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Abstract: When the words of a language are communicated via a noisy channel,
the language property of error-detection ensures that no word of the language can
be transformed to another word of the language. On the other hand, the property of
error-correction ensures that the channel cannot transform two different words of the
language to the same word. In this work we use transducers to model noisy channels
and consider a few simple transducer operations that can be used to reduce the lan-
guage properties of error-detection and error-correction to the transducer property of
functionality. As a consequence, we obtain simple polynomial-time algorithms for de-
ciding these properties for regular languages. On the other hand the properties are not
decidable for context-free languages. In addition we show that, in a certain sense, the
class of rational channels can be used to model various error combinations. Using the
same tools, we also obtain simple polynomial-time algorithms for deciding whether a
given regular language is thin and whether a given regular code has decoding delay d,
for given d, and for computing the minimum decoding delay of a given regular code.
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1 Introduction

Consider a language whose words are communicated via a noisy channel capable
of altering those words. If the language is error-detecting for the given channel
then no word of the language can be transformed to another word of the language
using the errors permitted by the channel. This property is basic as it allows one
to determine whether or not the received information is correct. On the other
hand, if the language is error-correcting for the given channel then no two differ-
ent words of the language can be transformed to the same word. In principle, a
communications language could be any language, but usually it is a finite set of
words or a free monoid generated by a code (a uniquely decodable set of words).
A channel could be any storage or communications medium possibly capable of
replacing symbols with other symbols, or even inserting and deleting symbols
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in the transmitted/stored words – see [Jürgensen and Konstantinidis 1996] and
[Jürgensen and Konstantinidis 1997] for details on channels. In this work we
use transducers to model noisy channels and consider a few simple transducer
operations that can be used to reduce the language properties of error-detection
and error-correction to the transducer property of functionality. Using the tools
considered here, we also obtain simple polynomial-time algorithms for decid-
ing whether a given regular language is thin and whether a given regular code
has decoding delay d, for given nonnegative integer d, and for computing the
minimum decoding delay of a given regular code.

It turns out that the idea of using transducer functionality to decide code
related properties is not new. It has been considered in [Head and Weber 1993]
where a remarkably simple and efficient algorithm is given for deciding whether
a given regular language is a (uniquely decodable) code. We also note that this
decidability question is answered in [McCloskey 1996] with the same time com-
plexity.

The paper is organized as follows. In the next section we give the basic
notation about words, languages, automata, relations and channels. In Section 3,
we consider certain simple transducer operations and discuss the complexity of
these operations. Moreover, we give a simple algorithm for deciding whether a
given regular language is thin. In Section 4, we discuss the decidability of the
error-detection property and in Section 5 the decidability of the properties of
error-correction and unique decodability in the presence of errors. The property
of decodability with finite delay for regular codes is considered in Section 6.
Finally, in Section 7 we examine the expressive power of transducers as error
models by showing that every SID channel is a rational channel.

2 Basic Notions and Notation

For a set S, we denote by |S| the cardinality of S. An alphabet is a non-empty
set of symbols. If V is an alphabet then V ∗ is the set of all words over V ,
including the empty word denoted by λ, whereas V + = V ∗ \ {λ}. We use the
notation |v| for the length of the word v. A language is any set of words. A
non-empty language C is called a uniquely decodable code or simply a code if,
for all positive integers m and n and for all words v1, . . . , vn, u1, . . . , um ∈ C,
the equation v1v2 · · · vn = u1u2 · · ·um implies that m = n and ui = vi for every
i = 1, . . . , n. In the sequel we shall use the symbols X and Y to denote two
finite alphabets. The reader is referred to [Rozenberg and Salomaa 1997] for
information on formal languages in general, and to [Berstel and Perrin 1985]
and [Jürgensen and Konstantinidis 1997] for information on codes.

Binary relations and channels
A binary relation ρ (over X and Y ) is a subset of X∗ × Y ∗. The relation is
called functional if (x, y1) ∈ ρ and (x, y2) ∈ ρ imply that y1 = y2. The inverse
of ρ, denoted by ρ−1, is the relation {(y, x) | (x, y) ∈ ρ} over Y and X . The
concatenation ρ1 · ρ2 of two relations ρ1 and ρ2 is the relation {(x1x2, y1y2) |
(x1, y1) ∈ ρ1, (x2, y2) ∈ ρ2}. If L is a language then ρ ↓ L is the relation ρ∩ (L×
Y ∗) = {(x, y) ∈ ρ | x ∈ L} and ρ ↑ L is the relation ρ ∩ (X∗ × L) = {(x, y) ∈ ρ |
y ∈ L}. Obviously, ρ ↑ L = (ρ−1 ↓ L)−1. Also, we define ρ(L) = {y | (x, y) ∈ ρ
for some x ∈ L}. The diagonal of the language L is the relation DL = {(x, x) |
x ∈ L}.
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In this paper, a channel (over X) is a binary relation γ ⊆ X∗ × X∗ that
is domain preserving; that is, (x, x) ∈ γ for all x ∈ {z | (z, y) ∈ γ for some
word y}. When (x, y) is in the channel γ we say that y can be received from
x, the input word, through γ. In case x �= y, we say that y can be received
from x with errors. The fact that γ is domain preserving means that error-free
communication is possible for input words. The channel γ is called a rational
channel, if it is realized by a finite transducer. In this case, the transducer is
called a channel transducer – see next section for transducers.

Automata
A finite automaton with empty transitions (a λ-NFA for short) is a quintuple
A = (X,Q, q0, Q+, E) such that X is the input alphabet, the pair (Q,E) is a
labeled directed graph with set of vertices Q, called the set of states, and set
of labeled edges E, called the set of transitions, q0 is the initial state in Q,
and Q+ is a subset of Q, called the set of final states. The transitions in E are
words of the form qxq′ such that q, q′ ∈ Q and x ∈ X ∪ {λ}. In this paper we
assume that X and Q are always disjoint. A computation of A is a word ω of the
form p0x1p1 · · ·xnpn such that each factor pi−1xipi of ω is in E. The language
accepted by the automaton A is denoted by L (A). A word w is in L (A) if and
only if there is a computation that starts with the initial state q0 and ends with
a final state in Q+ such that w is equal to the concatenation of the X∗-words
appearing in the computation.

The automaton is said to have accessible states if, for every state q in Q,
there is a path from q0 to q. The automaton is called trim if it has accessible
states and, for every state q, there is a path from q to a final state in Q+ (when
Q+ is not empty). The size of A, denoted by |A|, is equal to |Q|+ |E|. If A has
accessible states then |Q| ≤ |E|+1 and, therefore, |A| = Θ(|E|). The automaton
A is an NFA if, for every transition qxq′, x is not empty. It is called deterministic
if it is an NFA and, for every transitions qxq′ and qxq′′, q′ = q′′.

For a word x in X∗ we write Ax for a trim λ-NFA of size O(1+ |x|) such that
L (Ax) = {x}. The symbol Aall denotes a trim λ-NFA of size Θ(1) such that
L (Aall) = X∗. Given two λ-NFAs A and A′ one can construct the following –
see [Yu 1997].

• A∪A′: a λ-NFA of size O(|A|+ |A′|) such that L (A∪A′) = L (A)∪L (A′).
• A · A′: a λ-NFA of size O(|A|+ |A′|) such that L (A · A′) = L (A)L (A′).
• A∗: a λ-NFA of size O(|A|) such that L (A∗) = L (A)∗.
• Ad, for some d ≥ 0: a λ-NFA of size O(1+d|A|) such that L (Ad) = L (A)d.

If A and A′ are trim then also the constructed automata are trim.

3 Transducers

A (finite) transducer T is a sextuple (X,Y,Q, q0, Q+, E) such that Y is the
output alphabet and the componentsX , Q, q0, Q+, and E are as in the definition
of λ-NFAs with the following difference: the transitions in E are of the form
qx/yq′ with q, q′ ∈ Q, x ∈ X∗, and y ∈ Y ∗. As before, the sets Q and X ∪
Y are assumed to be disjoint. A computation of T is a word ξ of the form
p0x1/y1p1 · · ·xn/ynpn such that each factor pi−1xi/yipi of ξ is in E. The relation
realized by T is denoted by R(T ). A pair of words (w, z) is in R(T ) if and only
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if there is a computation that starts with q0 and ends with a final state in Q+

such that w is equal to the concatenation of the X∗-words and z of the Y ∗-words
that appear in the computation.

The transducer is called trim if, for every state q ∈ Q there is a path from
q0 to q and a path from q to a final state (when Q+ �= ∅).

The size, |T |, of the transducer T is equal to |Q|+
∑

qx/yq′∈E(|x/y|). If T is
trim then |T | = Θ(

∑
qx/yq′∈E(|x/y|)). The transducer is in standard form if, for

every transition qx/yq′, one has that x ∈ X ∪ {λ} and y ∈ Y ∪ {λ}. Note that
the size of a trim transducer in standard form is Θ(|E|). We refer the reader to
[Berstel 1979] for more information on transducers.

The transducer T is called functional if the relation R(T ) is functional. In
[Schützenberger 1975] it is shown that the problem of whether a given finite
transducer is functional is decidable. This result has been improved in terms of
the efficiency of the decision procedure in [Gurari and Ibarra 1983] and [Béal et
al. 2000] – see also [Head and Weber 1993]. If the given transducer T is real-time
then deciding functionality requires time O(|T |2) [Béal et al. 2000]. In [Head and
Weber 1993] it is stated that the problem is decidable in time O(|T |2 log |T |)
when T is in standard form. For the case where T is a (nondeterministic) sequen-
tial machine, the decision procedure is simpler and requires time O(|T |2) [Head
and Weber 1993]. We summarize the above results as follows (the alphabet size
is assumed to be fixed).

Proposition 1 The problem of whether a given transducer T is functional is
decidable in time O(tf(|T |)), for some polynomially bounded function tf.

Given two transducers T and T ′, and two λ-NFAs A and A′, one can con-
struct the following:

• A transducer T −1 of size O(|T |) such that R(T −1) = R(T )−1 – see [Yu
1997], for instance.

• A transducer T ·T ′ of size O(|T |+ |T ′|) such that R(T ·T ′) = R(T ) ·R(T ′).
The construction of T · T ′ is analogous to that of the automaton A · A′.

• A λ-NFA AT such that L (AT ) = (R(T ))(L (A)) – see below for details on
the size of AT .

• A transducer DA of size O(|A|) such that R(DA) = DL (A). The transducer
DA obtains from A by replacing each transition qxq′ of A with the transition
qx/xq′.

• A transducer A×A′ of size O(|A|+ |A′|) such that R(A×A′) = L (A)×
L (A′). The transducerA×A′ obtains fromA andA′ by replacing each transition
qxq′ ofA with qx/λq′, and each transition pyp′ of the automatonA′ with pλ/yp′,
and then ‘connecting’ each final state, say f , of A with the initial state, say q′0,
of A′ using the transition fλ/λq′0.

In the above, if the given λ-NFAs are trim and the given transducers are trim
and in standard form, then also the constructed automata are trim and the
constructed transducers are trim and in standard form.

Proposition 2 The following problem is computable in time O(|A||T |).

Input: a trim λ-NFA A and a trim transducer T in standard form.
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Output: a trim transducer, denoted T ↓ A (respectively, T ↑ A), in standard
form, such that R(T ↓ A) = R(T ) ↓ L (A) (respectively, R(T ↑ A) = R(T ) ↑
L (A)).

Proof. See the appendix. ✷

We note that the object T ↓ A ‘contains’ more information than AT does in the
sense that AT can be constructed from T ↓ A by simply removing the input
part from each of the transitions of T ↓ A. Note that a construction of AT is
given in [Yu 1997] where the automaton A is assumed to be deterministic and,
therefore, there the proof of correctness is less complex. In this paper, the fact
that A is nondeterministic is essential in the sections 4 and 5.

Corollary 1. The following problem is computable in time O(|A||T |).

Input: a trim λ-NFA A and a trim transducer T in standard form.
Output: a λ-NFA, denoted by AT , such that L (AT ) = (R(T ))(L (A)). ✷

A language L is called thin [Yu 1997] if L contains no two different words of
the same length. Let b be any alphabet symbol and let βL = {(w, b|w|) | w ∈ L}.
The next result follows easily from the definition of functional relation.

Proposition 3 A language L is thin if and only if the relation β−1
L is functional.

Corollary 2. The following problem is decidable in time O(tf(|A|)).

Input: a trim λ-NFA A.
Output: YES/NO, depending on whether the language L (A) is thin.

Proof. One constructs a trim transducer T in standard form, of size O(|A|),
such that px/b|x|p′ is a transition of T if and only if pxp′ is a transition of A.
As R(T ) = βL (A), the claim follows from the above proposition. ✷

We note that, if the given automaton A is an NFA, then the transducer
constructed in the above proof is a (nondeterministic) sequential machine; in
this case, the problem is decidable in time O(|A|2).

4 Error-Detection

Let γ be a channel. A language L is error-detecting for γ, [Konstantinidis and
O’Hearn 2002], if (w1, w2) ∈ γ implies w1 = w2 for all words w1, w2 ∈ Lλ, where
Lλ = L∪{λ}. Assuming that only words from Lλ are sent into the channel, if w2

is retrieved from the channel and w2 is in Lλ then w2 must be correct; that is,
equal to the word that was sent into the channel. On the other hand, if the word
retrieved from the channel is not in Lλ then an error is detected. The use of Lλ

as opposed to L ensures that λ cannot be received from a word in L \ {λ} and
that no word in L \ {λ} can be received from λ. Of particular interest is the case
where the language L is a free monoid generated by a code K; that is, L = K∗.
The code K is called (γ, ∗)-detecting, for some channel γ, if the language K∗ is
error-detecting for γ – see [Jürgensen and Konstantinidis 1997].
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Proposition 4 Let γ be a channel. A language L is error-detecting for γ if and
only if the relation γ ↓ Lλ ↑ Lλ is functional.

Proof. First note that γ ↓ Lλ ↑ Lλ is equal to {(w1, w2) ∈ γ | w1 ∈ Lλ, w2 ∈ Lλ}.
For the ‘if’ part, consider a pair (w1, w2) ∈ γ with w1, w2 ∈ Lλ. As γ is domain
preserving, also (w1, w1) ∈ γ. As γ ↓ Lλ ↑ Lλ is functional, w1 must be equal to
w2. Hence, L is error-detecting for γ. For the converse, consider two pairs (z, w1)
and (z, w2) in γ ↓ Lλ ↑ Lλ. As L is error-detecting for γ, z = w1 and z = w2

which implies that w1 = w2. Hence, γ ↓ Lλ ↑ Lλ is functional. ✷

Corollary 3. The following problem is decidable in time O(tf(|T ||A|2)).
Input: a trim λ-NFA A and a trim channel transducer T in standard form.
Output: YES/NO, depending on whether the language L (A) is error-detecting

for the channel R(T ).

Proof. The algorithm consists of, first, constructing the trim transducer (T ↓
(A ∪ Aλ)) ↑ (A ∪ Aλ) realizing the relation R(T ) ↓ L (A)λ ↑ L (A)λ, and then
testing whether the transducer is functional. The correctness and complexity of
the algorithm follow from the above proposition and Propositions 1 and 2. ✷

When K is a regular code then K∗ is a regular language. Also, as the λ-NFA
A∗ can be constructed from A in time O(|A|), the following obtains easily from
the above.

Corollary 4. The following problem is decidable in time O(tf(|T ||A|2)).
Input: A trim channel transducer T in standard form and a trim λ-NFA A

accepting a code.
Output: YES/NO depending on whether the code L (A) is

(
R(T ), ∗

)
-detecting.

✷

The fact that Proposition 2 works for λ-NFAs allows the polynomial-time
complexity in the above result. If that proposition involved a deterministic finite
automatonA, then we would need to construct a deterministic A∗ fromA which,
in general, requires an exponential number of states – see [Salomaa et al. 1994].

Proposition 5 The following problem is undecidable.

Input: A channel transducer T and a context-free grammar G.
Output: YES/NO depending on whether the language L (G) is error-detecting

for the channel R(T ).

Proof. We assume that the problem is decidable and obtain a contradiction
by showing that the Post Correspondence Problem (PCP) is decidable as well.
We use the following version of PCP – see [Harju and Karhumäki 1997]: Given
an alphabet Σ = {a1, . . . , an} and two morphisms g, h : Σ∗ → {s, t}∗ decide
whether E(g, h) = {z ∈ Σ+ | g(z) = h(z)} is empty. Using the assumption we
can construct the following algorithm whose input are the morphisms g and h:

(a) Let T be the transducer (X,X, {q0}, q0, {q0}, ∆), where X = {s, t} ∪ {$,#,
&}, with {$,#,&} ∩ {s, t} = ∅, and ∆ = {q0x/xq0 | x ∈ X} ∪ {q0$/&q0}.
Thus, T leaves every input symbol unchanged, except possibly for $ which
could be replaced with &.
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(b) Let I = {1, . . . , n} and let G be a context-free grammar generating the
language Lg ∪ Lh, where
Lg = {g(ai1 · · · aik

)$sik# · · ·#si1 | k ≥ 1; i1, . . . , ik ∈ I} and
Lh = {h(aj1 · · ·ajm)&sjm# · · ·#sj1 | m ≥ 1; j1, . . . , jm ∈ I}.

(c) Output YES/NO depending on whether Lg ∪ Lh is not error-detecting for
R(T ).

The contradiction arises if we show that E(g, h) is empty if and only if Lg ∪
Lh is not error-detecting for R(T ). First suppose that Lg ∪ Lh is not error-
detecting for R(T ). Then, there are words w1, w2 in Lg ∪ Lh such that w1 �=
w2 and (w1, w2) ∈ R(T ). By the construction of T , it follows that w1 must
contain a $ which is replaced with & and this is the only error that occurs
in w1 to get w2. Hence, w1 is of the form g(ai1 · · · aik

)$sik# · · ·#si1 and w2 is
g(ai1 · · ·aik

)&sik# · · ·#si1 . On the other hand, as w2 contains &, it must also be
of the form h(aj1 · · ·ajm)&sjm# · · ·#sj1 . Hence, g(ai1 · · · aik

) = h(aj1 · · · ajm)
and sik# · · ·#si1 = sjm# · · ·#sj1 which implies that ai1 · · · aik

= aj1 · · ·ajm

and, therefore, aj1 · · ·ajm ∈ E(g, h). For the converse, suppose z is in E(g, h).
Then, there are words w1 = g(z)$u in Lg and w2 = h(z)&u in Lh, for some
u ∈ s+(#s+)∗. As g(z) = h(z), it follows that (w1, w2) ∈ R(T ) and, therefore,
Lg ∪ Lh is not error-detecting for R(T ). ✷

5 Error-Correction and Unique Decodability (noisy case)

Let γ be a channel. A language L is error-correcting for the channel γ, if
(w1, z), (w2, z) ∈ γ implies that w1 = w2 for all words z ∈ X∗ and w1, w2 ∈ Lλ,
where Lλ = L∪ {λ}. Assuming that only words from Lλ are sent into the chan-
nel, if z is retrieved from the channel then there is exactly one word from Lλ

that have resulted in z. Therefore, even if z has been received with errors then,
in principle, one can find the word w ∈ Lλ with (w, z) ∈ γ, correcting thus the
errors in w. In the definition, the use of Lλ ensures that the empty word and a
nonempty word of L can never result in the same output through the channel
γ. It should be clear that if a language is error-correcting for γ then it is also
error-detecting for γ, assuming that the language is included in the domain of
the channel γ.

Proposition 6 Let γ be a channel. A language L is error-correcting for γ if
and only if the relation γ−1 ↑ Lλ is functional.

Proof. The claim follows by the definitions of error-correcting language and re-
lation functionality when we note that γ−1 ↑ Lλ = {(z, w) | (w, z) ∈ γ and
w ∈ Lλ}. ✷

Corollary 5. The following problem is decidable in time O(tf(|T ||A|)).
Input: a trim λ-NFA A and a trim channel transducer T in standard form.
Output: YES/NO, depending on whether the language L (A) is error-correcting

for the channel R(T ).

Proof. The statement follows by Propositions 1 and 2, and by the above propo-
sition when we note that the relation R(T )−1 ↑ L (A)λ is realized by the trim
transducer T −1 ↑ (A ∪Aλ), which can be constructed in time O(|T ||A|). ✷
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As a special case of the above result, consider the transducer T1 = (X,X, {q0,
q1}, q0, {q0, q1}, E1), where E1 = {qx/xq | x ∈ X, q ∈ {q0, q1}} ∪ {q0x/x′q1 |
x, x′ ∈ X,x �= x′}. Clearly, the transducer realizes the channel that allows up
to 1 substitution error in any input word. Therefore, the problem of whether a
given regular language is 1-error-correctable, which is considered in [Dassow et
al. 1997], can be decided efficiently using transducer functionality. An impor-
tant consequence of Proposition 6 is that unique decodability in the presence
of errors can also be decided efficiently. A code K is uniquely decodable for the
channel γ (or (γ, ∗)-correcting [Jürgensen and Konstantinidis 1997]) if the lan-
guage K∗ is error-correcting for γ. As one can construct the automaton A∗ from
the automaton A in time O(|A|), the following obtains easily.

Corollary 6. The following problem is decidable in time O(tf(|T ||A|)).

Input: a trim λ-NFA A accepting a code and a trim channel transducer T in
standard form.

Output: YES/NO, depending on whether the code L (A) is uniquely decodable
for the channel R(T ). ✷

We note that the question of deciding whether a given finite code is uniquely
decodable for certain channels has also been considered in [Hartnett 1968], [Sato
1979], and [Konstantinidis 1999].

In [Dassow et al. 1997] it is shown that the problem of whether a given
context-free language is 1-error correctable is undecidable. Hence, the following
analogue of Proposition 5 obtains.

Proposition 7 The following problem is undecidable.

Input: A channel transducer T and a context-free grammar G.
Output: YES/NO depending on whether the language L (G) is error-correcting

for the channel R(T ). ✷

6 Unique Decodability with Finite Delay (noiseless case)

A codeK is said to have finite decoding (also called deciphering) delay, if there is
a nonnegative integer d such that, for every v1, v2 ∈ K and for every z ∈ KdX∗,
v1z ∈ v2K

∗ implies v1 = v2 [Berstel and Perrin 1985]. In this case, we say thatK
has decoding delay d. The problem of deciding whether a given regular code has
finite decoding delay has been shown to be decidable in [Devolder et al. 1994].
Here, we consider a different version of the problem: decide whether the code K
has decoding delay d, for given regular code K and given nonnegative integer d.

Proposition 8 Let K be a code and let d be a nonnegative integer. The code K
has decoding delay d if and only if the relation DK · (KdX∗×{λ}) is functional.

Proof. First note that DK · (KdX∗ × {λ}) is equal to {(vz, v) | v ∈ K, z ∈
KdX∗}. Thus, it is sufficient to show that K has decoding delay d if and only if
v1K

dX∗ ∩ v2K
dX∗ �= ∅ implies v1 = v2 for all v1 and v2 in K.

Assume that K has decoding delay d and consider words v1, v2 ∈ K, u1, u2 ∈
Kd, and y1, y2 ∈ X∗ such that v1u1y1 = v2u2y2. Without loss of generality,
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suppose that v1u1 is no longer than v2u2; then v2u2 = v1u1y
′
1, for some prefix

y′1 of y1. As u1y
′
1 ∈ KdX∗ and v1(u1y

′
1) ∈ v2K

∗, it follows that v1 = v2 as
required. For the converse, consider words v1, v2 ∈ K and z ∈ KdX∗ such that
v1z ∈ v2K

∗. Then, as v1zv
d
1 ∈ v2K

dX∗, one has that v1 = v2, as required. ✷

Corollary 7. The following problem is decidable in time O(tf((1 + d)|A|)).
Input: a nonnegative integer d and a trim λ-NFA A accepting a code.
Output: YES/NO, depending on whether L(A) has decoding delay d.

Proof. The statement follows from the above proposition when we note that
the relation DL (A) · (L (A)dX∗ × {λ}) can be realized by the trim transducer
DA · ((Ad · Aall)×Aλ) of size O((1 + d)|A|). ✷

We continue with a few facts from [Devolder et al. 1994]. The adherence of
a language L, denoted by Adh(L), consists of all the right infinite words w such
that every prefix of w is a prefix of some word in L. The following is shown in
[Devolder et al. 1994].

Lemma8. The following statements hold true for every regular code L.
1. If L has a finite decoding delay then Lω ∩ L∗Adh(L) = ∅.
2. If L is an ω-code and Lω ∩ L∗Adh(L) = ∅, then L has a finite decoding

delay. ✷

For a regular language L, let minstates(L) be the smallest number of states
in any NFA accepting L. The proof of the second statement of the lemma can
be modified appropriately to obtain the following result.

Proposition 9 If a regular code L has minimum finite decoding delay d, then
d ≤ minstates(L). ✷

Corollary 9. The following problem is computable in time O(tf(|A|2) log |A|).
Input: a trim NFA A accepting a code.
Output: the minimum decoding delay of L (A).

Proof. Let d be the number of states of A. Then, minstates(L (A)) ≤ d. As
d ≤ |A|, the minimum decoding delay of L (A) is either infinite or equal to one
of the values 0, . . . , |A|. The algorithm performs binary search on this list of
values such that, for each current value m, it tests whether L (A) has decoding
delay m in time O(tf((1 +m)|A|)). The time complexity follows when we note
that each m is no greater than |A| and that the search performs at most log |A|
steps. ✷

7 Rational Channels and SID-Channels

Usually, it is not too difficult to construct transducers for realizing certain SID-
channels. Here we show a general construction method to realize any SID-channel
by a transducer. This demonstrates that the expressive power of transducers as
error models is very large. First we outline the basic concepts involved in defining
SID-channels – see [Konstantinidis 2001] for details.
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Let X be an alphabet containing the symbols a and b. To model the effects
of channels on words over X , we consider certain types of words, called error
functions, which are applied on words over X on a symbol by symbol basis.
Consider, for instance, the word x = abab and consider a channel that would
allow one substitution, one insertion and one deletion in x. As x = λaλbλaλbλ,
we see that there are four possible positions for a substitution (the four symbols
of x), five possible positions for an insertion (the five λs), and four possible
positions for a deletion. Thus, baaa is a possible output from x by inserting a
b in front of x, substituting the first b of x with a, and deleting the last b of x.
This effect can be expressed by applying the sequence of basic error functions
ib, e, e, s, e, e, e,d, e to each of the nine positions of x, respectively, where e is
the identity function on X ∪ {λ} (no error at that position), ib is the function
on {λ} that maps λ to b (insertion in that position), d is the function that maps
every symbol in X to λ (deletion at that position), and s is any substitution
function: a function that maps any x ∈ X onto a symbol in X \ {x}. Thus, if we
consider the error function h = ibeeseeede, then

h(x) = ib(λ)e(a)e(λ)s(b)e(λ)e(a)e(λ)d(b)e(λ) = baaa.

Note that the alphabet of basic error functions is infinite as it contains iu, for
every u ∈ X+. Generally, when x is a word of length n, an error function h can
be applied on x provided that |h| = 2n+1. Hence, every error function is of odd
length. We use the symbol H to denote the set of error functions. Any subset
of H is called an SID-language. If F is a finite non-empty SID-language, we use
the symbol >F for the integer with the property that 2>F + 1 is the length of a
longest error function in F .

The set of error functions is equipped with a product operation, ‘·’, such that
(H, ·) is a monoid whose neutral element is e. Specifically, if h and g are error
functions, the product h ·g is defined as the usual concatenation of words, except
at the point where the last symbol of h, say h2n, and the first symbol of g, say
g0, are concatenated; these symbols become one symbol, c, as follows:

c =

{h2n, if g0 = e;
g0, if h2n = e;
iu1u2 , if h2n = iu1 and g0 = iu2 .

For example, (ede) ·(iase) = ediase, (ede) ·(ese) = edese, and (edib) ·(iase) =
edibase.
When h can be written as f1 · g · f2, the error function g is called an H-infix of
h. Similarly, if h = g · f then g is an H-prefix of h.

Definition 10. An SID-support is a finite SID-language F such that the follow-
ing conditions hold for every h in F :

1. If g is an H-infix of h then g is in F .
2. If g is of the form eihej , for some non-negative integers i and j, and |g| ≤

2>F + 1 then g is in F .

An SID-language Z is said to be of bounded error effects if there is an SID-
support F such that h is in Z if and only if g is in F for every H-infix g of h
with |g| ≤ 2>F + 1. In this case, we write Z = �F �.
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Given an SID-language E, we write R(E) to denote the relation

{(x, y) | x ∈ X∗, y = h(x), for some h ∈ E}.

If the language E is of bounded error effects with support F , that is E = �F �,
then R(�F �) is a channel.

Using SID-supports one can define the class of SID-channels which captures
the effects of various error combinations including the cases where errors are
scattered or they occur in bursts. Here we only give the formal definition of the
SID-channel σ � δ(m, >), where m and > are positive integers with m < >, that
permits at most m (scattered) substitutions and deletions in every > consecutive
input symbols – see [Konstantinidis 2001] for the full class of SID-channels. The
channel is equal to R(Sm,�), where Sm,� is the SID-support

{h ∈ Hσ�δ | |h| ≤ 2>+ 1, ν(h) ≤ m}.

Here Hσ�δ is the set of all error functions containing only symbols e, d, or s
(for any possible substitution function s), and ν(h) is the number of substitution
and deletion symbols that occur in h.

Proposition 10 For every SID-support F there effectively exists a transducer
TF such that R(�F �) = R(TF ). Hence, every SID-channel is a rational channel.
On the other hand, there is a rational channel γ for which no SID-support F
exists with γ = R(�F �).

Proof. The transducer TF is equal to (X,X,Q, α, {ω}, ∆F ) such that Q = {α, ω}
∪F̂ , where F̂ = {h ∈ F | |h| = 2>F + 1}, and ∆F consists of the following
transitions, for every g,h ∈ F̂ and x, x′ ∈ X∗:

– αλ/λg
– gx/x′h, where |x| = >F and g · h ∈ �F � and x′ = g(x)
– hx/x′ω, where |x| ≤ >F and x′ = f(x) for some H-prefix f of h.

Intuitively, if TF is at state g then the channel will apply the error function g
on the next >F input symbols, or a prefix of g on the last block of the input.
For the correctness of the construction, first assume (x, y) ∈ R(TF ). Then, there
is a computation αλ/λh1x1/x

′
1 · · ·hnxn/x

′
nω of TF , with n positive integer and

x = x1 · · ·xn and y = x′1 · · ·x′n, such that for i < n one has hi · hi+1 ∈ �F � and
|xi| = >F and x′i = hi(xi). Also, x′n = f(xn) for some H-prefix f of hn. Then
g ∈ �F �, where g = h1 · . . . ·hn−1 · f . As y = h1(x1) · · ·hn−1(xn−1)f(xn) = g(x),
it follows that (x, y) ∈ R(�F �) as required.

For the converse, assume (x, y) ∈ R(�F �). Then, there is an error function
h ∈ �F � such that y = h(x). Moreover, there is a positive integer n such that
x = x1 · · ·xn with xi ∈ X�F for i < n and xn ∈ X∗ is of length at most
>F . Then, there are error functions h1, . . . ,hn such that h = h1 · . . . · hn and
h(x) = h1(x1) · · ·hn(xn). If |hn| < 2>F + 1 then there is an error function g in
F̂ of the form hn ·e+. Also, if n > 1 then hn−1 ·g is in �F �. Now let yi = hi(xi);
then,

αλ/λh1x1/y1 · · ·hn−1xn−1/yn−1gxn/ynω

is a computation of TF and, therefore, (x, y) ∈ R(TF ) as required.
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Now consider the channel γ = {(w,w), (wx,w) | w ∈ X∗, x ∈ X} which is
realized by the transducer (X,X, {q0, q1}, q0, {q0, q1}, ∆) with transitions ∆ =
{q0x/xq0 | x ∈ X}∪ {q0x/λq1}. Assume that γ = R(�F �) for some SID-support
F and consider two different symbols x1, x2 ∈ X and any word w ∈ X∗. As
(wx1, w) ∈ γ, there is an error function h ∈ �F � such that h(wx1) = w. Then
also h·eee ∈ �F � and, as (h·eee)(wx1x2) = wx2, one has that (wx1x2, wx2) ∈ γ,
which is impossible. ✷
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Appendix

In this appendix we give the proof of Proposition 2.

Proof. Because of symmetry we only give the proof for T ↓ A. Let T = (X,Y,Q,
q0, Q+, E) and let A = (Z,P, p0, P+, D). The required transducer T ↓ A is equal
to (X,Y, PQ, p0q0, P+Q+, C), where the set of transitions C is constructed as
follows: Initially, C = ∅; then:
– for each p ∈ P and for each qλ/yq′ ∈ E, add pqλ/ypq′ in C;
– for each q ∈ Q and for each pλp′ ∈ D, add pqλ/λp′q in C;
– for each pzp′ ∈ D and qx/yq′ ∈ E, if z = x add pqx/yp′q′ in C.

By the above construction it follows that, if pqx/yp′q′ is in C then, for pxp′ we
have that pxp′ is in D or, x = λ and p = p′. Moreover, for qx/yq′ we have that
qx/yq′ is in E, or x = y = λ and q = q′. Obviously, the transducer T ↓ A is
in standard form and |C| ≤ |P ||E|+ |Q||D|+ |E||D|. Also, by the assumptions
about T and A, we have that |P | ≤ |D| + 1 and |Q| ≤ |E| + 1. Hence, the
size of T ↓ A = O(|A||T |). In general, the transducer might not be trim, but
we can transform it to an equivalent trim transducer in standard form in time
O(|T ↓ A|).

For the correctness of the construction we need to show that R(T ↓ A) =
R(T ) ↓ L (A). First assume that (w, z) ∈ R(T ↓ A); then there is a compu-
tation p0q0w1/z1p1q1 · · ·wn/znpnqn such that pnqn ∈ P+Q+, w = w1 · · ·wn,
z = z1 · · · zn, and pi−1qi−1wi/zipiqi is in C for all i ∈ {1, . . . , n}. Consider
the words ω = p0w1p1 · · ·wnpn and ξ = q0w1/z1q1 · · ·wn/znqn and note that
A is equivalent to A′ = (Z,P, p0, P+, D

′), where D′ = D ∪ {pλp | p ∈ P},
and that T is equivalent to the transducer T ′ = (X,Y,Q, q0, Q+, E

′), where
E′ = E ∪ {qλ/λq | q ∈ Q}. Then, as every pi−1wipi is in D′, the word ω is a
computation of A′ such that pn ∈ P+ which implies w1 · · ·wn ∈ L (A′). Hence,
w ∈ L (A). Similarly, the word ξ is a computation of T ′ with qn ∈ Q+ which
implies that (w, z) ∈ R(T ), as required.

Now assume that (w, z) ∈ R(T ) and w ∈ L (A). Then there is a computation
ω = p0w1p1 · · ·wmpm of A with pm ∈ P+, w = w1 · · ·wm and pi−1wipi ∈ D,
and a computation ξ = q0u1/z1q1 · · ·un/znqn of T with qn ∈ Q+, w = u1 · · ·un,
z = z1 · · · zn, and qi−1ui/ziqi ∈ E. Let > = |w|; then w = wi1 · · ·wi�

= uj1 · · ·uj�
,

where the symbols wir and ujr are in X for all r ∈ {1, . . . , >}. Consider the words
ω′ and ξ′ that obtain from ω and ξ, respectively, as follows:
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– For r = 1, . . . , >, let dr = (ir − ir−1) − (jr − jr−1), where we assume that
i0 = j0 = 0. If dr < 0 insert in ω the word (λpir−1)|dr| before wirpir . If
dr > 0 insert in ξ the word (λ/λqjr−1)dr before ujr/zjrqjr . Moreover, let
d = (m− i�)− (n− j�). If d < 0 append the word (λpm)|d| at the end of ω.
If d > 0 append the word λ/λqn at the end of ξ.

It follows that ω′ is of the form p′0v1p
′
1 · · · vkp

′
k and ξ

′ is of the form q′0v1/y1q
′
1 · · ·

vk/ykq
′
k such that w = v1 · · · vk and z = y1 · · · yk, where vi ∈ X ∪ {λ} and

yi ∈ Y ∪ {λ}. We argue now that the word ζ = p′0q
′
0v1/y1p

′
1q

′
1 · · · vk/ykp

′
kq

′
k is

a computation of the transducer T ↓ A; therefore, (w, z) ∈ R(T ↓ A). Indeed,
consider each ζt = p′t−1q

′
t−1vt/ytp

′
tq

′
t. Then, ω

′
t = p′t−1vtp

′
t occurs in ω′ and ξ′t =

q′t−1vt/ytq
′
t occurs in ξ′. Moreover, for ω′

t we have that either it is in D or that
vtp

′
t = λp′t−1 was inserted in ω; and for ξ′t, either it is in E or vt/ytq

′
t = λ/λq′t−1

was inserted in ξ. Hence, there are four possibilities for the structure of ω′
t and

ξ′t each of which implies that ζt is in C. ✷
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