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Abstract: The problem about the synchronization of a finite deterministic automaton
is not yet properly understood. The present paper investigates this and related prob-
lems within the general framework of a composition theory for functions over a finite
domain N with n elements. The notion of depth introduced in this connection is a good
indication of the complexity of a given function, namely, the complexity with respect to
the length of composition sequences in terms of functions belonging to a basic set. The
depth may vary considerably with the target function. Not much is known about the
reachability of some target functions, notably constants. Synchronizability of a finite
automaton amounts to the representability of some constant as a composition of the
functions defined by the input letters. Properties of n such as primality or being a
power of 2 turn out to be important, independently of the semantic interpretation. We
present some necessary, as well as some sufficient, conditions for synchronizability. We
also discuss a famous conjecture about the length of the shortest synchronizing word,
and present some results about universal synchronizing words.
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1 Functions over a finite domain

In this paper we will consider functions g(x) whose domain is a fixed finite set N
with n elements, n ≥ 2, and whose range is included in N . We will mostly deal
with this abstract setup. It is clear that such a setup occurs in many and very
diverse situations, interpretations. Depending on the interpretation, different
questions will be asked.

The two interpretations mostly studied in the past are many-valued logic
and finite automata. In the former, the set N consists of n truth values and the
functions are truth functions. In the latter, the set N consists of the states of
a finite automaton, whereas each letter of the input alphabet induces a specific
function: the next state when reading that letter.

We will restrict the attention to functions with one variable only. In many
contexts, especially in many-valued logic, it is natural to consider functions of
several variables. Many of the considerations below have been extended to func-
tions of several variables in [16, 17, 18].
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We make the following convention, valid throughout this paper: n always
stands for the number of elements in the basic set N . In most cases we let N
simply be the set consisting of the first n natural numbers:

N = {1, 2, . . . , n}.
Clearly, there are altogether nn functions in the set NN we are considering.

Consider a couple of examples. If we are dealing with n-valued logic, and the
function g is defined by the equation

g(x) = n− x+ 1, x = 1, 2, . . . , n,

then g is the well-known �Lukasiewicz negation. (1 is the truth value ”true”, n is
the truth value ”false”, whereas the other numbers represent the intermediate
truth values.) If we are dealing with a finite deterministic automaton whose state
set equals N , the function g defined by the equation above could be viewed as
transitions affected by a specific input letter a. Under this interpretation, the
letter a interchanges the states n and 1, the states n − 1 and 2, and so forth.
When we speak of ”functions”, without further specifications, we always mean
functions in the setup defined above. Clearly, the composition ab of two functions
a and b is again a function. We read compositions from left to right: first a, then
b. This is in accordance of reading the input words of a finite deterministic
automaton from left to right.

Our point of departure will be a nonempty set F of functions. The only
assumption about the set F is that it is a nonempty subset of the set NN of
all functions; F may consist of one function or of all functions. We will consider
the set G(F) of all functions generated by F, that is, obtained as compositions
(with arbitrarily many composition factors) of functions from F. If a particular
function f can be expressed as a composition of functions ai, i = 1, 2, . . . , k,
belonging to F:

f = a1a2 . . . ak,

where some of the functions ai may coincide, then the word a1a2 . . . ak is referred
to as a composition sequence for f . The number k is referred to as the length
of the composition sequence. The function f is often referred to as the target
function. Observe that our composition sequences have to be nonempty, implying
that the identity function is not necessarily in G(F); it is in there exactly in
case the set F contains at least one permutation.

Clearly, G(F) can be viewed as the semigroup generated by F. However,
we will prefer the more straightforward approach and will not use semigroup-
theoretic terminology in the sequel.

The set F is termed complete if all of the nn functions are in G(F). Following
[12], we will speak also of the genus and type of a function f . A function f is
said to be of genus t if it assumes exactly t values. Thus, the genus equals
the cardinality of the range of f . A function f of genus t is said to be of type
m1⊕m2⊕. . .⊕mt, wherem1+m2+. . .+mt = n if, for each i with 1 ≤ i ≤ t, there
is a number yi such that f assumes yi as a value exactly mi times. Obviously we
do not change the type if we change the order of the numbers mi, which means
that the operation ⊕ is commutative. For instance, permutations are of genus n
and of type 1 ⊕ 1 ⊕ . . . ⊕ 1. The type of a function f tells us how many values
f assumes and how many times it assumes each value. It does not tell us what
these values are and in what order they are assumed.
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Since n is finite, a specific function f can always be defined by a table.
Omitting the argument values, this amounts to giving the value sequence of f ,
that is, the sequence f(1), f(2), . . . , f(n) of its values for the increasing values
of the argument. The 8Lukasiewicz negation can be defined in this way by its
value sequence

n, n− 1, . . . , 2, 1.

When there is no danger of confusion, we omit the commas from the value
sequence. Thus, for n = 6, the value sequence of the 8Lukasiewicz negation reads
654321.

Completeness (of a set of functions) is fairly well understood, whereas rather
little is known about the length of the shortest composition sequence for a given
target function f . As will be indicated in more detail below, the length can be
viewed as the complexity or depth of f . For instance, [10] gives a comprehensive
account about the bases of the symmetric group. However, given a basis B and
a permutation p generated by B, very little is known about the length of the
product of the elements of B needed to generate p. General problems of this
nature are NP-hard.

To give a flavor of the completeness results, we now list some facts without
proofs. Further discussion can be found in [13, 14, 15, 17, 18]. We use the simple
expression “a set F of functions generates another set F’ of functions” to mean
that F’ is contained in G(F).

Lemma 1 Assume that n ≥ 4 and f is of genus < n. Then the set consisting
of f and of the members of the alternating group An generates every function of
the same type as f .

Lemma 2 The set of all functions of type m1⊕m2⊕ . . .⊕mt, where 1 < t < n,
generates every function of type (m1 +m2)⊕ . . .⊕mt.

The proofs of the two lemmas are not difficult. A minor difficulty in the
former is to use only even permutations in the construction. The lemmas indicate
the possibilities for constructing new functions if adequate permutations are
available. For instance, by Lemma 2, all constants are generated by the set given
in Lemma 1.

It is often possible to show that a composition sequence cannot any more be
continued to yield a given target function. Thus, in many cases, a wrong choice
at the beginning destroys the possibilities of obtaining the target function. For
instance, if the numbers in the type of a composition sequence are all even,
then the sequence cannot be continued to yield a target function whose type
contains an odd number. Similarly, a composition sequence of type 3⊕ 2 cannot
be continued to yield a target function of type 4 ⊕ 1. On the other hand, if
the target function is a constant, then the situation is entirely different: wrong
choices may be corrected later on. In other words, if a composition sequence
for a constant is at all possible, a composition sequence can also be obtained
by continuing an arbitrary prefix. Constants are the only functions having this
property. This is obvious also in view of the following lemma, which contains
some simple observations along these lines.

Lemma 3 The genus of the composition fg exceeds neither the genus of f nor
the genus of g. Assume that f is of type m1 ⊕ . . . ⊕ mt. Then the type of the
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composition fg is obtained by addition: each number in the latter type is the sum
of some of the numbers mi, whereby each of the numbers mi is used exactly once.

For the proof of the following main completeness theorem for unary functions,
we refer to [15].

Theorem 1 Given a nonidentical function f of genus n and a function g of
genus n−1, a function h can be effectively constructed such that the set {f, g, h}
is complete, provided it is not the case that n = 4 and f is one of the three
permutations (12)(34), (13)(24) and (14)(23). For n ≥ 3, no less than three
functions suffice to generate all functions and, whenever three functions form a
complete set, then two of them constitute a basis of the symmetric group Sn and
the third is of genus n− 1.

An essential tool in the proof is a result by Piccard (see [10], pp.80-86),
according to which a companion can be found to any nonidentical permutation
such that the two permutations constitute a basis of the symmetric group Sn.
The exceptional case here is n = 4: no permutation in the Klein Four-Group can
be extended to a basis of S4.

We conclude this section by discussing explicitly how the synchronizability
of finite automata fits into our general framework. The classical paper by E.F.
Moore, [9], about Gedanken experiments on finite automata, had the general idea
to view a finite automaton as a black box and to try to find out some specific facts
about it by observing what kind of outputs certain inputs produced. Of course,
for each experiment, the overall setup has to be defined explicitly. (See [6] for an
early contribution.) Suppose you know the structure (graph, transition function)
of a given finite deterministic automaton A, but do not know the state A is in.
How can you get the situation under control? For some automata, not always,
there are words, referred to as synchronizing, bringing the automaton always
to the same state q, no matter from which state you started from. Thus, you
first have to feed A a synchronizing word, after which you have the situation
completely under control. You can also view the graph of an automaton as a
labyrinth, where you are lost. If you then follow the letters of a synchronizing
word (and have the global knowledge of the graph of the automaton), you have
found your way. This shows the connection with the well-known road coloring
problem, [1].

Clearly, a synchronizing word can be viewed as a composition sequence for a
constant, and we are back in the setup introduced above. Indeed, consider a finite
deterministic automaton, without initial and final states, as a pair (N,F), where
N is the state set of cardinality n and F is a set of functions mapping N into
N . The set F determines both the input alphabet and the transition function in
the natural way, and input words correspond to compositions of functions. Our
convention about reading compositions from left to right is in accordance with
the customary way of reading input words from left to right.

An automaton is synchronizable if and only if it possesses a synchronizing
word. This happens exactly in case a constant function is in G(F).

2 Depth of compositions

We now come to the central notions concerning the length of composition se-
quences. For any language L, we denote by min(L) the length of the shortest

335Salomaa A.: Generation of Constants and Synchronization of Finite Automata



word in L. (If L is empty, we agree that min(L) = ∞.) We denote by L(F, f) the
set of all composition sequences for f , that is, the language over the alphabet F
whose words, viewed as composition sequences, yield the function f .

Definition 1 The depth of a function f with respect to the set F, in symbols
D(F, f), is defined by the equation

D(F, f) = min(L(F, f)).

Thus, the depth of a function with respect to a particular set can also be ∞.
The depth of a function f is defined by the equation

D(f) = max(D(F, f)),

where F ranges over all sets with the property L(F, f) �= ∅.
Because, for any f , there are sets F with the property mentioned in the defi-

nition, we conclude that the depth of a function is always a positive integer. (The
notion of depth was introduced in [8], where it was referred to as “complexity”.)

Definition 2 The complete depth DC(f) of a function f is defined by the equa-
tion

DC(f) = max(D(F, f))

where now F ranges over complete sets of functions.

In the latter definition it is a priori clear that L(F, f) �= ∅.
It follows by the definitions that every function f satisfies

DC(f) ≤ D(f).

However, lower bounds are much harder to obtain for DC(f), for the simple
reason that we have much less leeway if we have to restrict the attention to
complete sets F only.

In the sequel, we are especially interested in the constants

ci(x) = i, for all x and i = 1, 2, . . . , n.

We use the notation SYNCHRO for the class of all sets F such that at least one
of the constants ci is in G(F). (In defining SYNCHRO we have some fixed n in
mind. Thus, SYNCHRO actually depends on n.) Analogously to the definitions
above, we now define the depths

D(const), DC(const).

By definition,
D(const) = max

F
min{D(F, ci)|1 ≤ i ≤ n},

where F ranges over SYNCHRO. The depth DC(const) is defined in exactly the
same way, except that F ranges over complete sets. Thus, the notions introduced
do not deal with the depth of an individual function but rather give the smallest
depth of a constant, among the constants generated. Similarly as SYNCHRO,
the notions depend on n.
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We now show that there are specific functions and classes of functions whose
depth cannot be bounded from above by a polynomial in n. We give the basic
definition in automata-theoretic terms. Coming back to Gedanken experiments,
[9], we might sometimes want to keep the black box as it was, unchanged. This
leads to the following definition. A stabilizing word might give some information
about the behavior of the automaton, especially if the latter has outputs, but in
any case we do not lose anything since we always return to the starting point.

Definition 3 A nonempty word w over the alphabet Σ of a finite deterministic
automaton (Q,Σ, δ) is stabilizing if δ(q, w) = q holds for all states q. Similarly,
w is transposing if there are two distinct states q1 and q2 such that

δ(q1, w) = q2, δ(q2, w) = q1, δ(q, w) = q for q �= q1, q2.

Observe that, from the point of view of functions over the finite domain N =
Q, a stabilizing word defines the identity function, whereas transposing words
correspond to a class of functions. Analogously to the notation SYNCHRO, we
use the notations STABIL and TRANSP. Thus, TRANSP stands for the class
of all sets F such that at least one of the transposing functions is in G(F). The
depths

D(stabil), DC(stabil), D(transp), DC(transp)

are defined in the same way as for SYNCHRO and const. For instance,

D(transp) = max
F

min{D(F, t)|t is transposing},

where F ranges over TRANSP. All of these notions depend on n.

Theorem 2 There is no polynomial P (n) such that D(stabil(n)) ≤ P (n), for
all n. There is no polynomial P(n) such that D(transp(n)) ≤ P (n), for all n.

Proof. It suffices to consider an infinite sequence of numbers n of a specific
form. Consider first the case of STABIL. Let pi be the ith prime, and consider
numbers n of the form

n = p1 + p2 + · · ·+ pk.

Let a be a permutation in the symmetric group Sn, defined as the product of
k cycles of lengths p1, p2, . . . , pk. Let the set F consist of a only. Let the target
function id be the identity function. Clearly,

D(F, id) = p1p2 · · · pk = Π,

where the last equality is only a notation. By the well-known estimate pk ≤ k2,
we obtain n ≤ kpk ≤ k3, whence k ≥ 3

√
n. Since obviously Π ≥ k!, we obtain

finally
D(id) ≥ [ 3

√
n]!

which shows thatD(stabil(n)) cannot have any upper bound P (n). (Observe that
the situation described above can be viewed as an automaton with only one input
letter a. A similar technique has often been used in connection with trade-offs
between deterministic and nondeterministic finite automata. The automaton is
disconnected: the states form cycles with prime lengths. However, the automaton
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can easily be replaced by a connected one by adding a dummy letter not affecting
the shortest stabilizing word.)

The case of TRANSP is handled in almost the same way. We just omit the
first prime p1 = 2 from the product Π , obtaining the product Π ′. Since Π ′ is
odd, the word w′ = aΠ′

interchanges the two states in the first cycle. For this
particular automaton, the word w′ is the shortest transposing word. The above
argument is now applicable for upper bounds of D(transp(n)), because division
by 2 does not affect any of the conclusions.

Corresponding questions about the complete depth, such as whether or not
DC(transp(n)) possesses a polynomial upper bound, remain open. If one has to
deal with functionally complete automata, lower bounds such as the ones in the
above proof are hard to obtain.

3 Basic problems about constants

We discussed in Section 1 the interconnection between the synchronizability of
a finite automaton and a constant belonging to G(F). Although very basic and
studied from the early days of automata theory, no satisfactory solution is known
for the following problems.

– Characterize synchronizable automata. (Find a criterion telling when a con-
stant is in G(F).)

– What is the length of the shortest synchronizing word? (Given a set F in
SYNCHRO, what is the length of the shortest composition sequence for a
constant?)

We discuss in this section the latter problem. As regards the former problem,
we will present in Sections 4 and 5 some sufficient, as well as some necessary con-
ditions for synchronizability. Universal synchronizing words will be investigated
in the final Section 6.

The well-known C̆erný Conjecture can be expressed in the following form.

Conjecture 1 (C̆erný) D(const) = (n− 1)2.

We now present some facts related to Conjecture 1. The first question is:
Could one do better, that is, obtain a still smaller depth? The answer is negative,
as shown by the following example.

Consider the finite deterministic automaton A′ defined as follows. The au-
tomaton A′ has the state set N , and two input letters a (affects a circular
permutation) and b (identity except sends n to 1). The transitions are defined
by the table

δ 1 2 . . . n− 1 n
a 2 3 . . . n 1
b 1 2 . . . n− 1 1

We still depict the automaton for n = 4.
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1

2

4

3

✻

❄

✲

✛

a a

a

a, b☛
✡
✲

☛
✡
✲ ✟

✠
✛

b

b b

The word (ban−1)n−2b is synchronizing and, moreover, there are no shorter
synchronizing words and this word is the only synchronizing word of length
(n−1)2. The reader might want to prove these facts. The first impression is that
there could be shorter synchronizing words. Indeed, there are many possibilities
of applying a ”greedy” algorithm, that is, using the ”reduction” b earlier than
after n − 1 uses of the circular a. (Clearly, b has to be used in the reduction
sense altogether n−1 times.) But if one does so, one has to pay a price later on,
which makes the indicated synchronizing word shortest. The automaton A′ was
presented in [4]. For further information, see [3, 8, 11, 16, 17].

Let F consist of the functions a and b defining this particular automaton A′,
and consider the constant functions ci, 1 ≤ i ≤ n.

Lemma 4 D(F, ci) = (n− 1)2 + i− 1, for i = 1, 2, . . . , n.

See [15] for a proof of the lemma. The lemma yields the lower bounds in the
following theorem. The reference [15] contains also a proof of the upper bound;
various cubic upper bounds are known in the literature for different setups. The
upper bound 2n − n− 1 (agreeing with (n− 1)2 for n = 2, 3) follows directly by
the definition: if a synchronizing word w can be decomposed as w = xyz, where
δ(Q, x) = δ(Q, xy), then also the word xz is synchronizing.

Theorem 3 For a constant ci, we have n(n − 1) ≤ D(ci) < n3/2. Moreover,
D(const) ≥ (n− 1)2.

Thus, Conjecture 1 is actually open only as regards the upper bound. (Actu-
ally, a natural generalization of Conjecture 1 to functions of several variables is
not valid, [16, 17].) On the other hand, the automaton defined above is the only
automaton (when isomorphic variants are disregarded) known, which is defined
for an arbitrary n and which reaches the lower bound. For n = 3, there are many
automata reaching the lower bound 4. For n = 4, also the following automaton
due to [5] reaches the lower bound 9:
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Moreover, the following automaton due to [7], with n = 6, reaches the bound.
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☛
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✲
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✡
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✠
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b

b bb

a

a

a

a�
�

�
�

�
�

��✠

The shortest synchronizing words are of length (6− 1)2 = 25:

baabababaabbababaabbabaab, baabababaabbabaabaababaab.

Conjecture 1 is very strange in the sense that it is very difficult to find a
counter example but it is also hard to find examples satisfying the Conjecture in
the strict sense, that is, examples where the bound (n− 1)2 is actually reached.
Indeed, the examples mentioned above are the only ones known to me for values
n ≥ 4.

The variant of Conjecture 1, dealing with the depths of individual functions,
can be expressed as follows.

Conjecture 2 If ci is a constant, then D(ci) = n(n− 1).

It is a consequence of Theorem 3 that the depth n(n−1) cannot be reduced.
If Conjecure 1 holds, so does Conjecture 2. This is a consequence of the following
simple result.

Lemma 5 For a constant ci, we have D(ci) ≤ D(const) + (n− 1).
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On the other hand, it is conceivable (although very unlikely) that Conjecture
2 holds but Conjecture 1 fails.

It is not known whether the upper bound ((n − 1)2 or n(n − 1)) is reached
for the complete depth. Thus, it is possible that

DC(const) < (n− 1)2,

and DC(ci) < n(n− 1) holds for the constant ci.

Conjecture 3 DC(const) ≤ (n − 1)2 − (n − 3). Moreover, the complete depth
of a constant ci satisfies

DC(ci) ≤ (n− 1)2 + 2.

If true, Conjecture 3 gives also an example of a function whose complete depth
is strictly smaller than its depth. Various claims have been made in the literature
about the validity of Conjecture 1 for ”small” values of n. The Conjecture clearly
holds for n = 2, 3 because in this case the bound (n − 1)2 coincides with the
bound obtained from the number of all subsets. Really convincing proofs are
missing from the other cases. The number of possibilities is huge. For n = 5, one
has to go through 255

subcases.

4 Sufficient conditions for synchronizability

We have already pointed out that no characterization of synchronizable finite
automata is known. Some necessary and sufficient conditions, implied almost
directly by the definition, can be given. For instance, an automaton with the
transition function δ is synchronizable exactly in case, for any pair (p, q) of
states, there is a word x with the property δ(p, x) = δ(q, x). However, testing
synchronizability according to such a criterion is hard. In this and the next
section we give some less obvious criteria that either guarantee synchronizability
or non-synchronizability.

Thus, the problem is whether or not a given set F of functions is in SYN-
CHRO. Since a set consisting of permutations only can never be in SYNCHRO,
we denote by PRESYNCHRO the collection of all sets F containing at least one
function of genus less than n. Thus the problem consists of finding a character-
ization for those sets in PRESYNCHRO that are in SYNCHRO.

It is an immediate consequence of Lemmas 1 and 2 that, whenever F is in
PRESYNCHRO and contains the alternating group, then F is in SYNCHRO.
The following result is somewhat stronger.

Theorem 4 If a set in PRESYNCHRO contains a doubly transitive group, then
it is in SYNCHRO.

Proof. Let F be the given set and g a function in F of genus < n. Hence,
there are two distinct numbers i and j such that g(i) = g(j). Consequently,
whenever f is a function whose range contains the numbers i and j, then fg
is of smaller genus than f . Suppose we have a composition sequence w for a
function of genus t > 1. We take two arbitrary numbers i1 and j1 from the range
of this function, as well as a permutation h from the doubly transitive group
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mapping the pair (i1, j1) onto the pair (i, j). Now the composition sequence whg
defines a function of genus < t. Continuing in the same way, a constant (genus
1) is obtained, which concludes the proof.

Observe that the proof does not directly yield any estimates for the length
of the composition sequence for a constant, because the doubly transitive group
might be given in terms of some generators and the required permutations h
might have long composition sequences.

The above result cannot be extended to concern (simply) transitive groups.
Indeed, it is not necessarily the case that a set belonging to PRESYNCHRO
and containing a circular permutation is in SYNCHRO. This will be seen in the
next section.

Properties of n, such as primality or being a power of 2, influence the theory
of compositions. (See, for instance, [14].) We now show that, if n is prime, then
a set in PRESYNCHRO that contains a circular permutation actually is in
SYNCHRO.

The following lemma can be viewed as folklore, see [18]. We give the proof,
since it is not quite straightforward.

Lemma 6 Assume f is a circular permutation and N = N1 ∪ . . . ∪ Nt, where
1 < t < n and the sets Ni are nonempty, pairwise disjoint and not all of the
same cardinality. Let M contain exactly one element from each of the sets Ni.
Then there are numbers r and j such that the set f r(M) contains at least two
elements belonging to the set Nj.

Proof. We assume without loss of generality that the cardinality α of N1 is
maximal among the sets Ni. It follows that tα > n. Assume that

M = {a1, . . . , at}, where ai ∈ Ni, 1 ≤ i ≤ t.

Since f is circular, there are nonnegative integers βi, 1 ≤ i ≤ t, such that

fβi(a1) = ai, 1 ≤ i ≤ t.

(Clearly, we may choose β1 = 0.) In the sequel the exponents of f will be reduced
modulo n, that is, the smallest nonnegative remainder is always taken.

Since tα > n, the sets
fβi(N1), 1 ≤ i ≤ t,

cannot be pairwise disjoint. Consequently, there are integers γ and δ, where
1 ≤ γ < δ ≤ t, such that the sets fβγ (N1) and fβδ(N1) have a nonempty
intersection. This implies that also the sets N1 and fβδ−βγ (N1) have a nonempty
intersection. Thus, there is an element a ∈ N1 such that

fβγ−βδ(a) = b ∈ N1.

Choose a number r1 such that f r1(aγ) = a. We claim that the choices r =
r1 + βγ − βδ and j = 1 satisfy the lemma: f r maps both aγ and aδ to N1.

Observe first that
fβγ−βδ(aδ) = aγ .

We now obtain

f r(aγ) = fβγ−βδ (f r1(aγ)) = fβγ−βδ (a) = b ∈ N1,
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as well as
f r(aδ) = f r1(fβγ−βδ(aδ)) = f r1(aγ) = a ∈ N1.

This proves the claim and the lemma.

If n is prime, the assumption of the sets not being of the same cardinality is
always satisfied.

Theorem 5 Assume that n is prime, f is a circular permutation and g is a
function of genus less than n. Then f and g generate all constants.

Proof. Since f is circular, it suffices to prove that some function of genus 1 is
generated. If g is of genus 1, there is nothing to prove. We assume, inductively,
that a function h of genus t, where 1 < t < n, has already been generated and
claim that a function of genus u < t can be generated.

Let b1, . . . , bt be the values assumed by h, and let N1, . . . , Nt be maximal
subsets of the set N satisfying the condition h(Ni) = bi, for i = 1, . . . , t. Since
n is prime, the sets Ni cannot all be of the same cardinality. If h2 is of genus
smaller than t, we have established the claim. Otherwise, the numbers bi are in
different sets Ni. Choose now

M = {b1, . . . , bt}.
Choose, further, r and j according to Lemma 6. Then the function hf rh is of
genus u < t.

5 Necessary conditions for synchronizability

A general method for obtaining non-synchronizable automata is to investigate
properties formulated as follows.

Principle: Property P is preserved under compositions, and no constant
possesses P .

If each function in a given set F possesses such a property P , then F is not
in SYNCHRO.

One way of finding such properties P is to consider self-conjugate functions.
The latter have been widely studied in many-valued logic, where most of the in-
teresting functions have several variables. Therefore, the next definition is stated
for functions with several variables. The variables still range over the set N , and
also the function values are in N .

Definition 4 A function f(x1, . . . , xk) is self-conjugate under the permutation
g if

f(x1, . . . , xk) = g(f(g−1(x1), . . . , g−1(xk))).

For unary functions, self-conjugacy means simply that the function and the
permutation commute: gf = fg.

Self-conjugacy constitutes a property P , as defined above, provided the per-
mutation in question has no fixed-points
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Lemma 7 A set of functions is not in SYNCHRO if every function in the set
is self-conjugate under a permutation g and, moreover, g maps no element of N
into itself.

Proof. Since g commutes with every function in F, it commutes also with
every function in G(F). On the other hand, g cannot commute with any constant
i because, by the assumption, g maps i to j �= i.

Using Lemma 7, it is easy to give examples of sets in PRESYNCHRO that
contain circular permutations but are not in SYNCHRO, provided n is a com-
posite number. For instance, consider the following automaton with the state
set {1, 2, 3, 4}, input letters a, b, c, d and the transition function defined by the
following table:

δ 1 2 3 4
a 2 3 4 1
b 1 4 3 2
c 1 3 3 1
d 4 2 2 4

The automaton is not synchronizable. Indeed, each of the functions defined
by an input letter is self-conjugate under the permutation (13)(24), and the
function induced by the letter a is a circular permutation.

6 Universal synchronizing words

In this final section we will investigate words that will synchronize any synchro-
nizable automaton over a fixed alphabet Σ. Such words do not exist unless we
have an upper bound for the cardinality of the state set. For instance, no word
over the alphabet {a} synchronizes all synchronizable automata over {a}.

This leads to the following definition.

Definition 5 A word w ∈ Σ∗ is (universal) K-synchronizing if, whenever A =
(Q,Σ, δ), card(Q) ≤ K is synchronizable, then w is synchronizing for A.

We introduce next a related, somewhat more general notion. We do not want
to reduce the state set of an automaton to one state (as in connection with a
synchronizing word) but to reduce it by a fixed amount. The reduction has to
take place independently of the cardinality of the original state set.

Definition 6 A word w is K-reducing for a finite deterministic automaton A =
(Q,Σ, δ) if

card(δ(Q,w)) ≤ card(Q)−K.

The automaton A is K-reducible if it has a K-reducing word. A word w ∈ Σ∗
is (universal) K-reducing if, whenever A = (Q,Σ, δ) is K-reducible, then w is
K-reducing for A.

Some facts are immediate consequences of the definitions.

– If Σ = {a1, . . . , ak} then a1 . . . ak is universal 1-reducing.
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– Every universal K-reducing word is universal (K + 1)-synchronizing.
– For every Σ and K, universal K-synchronizing words exist. This follows

because there are only finitely many finite deterministic automata over Σ
possessing at most K states. Choose a synchronizing word for each synchro-
nizable automaton among them. Any catenation of such words is universal
K-synchronizing over Σ.

(Universal) K-reducing words are called K-collapsing in [2]. We do not dis-
cuss here the problem of their existence for an arbitrary K. (See [2] and the
further references given therein.)

¿From now on we consider alphabets with two letters and 2-reducing, as well
as 3-synchronizing words.

Lemma 8 Consider F = {f, g}, where f and g are of genus < n, such that
G(F) contains a function of genus ≤ n−2. Then a composition of length 2, that
is, one of the functions f2, g2, fg, gf is of genus ≤ n− 2.

Proof. We assume without loss of generality that both f and g are of genus
exactly n − 1. For 1 ≤ a ≤ n, we denote by N−a the set {1, . . . , n} − a. Thus,
for some a and b, where possibly a = b, we have

f(N) = N−a, g(N) = N−b.

We may assume further that

f(N−a) = N−a, g(N−b) = N−b,

because if this is not the case, then either f2 or g2 is of genus ≤ n− 2.
Consider now the set f(N−b). It is either of cardinality ≤ n − 2, or else

f(N−b) = N−a. In the former case we conclude that the function gf is of genus
≤ n − 2. Considering the set g(N−a), we conclude similarly that either the
function fg is of genus ≤ n− 2, or else g(N−a) = N−b.

Thus, we are left with the alternative

f(N−b) = N−a, g(N−a) = N−b.

(This alternative necessarily holds if a = b.) This implies that the range of any
composition of f and g equals either N−a or N−b. Hence, no function in G(F)
is of genus ≤ n− 2, which is a contradiction.

Lemma 9 Assume that a word w ∈ {f, g}∗ contains each of the words
fgf, fg2f, gfg, gf2g

as a subword. Then w is universal 2-reducing.

Proof. Consider a 2-reducible automaton with the input alphabet {f, g}. The
functions induced by f and g cannot both be permutations. If they are both of
genus < n, the lemma is a consequence of Lemma 8. Hence, we may assume that
one of them is a permutation and the other of genus < n. Because of symmetry,
we may assume that (the function induced by) g is a permutation. If f or f2 is
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of genus ≤ n − 2, there is nothing further to prove. Thus, we assume that, for
some a,

f(N) = N−a = f(N−a).

We know also that, for some distinct b and c, f(b) = f(c) and, moreover, that
one of b and c, say b, is not an element of N−a, that is, b = a.

The set g(N−a) is of cardinality n− 1. Thus, either g(N−a) contains both a
and c, or g(N−a) = N−a, or else g(N−a) = N−c. In the first case fgf is of genus
≤ n− 2. If g(N−a) = N−a, no composition of g and f is of genus ≤ n− 2, which
is impossible. Consequently, g(N−a) = N−c.

Observe that f(N−c) = N−a, or else f(N−c) is of cardinality≤ n−2, implying
that fgf is of genus ≤ n−2. Thus, we assume that the former alternative holds.
The alternatives g(N−c) = N−c and g(N−c) = N−a lead to the conclusion that
no function of genus ≤ n−2 is generated by f and g. This leaves the alternative
that that both a and c are contained in g(N−c). Hence, fg2f is of genus ≤ n−2,
which concludes the proof.

Theorem 6 The words

fg2f2gfg, fgf2g2fg, fgfg2f2g, fg2fgf2g,

as well as their mirror images, are universal 3-synchronizing. No word of length
at most 7 is universal 3-synchronizing over the alphabet {f, g}. The words listed
constitute all of the universal 3-synchronizing words of length 8.

Proof. The first sentence is an immediate consequence of Lemma 9. The
other claims follow by a simple case analysis. One observes first that no word
w, |w| ≤ 8, can be universal 3-synchronizing if it misses one of the subwords
listed in Lemma 9. If w misses the subword fgf (resp. fg2f), then we define f
by the value sequence 223, and g by the value sequence 321 (resp. 231). Now
w cannot be synchronizing for the automaton determined by f and g. (Observe
that fg3f (resp. fg5f) is synchronizing but the resulting total word will be of
length > 8, when the symmetry between f and g is taken into account.) Finally,
there is no word of length ≤ 7 having the words listed in Lemma 9 as subwords,
and the given words of length 8 are the only ones of length 8 possessing this
property.
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