recursively enumerable sets of vectors of natural numbers).

For the few elements of formal language theory we use here we refer to [15].
A multiset M over a set X is a mapping M : X −→ {N}; a multiset over

a finite support X is represented either in the form {(a, M(a)) | a ∈ X}, or by
a string over X (the number of occurrences of each a ∈ X in a string w ∈ X∗
represents the number of copies of a in the multiset).

A membrane structure will be represented by a string of labeled parentheses.
(For basic elements of membrane computing we refer to the initial paper [9] and
to the recent survey [13].)

A rewriting P system (of degree m ≥ 1) with rule creation is a construct

Π = (V, T, µ, L1, . . . , Lm, lab, R, R1, . . . , Rm),

where:
1. V is the alphabet of the system;
2. T ⊆ V is the terminal alphabet;
3. µ is a membrane structure with m membranes, injectively labeled by

1, 2, . . . , m;
4. L1, . . . , Lm are finite languages over V , representing the strings initially

present in the regions 1, 2, . . . , m of the system;
5. lab is a finite set of labels for the rules of Π ;
6. R is a finite set of possible evolution rules; a rule is of the form r : A →

x(tar)/z, where r ∈ lab, z ∈ lab∗ and A → x is a context-free rule3 over V ,
with A ∈ V, x ∈ V ∗, and tar ∈ {here, out, in};

3 Note that in this paper, as usually done in the whole area of membrane computing,
one works with minimalistic models, with systems based on as reduced as possi-
ble ingredients, hence as elegant as possible from a mathematical point of view.
The reactions in biochemistry transform multisets of chemical compounds into other
multisets of chemical compounds, usually triggered/enhanced/promoted/catalysed
in various ways, but we are not concerned with such “practical features”. A simple
observation which illustrates the purely theoretic character of our approach: we do

371Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

7. R1, . . . , Rm are finite multisets of rules from R associated with the regions
of µ.
In a system as above, transitions are defined as usual in rewriting P systems

(in each region, each string which can be rewritten by a rule from that region is
rewritten), with the following important differences: (1) at all steps, in all regions
we have a given number of copies of each rule; initially, this is as indicated by
the multisets Ri; (2) in any region we can rewrite strings only by the existing
rules (if we have a number of different strings which can be rewritten, but we
have a smaller number if rules, then we rewrite only the number of strings for
which we have (copies of) rules; (3) when applying a copy of a rule r : A → x/z
to a string in a region i, this copy is consumed, and the rules indicated by the
labels from z are introduced in region i (so, they are available at the next step of
the computation); only rules from the initially specified set R can be introduced
during a computation; a rule from a region of the system which is not used, may
stay any number of steps in a region.

Note that the strings are supposed to appear in one copy each, so we count
the number of different strings, while for rules we count the number of copies
of each rule, and this number can be greater than one. A variant is to consider
also multisets of strings, but we do not explicitly deal with this case here (the
universality result from Theorem 1 holds also for such a case, just taking the
multiplicity one for each string).

As usual, the string obtained in a rewriting step by using a rule A → x(tar)
is sent to the membrane indicated by tar: here says that the string remains in
the same region, out says that the string has to leave the membrane, and in says
that the string has to be moved into one of the adjacently lower membranes,
nondeterministically chosen; if there is no membrane inside the region and the
rule has tar = in, then it cannot be applied. In this paper, the indication here
will be omitted when presenting the rules.

A sequence of transitions forms a computation and the result of a computa-
tion is the set of strings over T sent out of the system during the computation.
The language generated in this way by a system Π is denoted by L(Π).

The family of all languages L(Π), computed as above by rewriting P systems
Π of degree at most m ≥ 1 with rule creation is denoted by RPm(rule).

Note that in this section (the same in the following one) we do not con-
sider halting computations, as usual in the P systems area, but we accept all
strings sent out of the system, irrespective whether or not the computation will
eventually halts.

As announced before, even P systems with only one membrane and with
the possibility of rule creation are computationally universal. Let us denote by
RE the family of recursively enumerable languages and by PsRE the family of
Parikh images of recursively enumerable languages (this is the family of recur-
sively enumerable sets of vectors of natural numbers).

Theorem 1. RE = RP1(rule).

Proof. We prove only the inclusion RE ⊆ RP1(rule); the opposite inclusion can
be proved in a straightforward manner (or we can invoke the Turing-Church

not care about the consevation law, and we just play with – context-free – rewrit-
ing rules in the classic sense of language theory, extended when this is the case to
“rewriting” multisets of symbols.

372 Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

thesis for it).
We start from the characterization of recursively enumerable languages by

means of matrix grammars with apearance checking, [5], [15]. Such a grammar
is a construct G = (N, T, S, M, F), where N, T are disjoint alphabets, S ∈ N ,
M is a finite set of sequences of the form (A1 → x1, . . . , An → xn), n ≥ 1, of
context-free rules over N ∪ T (with Ai ∈ N, xi ∈ (N ∪ T)∗, in all cases), and F
is a set of occurrences of rules in M (N is the nonterminal alphabet, T is the
terminal alphabet, S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1,
. . . , An → xn) in M and the strings wi ∈ (N ∪T)∗, 1 ≤ i ≤ n+1, such that w =
w1, z = wn+1, and, for all 1 ≤ i ≤ n, either (1) wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i ,

for some w′
i, w

′′
i ∈ (N ∪T)∗, or (2) wi = wi+1, Ai does not appear in wi, and the

rule Ai → xi appears in F . (The rules of a matrix are applied in order, possibly
skipping the rules in F if they cannot be applied – therefore we say that these
rules are applied in the appearance checking mode.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
The family of languages of this form is denoted by MATac. It is known that
MATac = RE.

A matrix grammar G = (N, T, S, M, F) is said to be in the binary normal
form if N = N1 ∪ N2 ∪ {S, #}, with these three sets mutually disjoint, and the
matrices in M are in one of the following forms:
1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y, A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗,
3. (X → Y, A → #), with X, Y ∈ N1, A ∈ N2,
4. (X → λ, A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is called a trap-symbol, because once
introduced, it is never removed. A matrix of type 4 is used only once, in the last
step of a derivation.

According to [5], for each matrix grammar there is an equivalent matrix
grammar in the binary normal form.

So, let G = (N, T, S, M, F) be a matrix grammar with appearance checking
in the binary normal form, with N = N1 ∪ N2 ∪ {S, #} and rules of the four
forms mentioned above. Assume that we have k matrices of the forms 2 and 4,
mi : (X → α, A → x), with X ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2, x ∈ (N2 ∪ T)∗,
1 ≤ i ≤ k, and h matrices of type 3, mk+i : (X → Y, B → #), with X, Y ∈
N1, B ∈ N2, 1 ≤ i ≤ h. (The labels mi, 1 ≤ i ≤ k + h, are supposed to be
associated in a one-to-one manner with matrices.)

We construct the P system (of degree one)

Π = (V, T, [1]1, L1, lab, R, R1),

with the following components:

V = N ∪ T ∪ {X ′ | X ∈ N1} ∪ {D, #},
L1 = {XA, D}, for (S → XA) being the initial matrix of G,

lab = {ri, r
′
i, r

′′
i | 1 ≤ i ≤ k}

∪ {rj , rj,1, rj,2, rj,3 | k + 1 ≤ j ≤ k + h},
R1 = r1r2 . . . rkrk+1 . . . rk+h,

373Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

R = {ri : X → X ′/r′i,
r′i : A → x/r′′i ,

r′′i : X ′ → Y/ri | for mi : (X → Y, A → x),
1 ≤ i ≤ k, of type 2}

∪ {ri : X → X ′/r′i,
r′i : A → x/r′′i ,

r′′i : X ′ → λ(out)/λ | for mi : (X → Y, A → x),
1 ≤ i ≤ k, of type 4}

∪ {rj : X → X ′/rj,1rj,2,

rj,1 : B → #/λ,

rj,2 : D → DB/rj,3,

rj,3 : X ′ → Y/rj | for mj : (X → Y, B → #),
k + 1 ≤ j ≤ k + h, of type 3}.

Let us examine the work of the system Π .
We start with two strings in the system, XA and D, hence in all steps we

will have only two strings available. Moreover, initially, all rules r1, . . . , rk+h are
available, in only one copy each. Such a rule ri will start the simulation of the
corresponding matrix mi from M .

Assume that we have a configuration where a string of the form Xw, X ∈
N1, w ∈ (N2 ∪ T)∗, is present in the system, together with a string D#n, n ≥ 0
(initially, n = 0), and we also have one copy of each rule ri, 1 ≤ i ≤ k + h. No
rule can rewrite the string D#n, but if any rule can be applied to the string
Xw, then exactly one should be chosen. (If no rule can rewrite X , then we stop
without sending out any strings, hence without having any output.)

Assume that we apply the rule ri : X → X ′/r′i associated with a matrix
mi : (X → Y, A → x) of type 2. We obtain the string X ′w, the rule ri is
consumed, the rule r′i : A → x/r′′i is introduced. If this rule cannot be used,
then no available rule can be used for rewriting the current string (no rule
rj , 1 ≤ j ≤ k + h, can rewrite X ′). In such a case, the computation gets stuck,
and we get no output. If the rule r′i : A → x/r′′i can be used, then it is consumed
and the rule r′′i : X ′ → Y/ri is introduced. This new rule replaces X ′ by Y , thus
completing the simulation of the matrix mi, and reintroduces the rule ri. We
return to a configuration as that we have started with, hence the process can be
iterated.

If the rule ri was associated with a terminal matrix mi : (X → λ, A → x),
then the associated rule r′′i is of the form r′′i : X ′ → λ(out)/λ, hence the string
is sent out of the system (and the computation stops). If the string is terminal,
then it is accepted in the language L(Π), otherwise it is “lost”.

Note that the string D#n was not involved into these computation steps
(and at the end of a computation this string remains inside the system).

Assume now that we have started by using a rule rj : X → X ′/rj,1rj,2

associated with a matrix mj : (X → Y, B → #), k + 1 ≤ j ≤ k + h, of type 3.
The string Xw becomes X ′w, the rule rj is consumed, the rules rj,1 : B → #/λ
and rj,2 : D → DB/rj,3 are introduced. If the string w contains at least one
occurrence of the symbol B, then the rule rj,1 : B → #/λ must be applied,
because this is the only rule which can rewrite this string. The symbol # can

374 Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

never be removed, so the string will never lead to a terminal one, that is, we get
no output. Assume that the string w does not contain the symbol B, hence the
rule rj,1 : B → #/λ remains non-used this step. The other newly introduced
rule, rj,2 : D → DB/rj,3, can be applied to the current string D#n and we get
the string DB#n; the rule rj,2 : D → DB/rj,3 disappears, and the rule rj,3 :
X ′ → Y/rj is introduced. Now, both rules rj,1 : B → #/λ and rj,3 : X ′ → Y/rj

can be used, and, because they rewrite different strings (and are the only rules
available for these strings), they must be used. The first rule produces the string
Y w, which represents the correct result of simulating the matrix mj , with the
rule B → # used in the appearance checking mode, the second rule replaces the
symbol B with the symbol #. At the same time, the rule rj is again introduced.
This means that we return to a configuration as that we have started with, hence
the process can be iterated.

Consequently, all terminal derivations with respect to the grammar G can be
simulated in the system Π and, conversely, all terminal strings generated by the
system Π are strings which can also be generated by G. Thus, L(G) = L(Π),
which concludes the proof.

3 Splicing P Systems with Rule Creation

The strings in a P system can also be processed by using the splicing operation
introduced in [7] as a formal model of the DNA recombination under the influ-
ence of restriction enzymes and ligases (see a comprehensive information about
splicing in [14]).

Consider an alphabet V and two symbols #, $ not in V . A splicing rule over
V is a string r = u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗. For such a rule r and
for x, y, w ∈ V ∗ we define

(x, y) �r w iff x = x1u1u2x2, y = y1u3u4y2, w = x1u1u4y2,

for some x1, x2, y1, y2 ∈ V ∗.

(One cuts the strings x, y in between u1, u2 and u3, u4, respectively, and one
concatenates the prefix of the first string with the suffix of the second string
obtained in this way.)

A splicing P system (of degree m ≥ 1) with rule creation is a construct

Π = (V, T, µ, L1, . . . , Lm, lab, R, R1, . . . , Rm),

where the components V, T, µ, L1, . . . , Lm, lab are exactly as in the case of
rewriting P systems, Ri, 1 ≤ i ≤ m, are multisets of rules associated with
the regions 1, 2, . . . , m of µ, and R is the set of all possible rules, of the
form r : u1#u2$[u3#u4](tar)/z or r : [u1#u2]$u3#u4(tar)/z, where r ∈
lab, u1#u2$u3#u4 is a usual splicing rule over V , tar ∈ {here, out, in}, and
z ∈ lab∗. (As usual, the indication here will not be explicitly specified.)

A transition in Π is defined by applying the splicing rules from each re-
gion of µ, in parallel, to all possible strings from the corresponding regions,
and following the target indications associated with the rules. Using a rule
r : u1#u2$[u3#u4](tar)/z means to have a string w = w1u1u2w2 such that
the splicing (w, u3u4) � w1u1u4 is obtained. Symmetrically, using a rule r :

375Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

[u1#u2]$u3#u4(tar)/z means to have a string w = w1u3u4w2 such that the
splicing (u1u2, w) � u1u4w2 is obtained. That is, one term of the splicing is
provided by the rule itself, by means of the strings u3u4, u1u2, respectively. (We
need a transition from one string-object to one string-object, and this is a pos-
sibility to achieve such a string-to-string operation; this idea was also used in
[8].)

The transitions in a splicing P system with rule creation are defined as in
a rewriting system: each string which can be spliced must be spliced, the used
rules are consumed in this way, but new rules can be introduced.

The result of a computation consists of all strings over T which are sent
out of the system during the computation. We denote by L(Π) the language of
all strings of this type. By SPm(rule) we denote the family of languages L(Π)
generated by splicing P systems as above, of degree at most m ≥ 1.

As expected (see [14] for the power of the splicing operation: splicing plus
a “weak” control leads to “easy” characterizatios of recursively enumerable lan-
guages), we obtain again a universality result, for systems with one membrane
only.

Theorem 2. RE = SP1(rule).

Proof. We prove again only the inclusion RE ⊆ SP1(rule), and to this aim we
consider a type-0 Chomsky grammar G = (N, T, S, P). We add to P all rules of
the form α → α, for α ∈ N ∪ T , as well as the rule B → B, for a new symbol
B. We denote by P ′ the augmented set of rules and we assume that its rules are
labeled in a one-to-one manner with p1, . . . , pk.

We construct the splicing P system

Π = (V, T, [1]1, L1, lab, R, R1),

with the following components:

V = N ∪ T ∪ {B, X, Y, Y ′, Z},
L1 = {XBSY },
lab = {ri, r

′
i, r

′′
i | 1 ≤ i ≤ k} ∪ {r0, r

′
0},

R1 = r0r1r2 . . . rk,

R = {ri : λ#uY $[Z#Y ′]/r′i,
r′i : [Xv#Z]$X#λ/r′′i ,

r′′i : λ#Y ′$[Z#Y]/ri | for ri : u → v, 1 ≤ i ≤ k}
∪ {r0 : λ#BY $[Z#λ]/r′0,

r′0 : [λ#Z]$X#λ(out)/λ}.
The system Π simulates the terminal derivations in the grammar G by using
the rotate-and-simulate technique usual in the splicing area: with each sentential
form of G one associates a circular permutation in Π , with the end markers X
and Y , and with the “real” beginning of the string marked with the symbol B.
Specifically, strings Xw1Bw2Y are produced in Π , corresponding to sentential
forms w2w1 of G. Initially, we have w1 = λ, w2 = S, where S is the axiom of G.

Assume that we have a string XwY and all rules r0, r1, . . . , rk available
(this is true at the beginning). If no rule can be applied, then the string

376 Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

remains unchanged and we get no output. Assume that we can use a rule
ri : λ#uY $[Z#Y ′]/r′i associated with some pi : u → v from P ′. Note that
we can have u → v from P , or u = v = α, where α is a symbol from
N ∪ T ∪ {B}. If XwY = Xw1uY , then we get the string Xw1Y

′ (that is, the
string u was removed from the right hand end of the string w, and the marker
Y was replaced by Y ′), the rule ri : λ#uY $[Z#Y]/r′i is removed, and the rule
r′i : [Xv#Z]$X#λ/r′′i is introduced. This new rule is the only one which can be
applied to the string (all other available rules need the symbol Y in the right hand
end of the string), hence we have to use it. In this way, we get the string Xvw1Y

′,
the rule r′i : [Xv$Z]$X#λ/r′′i is removed and the rule r′′i : λ#Y ′$[Z#Y]/ri is
introduced. This rule will replace Y ′ by Y , it will disappear, and introduces
again the rule ri : λ#uY $[Z#Y ′]/r′i. In this way, we have simulated the use of
the rule u → v, by removing u from the right hand end of the string w and
adding v in the left hand end. If we had u = v = α for α ∈ N ∪ T ∪ {B}, then
we have circularly permuted the string with one symbol. Note that the symbol
B is treated as any other symbol during rotating the string, but it cannot be
rewritten by rules from P .

All derivations in G can be simulated in this manner (modulo circularly
permuting the obtained string).

Assume that at some moment we use the rule r0 : λ#BY $[Z#λ]/r′0. This
means that the string was of the form XwBY , hence w is in the same permu-
tation as in the grammar G. The suffix BY is removed (from now on no rule ri

can be applied) and the rule r′0 : [λ#Z]$X#λ(out)/λ is introduced. This is the
only rule applicable to the string Xw, and using it means to also remove the
left marker X . The obtained string, w, is immediately sent out of the system. If
it is terminal, then it is accepted in L(Π), otherwise it is “lost”. Consequently,
L(G) = L(Π).

The maximal length of the strings u1, u2, u3, u4 from a splicing rule
u1#u2$u3#u4 is called the radius of the rule. The maximal radius of a rule
in a P system is called the radius of the system. In the previous proof we have
not tried to have a reduced radius of the constructed system, but a system of
radius three can be obtained if we start from a grammar G in the Kuroda normal
form, that is, with rules of the forms A → a, A → λ, A → BC, AB → CD, where
A, B, C, D are nonterminal symbols and a is a terminal symbol. Moreover, it is
easy to see that by introducing appropriate sequences of rules, we can obtain
a system of radius two: instead of cutting uY in one step, we can do it in two
steps, and we can proceed in the same way when introducing Xv in the left hand
end of the string. The details are left to the reader.

4 P Systems with Symbol-Objects

The objects in a P system can also be of an “atomic” type, without a structure,
that is, described by symbols from a given alphabet. In such a case, the result
of a computation will be a number or a vector of numbers, counting the objects
sent out of the system during a computation. This makes necessary, on the one
hand, to work with multisets of objects, on the other hand, to consider only
halting computations, in order to have a criterion of accepting or not a number
as being computed.

377Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

In such a framework, a P system with rule creation is a construct

Π = (V, T, µ, w1, . . . , wm, lab, R, R1, . . . , Rm),

with the components V, T, µ, lab, R1, . . . , Rm, R as in a rewriting P system, with
w1, . . . , wm strings over V representing the multisets of objects present in the
initial configuration, and with the difference that the rules in R are of the form
r : a → u/z, where r ∈ lab, a ∈ V, u ∈ (V × {here, out, in})∗, and z ∈ lab∗.
That is, the target indications are associated with each symbol-object from u
(as usual, we omit to write the indication here), hence the objects introduced by
the same rule can follow different trajectories through the system membranes.

The multiplicities of terminal objects sent out of the system during a halting
computation (a computation halts if a configuration is reached where no rule
can be applied) is the result of the computation. (More formally, the result
of a computation is ΨT (w), the Parikh vector associated with the multiset w of
objects sent out of the system.) Note that the non-terminal symbols sent out and
the terminal symbols which remain in the system are ignored when considering
the result of the computation, and that a non-halting computation gives no
output.

We denote by N(Π) the set of al vectors of natural numbers computed by a
system Π as above and by PsPm(rule) the family of all such sets, generated by
P systems with rule creation of degree at most m ≥ 1.

Theorem 3. PsRE = PsP1(rule).

Proof. The proof of the inclusion PsRE ⊆ PsP1(rule) is similar to that of
Theorem 1, with the differences entailed by the act that this time we work with
a multisets of symbols-objects (and each symbol can be processed separately,
simultaneously with all symbols available). We start from a matrix gramar with
appearance checking in the binary normal form G = (N, T, S, M, F); with the
same notations as in the proof of Theorem 1, we construct the system

Π = (V, T, [1]1, L1, lab, R, R1),

with the following components (in the writing of R, the morphism h : (N2 ∪
T)∗ −→ (N2 ∪ (T × {out}))∗ is defined by h(A) = A for A ∈ N , and h(a) =
(a, out) for a ∈ T):

V = N ∪ T ∪ {X ′ | X ∈ N1} ∪ {D, #},
L1 = {XA}, for (S → XA) being the initial matrix of G,

lab = {ri, r
′
i, r

′′
i | 1 ≤ i ≤ k}

∪ {rj , rj,1, rj,2, rj,3, rj,4 | k + 1 ≤ j ≤ k + h}
∪ {rv},

R1 = r1r2 . . . rkrk+1 . . . rk+hrv,

R = {ri : X → X ′/r′i,
r′i : A → h(x)/r′′i ,

r′′i : X ′ → Y/ri | for mi : (X → Y, A → x),
1 ≤ i ≤ k, of type 2}

∪ {ri : X → X ′/r′i,

378 Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

r′i : A → h(x)/r′′i ,

r′′i : X ′ → λ/λ | for mi : (X → Y, A → x),
∗1cm1 ≤ i ≤ k, of type 4}

∪ {rj : X → X ′D/rj,1rj,2,

rj,1 : B → #/λ,

rj,2 : D → B/rj,3,

rj,3 : # → #(out)/rj,4,

rj,4 : X ′ → Y/rj | for mj : (X → Y, B → #),
k + 1 ≤ j ≤ k + h, of type 3}

∪ {rv : # → ##/rvrv}.
The simulation of matrices of types 2 and 4 proceeds in the same way as in
the proof of Theorem 1 (but we have to have in mind that this time we work
with a multiset of symbols, not with a string; moreover, each terminal symbol
is immediately sent out of the system, while the nonterminals remain inside).

The case of matrices with rules used in the appearance checking mode is
different. Assume that we have a multiset described by a string Xw (in the
presence of all rules r1, . . . , rk+hrv) and that we use a rule rj : X → X ′D/rj,1rj,2.
It replaces X with the symbols X ′ and D, disappears, and introduces the new
rules rj,1 : B → #/λ and rj,2 : D → B/rj,3. Thus, if the multiset contains the
symbol B, then the rule rj,1 : B → #/λ must be used. It introduces the trap-
object # which makes possible the use of the “virus” rule rv : # → ##/rvrv.
This last rule will exponentially multiply both the symbol # and itself, so the
computation will continue forever, no result is obtained.

If the rule rj,1 : B → #/λ cannot be used, then it remains in the system.
At the next step, the rule rj,2 : D → B/rj,3 previously introduced will replace
D with B, also introducing the rule rj,3 : # → #(out)/rj,4. This rule cannot
be used immediately, because we have no copy of # available, but the rule
rj,1 : B → #/λ can now be applied to the single occurrence of B introduced
above. We get one copy of #, hence at the next step we can use either the rule
rj,3 : # → #(out)/rj,4 or the virus rule. In the latter case, the computation will
never finish, but we can avoid this by using the first rule, which sends the object
out of the system. In this way, the virus rule cannot be applied, it remains in
the system. By using the rule rj,3 : # → #(out)/rj,4 we have also introduced the
rule rj,4 : X ′ → Y/rj , which returns the configuration to a form as that we have
started with: the symbol from N1 is again unprimed, and all rules r1, . . . , rk+h

are again present in one copy. This corresponds to a correct simulation of the
matrix mj : (X → Y, B → #). The process can be iterated.

Note that the rule rj,3 : # → #(out)/rj,4 is always introduced one step before
introducing the object #, hence we can always avoid the use of the virus rule,
but if the rule rj,1 : B → #/λ is applicable, then it will lead the activation of the
virus rule, because it is used before introducing the rule rj,3 : # → #(out)/rj,4.

We obtain the equality Ps(Π) = ΨT (L(G)), which concludes the proof.

379Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

5 Final Remarks

We have considered P systems with the multiplicity of rules taken into consider-
ation and with the possibility to create new rules by using existing rules. Rather
surprisingly, this biochemically motivated feature proves to be very powerful:
the computational universality is obtained for systems with only one membrane
(which is very unusual in membrane computing). This is true both for P systems
with symbol-objects and with string-objects, in the latter case both for rewriting
and for splicing evolution rules.

This result shows that, in some sense, the membrane structure is no longer
important here (although sending objects outside of the system is a specific
feature to membrane computing which is essentially used in the proofs), but
what matters is the interplay between objects and (multisets of) rules. This is
somehow similar to the regulated rewriting devices, [5] (or to controlled splicing
systems), [14], but we have an essential difference between our systems with
rule creation and, for instance, programmed grammars, where there also is a
control of the next-rule-to-be-used: we consume and create rules, their set is
dynamically evolving; moreover, we work with sets of strings (or multisets of
symbols), which are processed simultaneously by the existing rules (the number
of strings is checked against the number of available rules), and not with a unique
sentential form, as in a grammar.

One can make a step further in handling the rules in the same manner as
handling the objects, and to associate target indications also with the newly
created rules (this would correspond, for instance, to the fact that when pro-
ducing an enzyme in a membrane, it is possible to produce it for a neighboring
region, hence it has to exit and act in the surrounding region). Because we have
already universality (with only one membrane) without this additional feature,
we cannot improve in the previous results; maybe, such systems with enhanced
possibilities to handle the rules can be interesting from other points of view. In
particular, we do not know how useful are such systems from a complexity point
of view (can hard problems be solved in a polynomial time in this framework, as
it is the case [10] for several classes of P systems with an enhanced parallelism?).

Another research question concerns the possible usefulness of the power of
rule creation, in the above discussed sense, from a practical computer science
viewpoint; we have in mind the possible implementation of P systems on usual
electronic computers, as attempted in [2], [16]. Taking into account the sim-
plicity of the variant dealt with here, it is of interest to try to consider it for
implementation (maybe, after also introducing features able to provide an expo-
nential working space, for increasing the computational effficiency). We do not
enter into details, as the practical relevance of our model/results is out of the
scope of this paper.

Acknowledgements. Thanks are due to two anonymous referees for comments
and suggestions about the form of the presentation of the paper.

References

1. J.-P. Banâtre, P. Fradet, D. Le Métayer, Gamma and the chemical reaction model:
fifteen years after, in Multiset Processing. Mathematical, Computer Science, and

380 Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

Molecular Computing Points of View (C.S. Calude, Gh. Păun, G. Rozenberg, A.
Salomaa, eds.), Lecture Notes in Computer Science, Springer-Verlag, in press.

2. A. Baranda, F. Arroyo, J. Castellanos, R. Gonzalo, Towards an electronic im-
plementation of membrane computing: A formal description of nondeterministic
evolution in transition P systems, Proc. 7th Intern. Meeting on DNA Based Com-
puters (N. Jonoska, N.C. Seeman, eds.), Tampa, Florida, USA, 2001, 273–282.

3. G. Berry, G. Boudol, The chemical abstract machine, Theoretical Computer Sci.,
96 (1992), 217–248.

4. M. Conrad, The price of programmability, in The Universal Turing Machine: A
Half-Century Survey (R. Herken, ed.), Kammerer and Unverzagt, Hamburg, 1988,
285–307.

5. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

6. R. Freund, Generalized P systems, Fundamentals of Computation Theory, FCT’99,
Iaşi, 1999 (G. Ciobanu, Gh. Păun, eds.), LNCS 1684, Springer, 1999, 281–292.

7. T. Head, Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors, Bulletin of Mathematical Biology, 49 (1987),
737–759.

8. M. Margenstern, Gh. Păun, Y. Rogozhin, On the power of the crowd: Set-
conditional string processing, submitted, 2001.

9. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (see also Turku Center for Computer Science-TUCS Report
No 208, 1998, www.tucs.fi).

10. Gh. Păun, Computing with membranes; Attacking NP-complete problems, in vol.
Unconventional Models of Computation (I. Antoniou, C.S. Calude, M.J. Dinneen,
eds.), Springer-Verlag, London, 2000, 94–115.

11. Gh. Păun, Computing with membranes (P systems): Twenty six research top-
ics, Auckland University, CDMTCS Report No 119, 2000 (www.cs.auckland.ac.nz/
CDMTCS).

12. Gh. Păun, From cells to computers: Computing with membranes (P systems),
BioSystems, 59, 3 (2001), 139–158.

13. Gh. Păun, G. Rozenberg, A guide to membrane computing, Theoretical Computer
Science, to appear.

14. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

15. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-Verlag,
Heidelberg, 1997.

16. Y. Suzuki, H. Tanaka, On a LISP implementation of a class of P systems, Romanian
J. of Information Science and Technology, 3, 2 (2000), 173–186.

381Arroyo F., Baranda A., Castellanos J., Paun G.: Membrane Computing ...

