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Abstract: In this paper, we present a fast and simple algorithm for constructing a
minimal acyclic deterministic finite automaton from a finite set of words. Such au-
tomata are useful in a wide variety of applications, including computer virus detection,
computational linguistics and computational genetics. There are several known algo-
rithms that solve the same problem, though most of the alternative algorithms are
considerably more difficult to present, understand and implement than the one given
here. Preliminary benchmarking indicates that the algorithm presented here is com-
petitive with the other known algorithms.
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1 Introduction

In this paper, we present a fast and simple algorithm for constructing a minimal
acyclic deterministic finite automaton from a finite set of words. Such automata
(or variants of them) are useful in a wide variety of applications, such as: com-
puter virus detection, computational linguistics (spell checking/correction, mor-
phological analysis, etc.) and computational genetics. There are several known
algorithms that solve the same problem [see Watson 2002], however, most of the
alternative algorithms are considerably more difficult to present, understand and
implement than the one given here. The presentation of the new algorithm is
particularly elegant, relying on a minimum of formal language principles.

1.1 Preliminaries

We assume that readers are familiar with the fundamentals of formal languages
and automata (including determinism and minimality) [see Hopcroft and Ullman
1979]. Here, we briefly present the additional required mathematical preliminar-
ies.

Throughout, we assume a fixed alphabet Σ. Given a language L, define
pref(L) (resp. suff(L)) to be the set of all (not necessarily proper) prefixes
(resp. suffixes) of words in L; note that ε ∈ pref(L), suff(L) when L �= ∅.
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1.2 Problem statement

Given a finite set of words W , construct a minimal acyclic deterministic finite
automaton accepting W . Such an automaton is known to be unique (up to
isomorphism of states).

2 Automata with structured states

In typical presentations of automata algorithms, a state has no internal structure
(perhaps they are simply integers, as would be the case in a typical implemen-
tation). Instead, our states carry additional information useful in showing the
correctness of the algorithm.

Definition 1 (Structured states) A state (L, R) is a pair of languages. We
define two ‘language extraction’ operators such that

←−−−
(L, R) = L and

−−−→
(L, R) = R.

The intuition behind this definition is that ←−p (resp. −→p ) is the ‘left (resp. right)
language’ of p. The left (resp. right) language of a state is the set of words
appearing on paths from a start state to p (resp. from p to a final state). Any
state with ∅ as left or right language is a useless state and can be eliminated
from the automaton without changing the language accepted.

Not all possible state sets necessarily make a valid finite automaton, so we
now define when a state set is ‘valid’.

Definition 2 (Valid state set) Given language W , a state set Q is ‘valid’ iff:

– (Containment) For all states p :←−p −→p ⊆W (only valid words are accepted);
and

– (Coverage) W = ∪p∈Q
←−p −→p (all words in W are accepted); and

– (Prefix closure) pref(W ) = ∪p∈Q
←−p (all prefixes of W lead to some state);

and
– (Suffix closure) suff(W ) = ∪p∈Q

−→p (all suffixes of W lead from some state
to a final state).

Additionally, there must exist some ‘transition relation’ δ (a ternary relation
over Q×Σ ×Q) such that for all states q we have −→q = ∪a,r:(q,a,r)∈δ{a}−→r and←−q = ∪p,a:(p,a,q)∈δ

←−p {a}.
Throughout this paper, we assume some valid state set Q.

Remark 1 (Transitions and start and final states) With the definition of
valid state sets, we need not explicitly discuss the transition function (it follows
easily from the definition of valid state sets). The start state(s) are those p such
that ε ∈ ←−p and the final state(s) are those p such that ε ∈ −→p .
Thanks to the structured states, we can define a number of additional properties
of automata, including determinism and minimality.

Definition 3 (Determinism) An automaton is ‘deterministic’ iff for all p, q ∈
Q : p �= q ←−p ∩←−q = ∅
Intuitively, in a deterministic automaton, a word w cannot appear in the left
language of two distinct states since that would imply two w paths from a start
state. Determinism also implies no more than one start state.
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Definition 4 (Minimality) A deterministic automaton is ‘minimal’ iff for all
p, q ∈ Q : p �= q −→p �= −→q
In a minimal deterministic automaton, if two distinct states have the same right
language, they could be merged (see below) into one, making a smaller determin-
istic automaton.

Towards presenting an automaton construction algorithm, we give two trans-
formations on automata — both of which preserve the state validity and the
language accepted by the automaton.

Definition 5 (State merging) Two states p, q can be merged when −→p = −→q ,
giving a single state

(←−p ∪←−q ,−→p )

In practice, this is done by combining their in-transitions and using the out-
transitions from just one of them. This transformation preserves determinism.

Definition 6 (State splitting) Two states p, q can be split (also known as ‘in-
tersected’) and replaced by three states:

– (Intersection) (←−p ∩←−q ,−→p ∪ −→q ).
– (p residual) (←−p −←−q ,−→p ).
– (q residual) (←−q −←−p ,−→q ).

Clearly, in cases where one of the resulting left languages is ∅, the state need not
be constructed at all.

Both of these operations can be expanded to multi-ary operations.

3 Constructing a minimal acyclic deterministic automaton

In order to build a minimal acyclic deterministic automaton accepting W , we
have at least two possible choices:

1. Build an acyclic deterministic automaton accepting W and then merge states
which have equal right languages. This is the traditional approach taken by
most of the algorithms [see Watson 2002].

2. Build an acyclic (not necessarily deterministic) automaton accepting W and
split states which share words in their left languages — eventually yielding
an automaton in which the states have pairwise disjoint left languages (it is
deterministic) — while simultaneously ensuring that the right languages are
pairwise unequal (it is minimal).

Since the first approach is well-explored, we pursue the second approach in this
paper.

As input to the state splitting phase, we require some property on the au-
tomaton so that state splitting preserves inequality of right languages (and there-
fore leads to minimality once the automaton is deterministic).

Definition 7 (Condition for minimality under state splitting) A
sufficient condition is:
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– For all states p, −→p is a singleton set; and
– For all states p, q : p �= q −→p �= −→q

From the definition of a valid state set and the above condition, we also see that
the right languages are a partition (into singletons) of suff(W ).

Proposition 1 Assume that the above condition holds. We perform multi-ary
state splitting, always choosing a largest set of states Q′ (to split simultaneously)
such that ∩p∈Q′←−p �= ∅. Such state splitting (starting with the above condition
holding) can never yield two states p, q : −→p = −→q . This follows from
– −→p = −→q does not hold initially (by the condition).
– If −→p = −→q , then p and q must both be the result of state splitting. (It is
not possible for one of them to be an ‘original’ state and the other to result
from state splitting, since state splitting in this case yields non-singleton
right languages.) However, since the original states’ right languages are a
partition of suff(W ), if −→p = −→q , then p and q must be the result of splitting
the same states, in which case p = q.

When no further splitting is possible, we have the minimal acyclic deterministic
finite automaton for W .

4 Implementation

Two issues remain:

1. How to obtain an automaton satisfying our condition. This is rather easily
satisfied, by observing that such an automaton is the reverse of the ‘re-
verse trie’ corresponding to W . Such an automaton can be built in time
O(∑w∈W |w|) using an algorithm given in most automata text books or in
[Watson 2002].

2. Implementing state splitting. We can perform the state splitting in a topo-
logical traversal (of the transition function), starting with the set of states
p : ε ∈ ←−p . Interestingly, the algorithm corresponds to a version of the ‘subset
construction’ algorithm (sometimes known as the ‘powerset construction’ al-
gorithm) for determinizing an automaton. For details, consult [Hopcroft and
Ullman 1979].

Since they are presented in a number of text books, these two component algo-
rithms are not explicitly given here.

5 Commentary

The algorithm presented here can also be derived from Brzozowski’s minimiza-
tion algorithm as was done in [Watson 1999] and [Watson 2002]. (See [Watson
2001] for presentations of Brzozowski’s minimization algorithm.) The running
time of the algorithm presented here is known to be O(∑w∈W |w|) [see Watson
2002].
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