
Extensions of Affine Arithmetic: Application to

Unconstrained Global Optimization

Frédéric Messine1
(Université de Pau et des Pays de l’Adour

UFR-Sciences et Techniques, Département d’Informatique
B.P. 1155, 64 013 Pau, France
Frederic.Messine@univ-pau.fr)

Abstract: Global optimization methods in connection with interval arithmetic permit
to determine an accurate enclosure of the global optimum, and of all the corresponding
optimizers. One of the main features of these algorithms consists in the construction of
an interval function which produces an enclosure of the range of the studied function
over a box (right parallelepiped).

We use here affine arithmetic in global optimization algorithms, in order to elaborate
new inclusion functions. These techniques are implemented and then discussed. Three
new affine and quadratic forms are introduced. On some polynomial examples, we
show that these new tools often yield more efficient lower bounds (and upper bounds)
compared to several well-known classical inclusion functions. The three new methods,
presented in this paper, are integrated into various Branch and Bound algorithms. This
leads to improve the convergence of these algorithms by attenuating some negative
effects due to the use of interval analysis and standard affine arithmetic.

Key Words: Affine Arithmetic, Interval Arithmetic, Inclusion Functions, Global Op-
timization, Branch and Bound Algorithm.

Category: G.1.0 - General and G.1.6 - Optimization

1 Introduction

Interval arithmetic was introduced by Moore as a basic tool for the estimation
of numerical errors in machine computations. Instead of approximating a real
value x with a machine representable number (a floating point number), a pair
of machine representable numbers is used in order to define the smallest interval
which encloses x. Then, the basic arithmetic for real numbers is extended to
define interval arithmetic [15].

Interval analysis connected with Branch and Bound techniques, permits to
enclose with a given accuracy the global optimum and as well as all the solutions.
The efficiency of these algorithms has already been validated in various domains
such as in Chemical Process [11], or in Electromagnetism for the design of a
slotless permanent magnet machine [13].

Such methods work with decomposition techniques and then with an exclu-
sion principle. First, the initial search domain is iteratively divided into smaller
1 This work was supported by the LEEI - Group EM2 - CNRS-UMR 5828 laboratory.

I would like to acknowledge the anonymous referees for their interest and help about
this work.

Journal of Universal Computer Science, vol. 8, no. 11 (2002), 992-1015
submitted: 20/10/99, accepted: 15/11/02, appeared: 28/11/02 J.UCS

and smaller parts (sub-boxes are generated). Then, a considered sub-box is elim-
inated when it can be proved that the global optimum cannot occur in it. For
instance, when we consider a minimization problem, the exclusion principle oc-
curs if a lower bound computed by interval arithmetic techniques over a sub-box
is higher than the current best solution found so far.

As the algorithm proceeds, the current best solution is improved and sub-
boxes are divided and discarded. The algorithms stop when the worse bound
(over all the remaning sub-boxes) is close to the current best solution found
(with a fixed accuracy). The global optimum is then precisely enclosed. For
details on interval Branch and Bound algorithms, see [10, 11, 16].

Hence, it is of great importance to know, for a given function f , an enclosure
of the direct image (or range) f(X) = {f(x) : x ∈ X} over a box X ⊆ IRn. An
inclusion function, denoted by F , must satisfy this enclosure property for all
considered boxes; thus, f(X) ⊆ F (X), for all boxes X .

For a given closed interval X ⊆ IR, let us denote its lower bound by xL and
its upper bound by xU , and then X = [xL, xU]. Furthermore, for an inclusion
function F , we denote the bounds by F (X) = [FL(X), FU (X)].

A natural extension into an interval of an expression of a given function f ,
is obtained by replacing each occurrence of a variable with its corresponding
interval, and each standard operation with its corresponding interval operation.
Let us denote this interval function by NE. Since NE is an inclusion function
of f , we have NE(X) ⊇ f(X).

Other inclusion function can be elaborated by considering Taylor expansions,
see [8, 16]. For example, a truncated first-order Taylor expansion of f around x0

yields:
T1(x0, X) = f(x0) + (X − x0)G(X), ∀x0 ∈ X (1)

where G(X) is an enclosure of the gradient of f over the box X , and it can be
obtained by interval automatic differentiation or interval formal differentiation,
see [10, 11]. Usually, x0 is fixed to the midpoint of the interval vector (the box)
X : x0 = (· · · , xL

i +xU
i

2 , · · ·). In this case, the corresponding inclusion function is
denoted by T1(X).

In 1988, Baumann gave an analytic solution of the following optimization
problem [3]:

TB(X) = max
x∈X

T L
1 (x, X) (or min

x∈X
T U

1 (x, X)) (2)

This solution only depends on the interval vector X and the enclosure of the
gradient of f , G(X).

However, the computations which directly use interval arithmetic lack pre-
cision even if the considered box is very small. Also, some techniques were in-
troduced in order to limit these negative effects: on one hand by using Taylor
expansions and on the other hand by using affine arithmetic [2, 4, 6, 7] which
also permits to deal with some other difficulties.

993Messine F.: Extensions of Affine Arithmetic ...

1.1 Dependency Problem

The dependency problem is well-known in interval computations. It is generated
by the fact that each occurrence of a same variable, in a function expression,
is taken into account independently. Therefore, the enclosure result can be very
wide and thus, uninteresting.

For instance, let us consider the elementary function f(x) = x− x, with x ∈
X = [0, 1]. In this example, the natural extensionNE(X) = X−X produces the
enclosure result [−1, 1], although the interval [0, 0] would have been expected.

1.2 Clustering Problem

The clustering problem is further described. At the end of an interval Branch
and Bound algorithm, when the remaining sub-boxes are very small, it is still
impossible to determine with accuracy where the global optimizers are. This is
due to the fact that the inclusion function used is not efficient enough in order
to produce enclosures close to the range of the considered function (even if the
remaining sub-boxes are very small) [5].

Definition 1. The α-convergence of an inclusion function (or of other methods
which only compute lower bounds) of f over a box X , denoted by FL(X), is
defined by:

f∗ − FL(X) ≤ k(w(X))α (3)

where f∗ is the global minimum, k and α are constants, and w(X) = max
i={1,···,n}

xU
i − xL

i is the width of the interval vector X = (· · · , [xL
i , xU

i], · · ·).
Generally, the following definition is used: w(F (X)) ≤ k(w(X))α.

Du and Kearfott proved in 1992 that in the unconstrained case, without the
use of the monotonicity test [8, 16], the clustering problem (if there exists) is
either:

– strongly reduced, if an inclusion function with an α−convergence at the order
2 is used,

– or eliminated, if an inclusion function with an α−convergence at the order
3 or more is used.

But unfortunately, no inclusion function with an α−convergence at the order 3
or more, is known.

E. Hansen proved that the centered forms using Taylor expansions at the
first order and at the second order, have an α−convergence at the order 2 [8].

Remark. Generally, a natural extension into an interval of an expression of a
given function, produces an α−convergence at the order 1.

994 Messine F.: Extensions of Affine Arithmetic ...

1.3 Used Global Optimization Algorithm

Some new efficient inclusion functions based on affine arithmetic are presented
in this paper. In order to prove that the dependency problem and the clustering
problem are strongly reduced, we choose to consider a classical Branch and Bound
algorithm due to Ichida-Fujii [9] (cut off test and middle point test). This algo-
rithm can be used to solve global unconstrained minimization problems which
can be formulated as follow:

min
x∈D

f(x), with D ⊆ IRn (4)

Few assumptions about f are needed, see [8, 10, 15, 16]. In this paper, only
polynomial functions will be considered.

Definition 2. 1. Cut off Test:

If f < FL(X) then the search of the global minimum in the sub-box X

can be stopped (where f represents the current best solution, and FL(X)
denotes a lower bound of f over the box X).

2. Middle Point Test:

f ←− min{f, f(mid(X))}
At each step of the Branch and Bound algorithm, the function f is evaluated
at the center of a considered sub-box X and then, we can improve the best
current solution f (which overestimates the minimum).

After a short introduction of standard affine arithmetic due to Andrade,
Stolfi, Comba, de Figueiredo and Van Iwaarden, [2, 4, 6, 7], two new affine
forms and one quadratic form, will be presented here. Then, we will observe how
these new forms will permit to deal with the difficulties generated by the use of
interval analysis and also standard affine arithmetic.

As a conclusion regarding the efficiency of these new methods, we can note
that numerical results on polynomial examples will validate the interest of the use
of these three new affine and quadratic forms. Comparisons will be performed
by considering other standard inclusion functions NE, T1, TB [1, 3, 15, 16],
standard affine arithmetic [7], and a method based on the computation of affine
hyperplanes intersections, denoted by AS [14].

2 Standard Affine Arithmetic

Affine Arithmetic is a new approach which makes it possible to compute an
enclosure of the range of a given function f over a box X . It was introduced

995Messine F.: Extensions of Affine Arithmetic ...

in 1994 by Andrade, Comba and Stolfi [2] and was first applied in computer
graphic problems [4] and surface intersections [6]. Recently, these methods were
introduced in unconstrained interval Branch and Bound algorithms [7].

Like generalized interval arithmetic introduced by Hansen [8], these tech-
niques are developed to take into account the dependency problem (due to the
use of interval arithmetic), see Subsection 1.1.

2.1 Notation

Affine forms are denoted by AF, and are represented by:

x̂ = x0 +
n∑

i=1

xiεi. (5)

Here, xi are real coefficients fixed (stored floating-point numbers), and εi are
symbolic variables, the values of which are unknown, but lie in the interval
[−1, 1].

Each εi derives from independent source of approximation, error or uncer-
tainty (original uncertainty or round-off and truncation errors performed during
the computation of x̂).

2.2 Conversions

– Interval −→ Affine Form:

X = [xL, xU]

−→ x̂ =
xL + xU

2
+

xL − xU

2
εk. (6)

where εk symbolizes the uncertainty of the value of x. k is the new index of
the new symbolic variable so generated (after each conversion, one is added
to k).

– Affine Form −→ Interval:

x̂ = x0 +
n∑

i=1

xiεi

−→ X = x0 +

(
n∑

i=1

|xi|
)
× [−1, 1] (7)

As in interval arithmetic, all standard operators (+,−,×,÷) and other func-
tions (x2,

√
x, |x|) are redefined for affine forms [2].

996 Messine F.: Extensions of Affine Arithmetic ...

2.3 Classical Operations

x̂± ŷ = (x0 ± y0) +
n∑

i=1

(xi ± yi)εi,

a± x̂ = (a± x0)±
n∑

i=1

xiεi, (8)

a× x̂ = ax0 +
n∑

i=1

axiεi,

where x̂ and ŷ are affine forms and a is a real number.
Multiplication (non-affine operation):
It is clear that the multiplication, the division, the square, and the square

root are neither affine operations nor affine functions. Therefore, the results
have not an affine form, and thus an affine approximation must be introduced.
Another extra term zkεk must be appended to represent the error due to the
affine approximation (in the Chebyshev’s sense to minimize the maximum error)
[2, 4].

x̂× ŷ =

(
x0 +

n∑
i=1

xiεi

)
×
(

y0 +
n∑

i=1

yiεi

)

= x0y0 +
n∑

i=1

(x0yi + xiy0)εi +

(
n∑

i=1

xiεi

)(
n∑

i=1

yiεi

)
.

The best affine approximation which conserves the enclosure property is:

x̂× ŷ = x0y0 +
n∑

i=1

(x0yi + xiy0)εi +

(
n∑

i=1

|xi| ×
n∑

i=1

|yi|
)

εn+1. (9)

A new noise symbolic variable εn+1 (k = n + 1) is introduced with its corre-

sponding real coefficient given by
n∑

i=1

|xi|×
n∑

i=1

|yi|, which is an upper bound due

to the affine approximation.

2.4 Round-off Errors

As in rounded interval arithmetic [1, 15], the purpose is to discard the numerical
errors due to the floating arithmetic operations, caused by the floating coeffi-
cients in the affine forms.

Thus, the main idea is to add some other terms xkεk which are generated
after each affine operation [2]. The positive value xk depends upon the other

997Messine F.: Extensions of Affine Arithmetic ...

coefficients xi. In this case, the conversion into interval must be performed with
the rounded interval arithmetic [15]. Let us consider an affine form x̂ = x0 +

n∑
i=1

xiεi, then the corresponding interval becomes:

x0 +
n∑

i=1

[−|xi|, |xi|], using rounded interval arithmetic.

Nevertheless, performing these affine computations, a numerical error may
occur. These numerical difficulties are just decreased and then not avoided.

Remark. Another idea to construct “rigorous” affine forms, is to convert them
into interval affine forms such that the real coefficients xi are replaced with the
interval Xi = [xi, xi] where xi and xi are the floating lower and upper numbers
the closest to the real coefficient xi. Therefore all the computations are performed
by the use of rounded interval analysis. In this way, a reliable affine arithmetic
can be elaborated.

In order to simplify the last part of this paper, one should not take into
account numerical problems. The new representations which are presented below,
could be easily extended to deal with the numerical difficulties.

2.5 Difficulties due to Non-affine Operations (×)
1. Affine forms grow by performing non-affine operations:

p non-affine operations generate p new symbolic variables εk, k = n+1, · · · ,
n+ p.

This produces some technical implementation difficulties because the number
of non-affine operations is rarely known and then, this number must be
arbitrarily fixed.

2. Square (or even power) of affine form:

Consider the square function x2 with x ∈ X = [−2, 2]
– Interval Arithmetic gives X2 = [0, 4] �= X ×X = [−4, 4].
– Affine Arithmetic gives x̂ = 2ε1 and x̂2 = x̂× x̂ = 4ε2.

The new symbolic variable ε2 is introduced to produce an affine approx-
imation of the multiplication between two affine forms.

The conversion into interval gives [−4, 4].
In order to decrease these difficulties, new forms and their corresponding com-
putations are introduced here. One of the purposes of this paper, is to show that
many representations based on affine forms could be analogously generated.

998 Messine F.: Extensions of Affine Arithmetic ...

3 New Affine Forms

The following two new affine forms are introduced to decrease the difficulties
due to the use of standard affine arithmetic. The first form allows to discard
the first difficulty (i.e. the fact that affine forms grow by performing non-affine
operations), whereas the second form which is an extension of the first new affine
form, permits to decrease significantly the second difficulty (i.e. the fact that an
affine approximation of the even power is not accurate).

3.1 First Affine Form AF1

AF1 is introduced to avoid the first difficulty which is the fact that affine forms
grow by performing non-affine operations, refer to Section 2.5.

Remark. Affine representations were used to retain the knowledge of the vari-
ables xi by using the introduction of corresponding symbolic variables εi. Thus,
affine information is conserved during the computations. However, all the other
symbolic variables εk, k ∈ {n+1, · · · , n+p} which are generated by performing p

non-affine operations, are completely independent. Therefore, all these symbolic
variables εk, k ∈ {n + 1, · · · , n + p} are simply stored and then all these terms
cannot be added or subtracted.

Hence, without losing affine information, the absolute value of all these p

terms can be added in the same single new symbolic variable, denoted εn+1.

3.1.1 Representation of AF1

x̂ = x0 +
n∑

i=1

xiεi + xn+1εn+1, (10)

where εn+1 is the new unique symbolic variable which represents all the errors
(due to affine approximations after performing non-affine operations). We can
remark that xn+1 is a positive number.

3.1.2 Operations with AF1

x̂± ŷ = (x0 ± y0) +
n∑

i=1

(xi ± yi)εi + (xn+1 + yn+1)εn+1,

a± x̂ = (a± x0)±
n∑

i=1

xiεi + |xn+1|εn+1, (11)

a× x̂ = (ax0) +
n∑

i=1

axiεi + |a|xn+1εn+1,

999Messine F.: Extensions of Affine Arithmetic ...

x̂× ŷ = x0y0 +
n∑

i=1

(x0yi + xiy0)εi +

(
|x0|yn+1 + |y0|xn+1 +

n+1∑
i=1

|xi| ×
n+1∑
i=1

|yi|
)

εn+1.

Remark. The conversions between interval and AF1 are the same than with
AF, refer to (6), (7).

3.2 Second Affine Form AF2

A logical extension of AF1 consists in the use of two new symbolic variables
εn+2 ∈ [0, 1] and εn+3 ∈ [−1, 0]. This way, the second difficulty (even power) can
be attenuated, refer to Section 2.5.

3.2.1 Representation of AF2

x̂ = x0 +
n∑

i=1

xiεi + xn+1εn+1 + xn+2εn+2 + xn+3εn+3, (12)

where εn+1, εn+2, εn+3 are new symbolic variables and xn+1, xn+2, xn+3 must
always be positive numbers.

3.2.2 Operations with AF2

x̂ + ŷ = (x0 + y0) +
n∑

i=1

(xi + yi)εi + (xn+1 + yn+1)εn+1 + (xn+2 + yn+2)εn+2

+(xn+3 + yn+3)εn+3,

x̂− ŷ = (x0 − y0) +
n∑

i=1

(xi − yi)εi + (xn+1 + yn+1)εn+1 + (xn+2 + yn+3)εn+2

+(xn+3 + yn+2)εn+3,

a+ x̂ = (a+ x0) +
n∑

i=1

xiεi + xn+1εn+1 + xn+2εn+2 + xn+3εn+3, (13)

a− x̂ = (a− x0)−
n∑

i=1

xiεi + xn+1εn+1 + xn+3εn+2 + xn+2εn+3,

a× x̂ =

ax0 +

n∑
i=1

axiεi + axn+1εn+1 + axn+2εn+2 + axn+3εn+3 if a > 0,

ax0 +
n∑

i=1

axiεi + |a|xn+1εn+1 + |a|xn+3εn+2 + |a|xn+2εn+3 else.

The multiplication is somewhat more difficult than for AF1:

x̂× ŷ = x0y0 +
n∑

i=1

(x0yi + xiy0)εi +K1εn+1 +K2εn+2 +K3εn+3. (14)

1000 Messine F.: Extensions of Affine Arithmetic ...

Computation of the three positive values K1, K2, K3

– Initialization:

K1 := |x0|yn+1 + |y0|xn+1

K2 :=

x0yn+2 + y0xn+2 if x0 > 0 and y0 > 0
x0yn+2 − y0xn+3 if x0 > 0 and y0 < 0
−x0yn+3 + y0xn+2 if x0 < 0 and y0 > 0
−x0yn+3 − y0xn+3 if x0 < 0 and y0 < 0

K3 :=

x0yn+3 + y0xn+3 if x0 > 0 and y0 > 0
x0yn+3 − y0xn+2 if x0 > 0 and y0 < 0
−x0yn+2 + y0xn+3 if x0 < 0 and y0 > 0
−x0yn+2 − y0xn+2 if x0 < 0 and y0 < 0

– Iterations:

K1 := K1 +
n+3∑
i=1

n+3∑
j=1,j �=i

|xiyj|,

K2 := K2 +
n+3∑

i=1,xiyi>0

xiyi,

K3 := K3 +
n+3∑

i=1,xiyi<0

|xiyi|.

Remark. One must be careful because sometimes terms are permuted, the sub-
traction is an example: between εn+2 and εn+3. Conversions between interval
and the affine form AF2 are similar to conversions between interval and the
standard affine form. Nevertheless, εn+2 is replaced with the interval [0, 1] and
εn+3 with [−1, 0].

3.3 Example

Let us consider the univariate function f(x) = x(10 − x) for x ∈ [4, 6], the
following enclosure results are obtained:

– with the natural extension into interval NE([4, 6]) = [4, 6](10 − [4, 6]) =
[16, 36],

– with another expression f(x) = 10x−x2, NE2([4, 6]) = 10× [4, 6]− [4, 6]2 =
[4, 44],

1001Messine F.: Extensions of Affine Arithmetic ...

– with the standard affine form AF or the first new affine form AF1:

x̂ = 5 + ε1

x̂(10− x̂) = (5 + ε1)(5− ε1)

= 25 + 0ε1 + ε2.

The enclosure corresponding to the use of the affine representation AF1, is
equal to [24, 26]. Observe that one new term ε2 is generated. The obtained
value is very close to the exact range of f over [4, 6] which is f([4, 6]) =
[24, 25].

– with AF2:

x̂ = 5 + ε1 + 0ε2 + 0ε3 + 0ε4

x̂(10− x̂) = (5 + ε1 + 0ε2 + 0ε3 + 0ε4)(5− ε1 + 0ε2 + 0ε3 + 0ε4)

= 25 + 0ε1 + 0ε2 + 0ε3 + 1ε4

The enclosure corresponding to the use of the second affine representation
AF2, gives [24, 25] which is exactly the range of f over the interval [4, 6].

Remark. If the second expression of f is used (f(x) = 10x− x2) then the same
results are obtained by using affine or quadratic forms.

In this article, two new affine forms AF1, AF2 have been introduced to improve
standard affine arithmetic. By using the same principle, other affine forms could
also be generated. For instance, all symbolic variables in [0, 1] or in [-1,0].

4 Some Extensions of Affine Forms

4.1 Quadratic Form QF

A logical extension of AF2, consists in keeping the three added symbolic vari-
ables, and introducing new square symbolic variables ε2

i (= εn+i). The three
symbolic variables are denoted in this case by ε2n+1 ∈ [−1, 1], ε2n+2 ∈ [0, 1],
ε2n+3 ∈ [−1, 0]. Thus the second difficulty presented in Section 2.5 will be re-
duced again.

4.1.1 Representation of QF

x̂ = x0 +
n∑

i=1

xiεi +
n∑

i=1

xi+nε2
i + x2n+1ε2n+1 + x2n+2ε2n+2 + x2n+3ε2n+3, (15)

where ε2n+1, ε2n+2, ε2n+3 are new symbolic variables and x2n+1, x2n+2, x2n+3

must always be positive numbers as with AF2. In order to simplify the notation,
ε2

i is denoted εn+i, with ε2
i = εi+n ∈ [0, 1].

1002 Messine F.: Extensions of Affine Arithmetic ...

4.1.2 Operations with QF

x̂ + ŷ = (x0 + y0) +
2n∑
i=1

(xi + yi)εi + (x2n+1 + y2n+1)ε2n+1 + (x2n+2 + y2n+2)

ε2n+2 + (x2n+3 + y2n+3)ε2n+3,

x̂− ŷ = (x0 − y0) +
2n∑
i=1

(xi − yi)εi + (x2n+1 + y2n+1)ε2n+1 + (x2n+2 + y2n+3)

ε2n+2 + (x2n+3 + y2n+2)ε2n+3,

a+ x̂ = (a + x0) +
2n∑
i=1

xiεi + x2n+1ε2n+1 + x2n+2ε2n+2 + x2n+3ε2n+3, (16)

a− x̂ = (a− x0)−
2n∑
i=1

xiεi + x2n+1ε2n+1 + x2n+3ε2n+2 + x2n+2ε2n+3,

a× x̂ =

ax0 +

2n∑
i=1

axiεi + ax2n+1ε2n+1 + ax2n+2ε2n+2 + ax2n+3ε2n+3 if a>0,

ax0 +
2n∑
i=1

axiεi +|a|x 2n+1ε2n+1 +|a|x 2n+3ε2n+2 +|a|x 2n+2ε2n+3 else.

The multiplication is somewhat more difficult:

x̂× ŷ = x0y0 +
n∑

i=1

(x0yi + xiy0)εi +
n∑

i=1

(x0yi+n + xi+ny0 + xiyi)εi+n

+K1ε2n+1 +K2ε2n+2 +K3ε2n+3. (17)

Computation of the three positive values K1, K2, K3

– Initialization:

K1 := |x0|y2n+1 + |y0|x2n+1

K2 :=

x0y2n+2 + y0x2n+2 if x0 > 0 and y0 > 0
x0y2n+2 − y0x2n+3 if x0 > 0 and y0 < 0
−x0y2n+3 + y0x2n+2 if x0 < 0 and y0 > 0
−x0y2n+3 − y0x2n+3 if x0 < 0 and y0 < 0

K3 :=

x0y2n+3 + y0x2n+3 if x0 > 0 and y0 > 0
x0y2n+3 − y0x2n+2 if x0 > 0 and y0 < 0
−x0y2n+2 + y0x2n+3 if x0 < 0 and y0 > 0
−x0y2n+2 − y0x2n+2 if x0 < 0 and y0 < 0

– Iterations:

K1 := K1 + x2n+1y2n+1 +
n∑

i=1

(|xi|(y2n+1 + y2n+2 + y2n+3) + |yi|(x2n+1

1003Messine F.: Extensions of Affine Arithmetic ...

+x2n+2 + x2n+3) + |xi+n|y2n+1 + |yi+n|x2n+1)

+
n∑

i=1

n∑
j=1

(|xiyj+n|+ |yixj+n|) +
n∑

i=1

n∑
j=1,i�=j

xiyi,

K2 := K2 + x2n+2y2n+2 + x2n+3y2n+3 +
n∑

i=1,xiy2n+2>0

xiy2n+2

+
n∑

i=1,yix2n+2>0

yix2n+2 +
n∑

i=1,xiy2n+3>0

xiy2n+3

+
n∑

i=1,yix2n+3>0

yix2n+3 +
n∑

i=1

n∑
j=1,xi+nyj+n>0

xi+nyj+n,

K3 := K3 + x2n+2y2n+3 + x2n+3y2n+2 +
n∑

i=1,xiy2n+2<0

|xiy2n+2|

+
n∑

i=1,yix2n+2<0

|yix2n+2|+
n∑

i=1,xiy2n+3<0

|xiy2n+3|

+
n∑

i=1,yix2n+3<0

|yix2n+3|+
n∑

i=1

n∑
j=1,xi+nyj+n<0

|xi+nyj+n|.

Remark. One must be careful because some terms are permuted (see the sub-
traction between εn+2 and εn+3 as with AF2). The conversions between interval
and this quadratic form are similar to the standard affine form. However, the
symbolic variables εi+n = ε2

i are replaced with the interval [0, 1], the symbolic
variable ε2n+1 with [−1, 1], the symbolic variable ε2n+2 with [0, 1], and ε2n+3

with [−1, 0].

4.2 Taylor Inclusion Functions with Affine and Quadratic Forms

Taylor inclusion functions require the computation of enclosures of the deriva-
tives of the considered function over a box.

These enclosures can be computed by using one of affine or quadratic forms.
This leads to construct the following inclusion functions based on T1 and TB

which are denoted by:

– T1
AF and TB

AF , where an enclosure of the gradient is computed by using
the standard affine arithmetic AF,

– T1
AF1 and TB

AF1, where an enclosure of the gradient is computed by using
the first new affine representation AF1,

– T1
AF2 and TB

AF2, where an enclosure of the gradient is computed by using
the second new affine representation AF2,

1004 Messine F.: Extensions of Affine Arithmetic ...

– T1
QF and TB

QF , where an enclosure of the gradient is computed by using
the new quadratic representation QF,

This approach will be validated below in some numerical tests.

4.3 Conversions between all these Forms

Proposition3. All these affine and quadratic forms AF, AF1, AF2, QF can
be converted between them.

Proof. All these forms can be converted into an interval and reciprocally. There-
fore, each form can be converted into another form via the utilization of a con-
version into an interval.

However, every conversion can be directly performed as follows (the underlined
terms represent the differences between the two considered representations):

– AF −→ AF1

x̂ = x0 +
n∑

i=1

xiεi +
K∑

k=n+1

xkεk

−→ x̂ = x0 +
n∑

i=1

xiεi +

(
K∑

k=n+1

|xk|
)

εn+1,

– AF1 −→ AF
K = n+ 1,

– AF1 −→ AF2

x̂ = x0 +
n∑

i=1

xiεi + xn+1εn+1

−→ x̂ = x0 +
n∑

i=1

xiεi + xn+1εn+1+0εn+2 + 0εn+3,

– AF2 −→ AF1

x̂ = x0 +
n∑

i=1

xiεi + xn+1εn+1 + xn+2εn+2 + xn+3εn+3

−→ x̂ = x0 +
n∑

i=1

xiεi+(xn+1 +max{xn+2, xn+3}) εn+1,

1005Messine F.: Extensions of Affine Arithmetic ...

– AF2 −→ QF

x̂ = x0 +
n∑

i=1

xiεi + xn+1εn+1 + xn+2εn+2 + xn+3εn+3

−→ x = x0 +
n∑

i=1

(xiεi+0ε2
i) + xn+1ε2n+1 + xn+2ε2n+2 + xn+3ε2n+3,

– QF −→ AF2

x = x0 +
n∑

i=1

(xiεi + xn+iε
2
i) + x2n+1ε2n+1 + x2n+2ε2n+2 + x2n+3ε2n+3

−→ x̂ = x0 +
n∑

i=1

xiεi+x2n+1εn+1 +

x2n+2 +
n∑

i=1,xn+i≥0

xn+i

 εn+2

+

x2n+2 +
n∑

i=1,xn+i<0

|xn+i|
 εn+3.

Remark. Thus, by combining further different affine or quadratic forms, new
inclusion functions could be constructed.

4.4 Other Non-affine Operations

It is easy to understand that all the non-affine operations can be extended by
using conversions into standard affine form or into interval. For example, let us

consider the division
x̂

ŷ
:

The inverse function
1
ŷ
is computed by replacing ŷ with its corresponding

interval, denoted [ŷ]. Thus, the inversion is done by using interval arithmetic
and then the resulting interval is converted into the corresponding affine or
quadratic form.

Remark. A new symbolic variable is generated by using standard affine form.
With AF1 and AF2, the symbolic variable εn+1 can directly be used, re-
spectively ε2n+1 for QF.

The division
x̂

ŷ
:= x̂ × 1

ŷ
,
1
ŷ
is first performed and then the multiplication

by x̂ is done with the inverse result converted into the corresponding form.

And so on for all other functions such as the square root, the absolute value or
the sinus, etc.

1006 Messine F.: Extensions of Affine Arithmetic ...

Remark. If some function (like the square root) get a computation using the
standard affine arithmetic then the conversions into interval is replaced by the
conversions into standard affine form AF .

5 Inclusion Functions and Global Optimization

As with interval arithmetic, the purpose of all these affine and quadratic forms
is to construct new inclusion functions.

5.1 Affine or Quadratic Inclusion Functions

Theorem 4. Affine or Quadratic inclusion functions of a function f over a box
X (an interval vector) are obtained by the following steps:

X = (X1, · · · , Xn)T , Xi = [xL
i , xU

i]

1. Convert all the interval Xi into an affine or quadratic form AF, AF1, AF2,
QF

x̂ = (x̂1, · · · , x̂n) with x̂i =
xL

i + xU
i

2
+

xU
i − xL

i

2
εi

2. A calculation of the resulting affine or quadratic form is given by replacing
each occurrence of the variable xi in an expression of f , with its correspond-
ing affine or quadratic form AF, AF1, AF2, QF (denoted by x̂i), and the
standard operations by the corresponding affine or quadratic operations.

3. Convert the resulting affine or quadratic expression into an interval.

The resulting interval encloses the range of f over the box X.

Proof. The proof is not given here because it involves formal difficulties. Since
all these forms are elaborated to construct new inclusion functions, we can easily
understand that such new forms of arithmetic should be correct.

Some elements of proof can be made available in [12].

In order to give an idea of the proof, let us consider the previous example
f(x) = x(10−x), with x ∈ [4, 6], presented in Subsection 3.3. The corresponding
affine form was x̂ = 5 + ε1.

Hence, ∀y ∈ [4, 6], it exists α1 ∈ [−1, 1] such that y = 5 + α1 and 10 − y =
5− α1.

The multiplication gives:

f(y) = y(10− y) = (5 + α1)(5− α1)

= 25 + 0α1 − α2
1 (18)

1007Messine F.: Extensions of Affine Arithmetic ...

But, since α1 is in [−1, 1] then α2
1 is in [0, 1]. Furthermore, since there exists

α2 = α2
1 ∈ [0, 1] ⊂ [−1, 1] such that f(y) = 25 − α2

1 = 25− α2 ∈ 25 + [−1, 0] ⊂
25 + [−1, 1], for all y ∈ [4, 6]. Thus on this example, an inclusion function of f

over a box is obtained by using AF1, AF2 or QF.

Conjecture 5. For polynomial functions, the inclusion functions constructed
with affine or quadratic forms have an α-convergence at the order 2.

5.2 Branch and Bound Algorithm

In this paper, the classical interval Branch and Bound algorithm due to Ichida
and Fujii is used [9]. The computation of lower bounds uses the following differ-
ent methods NE, T1, TB, AS, and AF, AF1, AF2, QF. All these inclusion
functions are applied to perform the Cut-Off test, presented in Definition 1. The
middle point test is computed by using rounded interval analysis [15].

6 Numerical Results

The purpose of these experiments is firstly to show the efficiency of the utilization
of the new representations AF1, AF2, QF versus standard affine form AF and
some other well-known methods NE, T1, TB , AS. Secondly, the application to
global optimization permits to show the interest of these new approaches.

All the following algorithms were developed in Fortran 90 and performed on
a DIGITAL Alpha-Server 8200 5/625 quadriprocessors with 2Gb of memory (in
order to get the same results on a Pentium 233MHz with 64Mb of memory, the
obtained CPU-times must be multiply by approximately 8).

6.1 Tests on Inclusion Functions

Firstly, the accuracy of the computations of lower bounds is only discussed. To
perform this, ten thousand polynomial functions using the following shape are
randomly generated:

P (x, y) = a1x
4 + a2x

3 + a3x
2 + a4x + a5y

4 + a6y
3 + a7y

2 + a8y + a9xy

+a10xy2 + a11xy3 + a12x
2y + a13x

2y2 + a14x
3y + a15

where the real coefficients ai are randomly taken in the interval [−10, 10].
These polynomial functions are evaluated on different boxes centered on a

random point in [−1, 1] with a fixed width 10, 5, 1, · · · until 0.01. The columns
of the following table 1 represent the average of the ten thousand lower bounds:
10000∑
i=1

PL
i (X, Y)
10000

, where PL
i (X, Y) represents a lower bound of the ith random

1008 Messine F.: Extensions of Affine Arithmetic ...

polynomial function, computed with NE, T1, TB , AS, AF, AF1, AF2 or QF.
+AD signifies that an interval automatic differentiation code is used [10, 11].
The last column represents the total CPU-times in seconds for all the 10000
evaluation of the corresponding inclusion function.

Remark. The fact that the center of the random point is in [−1, 1] decreases the
efficiency of affine methods because of the second difficulty, see Section 2.5. This
emphasizes the interest of the following numerical results.

Widths : 10 5 1 0.5 0.1 0.05 0.01 Time(s)

NE -18639.08 -1865.682 -43.198 -17.4519 -3.1372 -1.6864 -18.3194 10−2 0.318
AF -26838.49 -2704.460 -45.109 -12.9097 -1.3646 -0.7309 1.6715 10−2 0.795
AF1 -26838.47 -2704.457 -45.109 -12.9097 -1.3646 -0.7309 1.6731 10−2 0.237
AF2 -21387.10 -2222.359 -36.943 -10.9904 -1.2883 -0.7119 1.7494 10−2 0.954
QF -20993.61 -2123.686 -32.997 -10.0127 -1.2492 -0.7020 1.7884 10−2 0.833
T1+AD -85986.55 -7295.003 -74.934 -18.8363 -1.5890 -0.7873 1.4451 10−2 6.487
T1 -85986.52 -7295.000 -74.934 -18.8363 -1.5890 -0.7873 1.4451 10−2 0.603
T1

AF -91266.38 -7788.866 -65.766 -15.0183 -1.3672 -0.7290 1.6847 10−2 1.245
T1

AF1 -91266.36 -7788.862 -65.766 -15.0183 -1.3672 -0.7290 1.6847 10−2 0.584
T1

AF2 -87018.78 -7241.939 -59.965 -14.2453 -1.3609 -0.7282 1.6853 10−2 1.252
T1

QF -83960.52 -6858.191 -56.908 -13.8616 -1.3578 -0.7278 1.6857 10−2 1.172
TB+AD -75813.97 -5849.806 -50.776 -12.0081 -1.1821 -0.6803 1.8965 10−2 6.199
TB -75813.94 -5849.804 -50.776 -12.0081 -1.1821 -0.6803 1.8965 10−2 0.653
TB

AF -91147.86 -7728.425 -53.801 -9.6267 -1.1399 -0.6745 1.9012 10−2 1.134
TB

AF1 -91147.81 -7728.420 -53.801 -9.6267 -1.1399 -0.6745 1.9012 10−2 0.767
TB

AF2 -82005.94 -6558.010 -43.811 -8.6828 -1.1391 -0.6745 1.9012 10−2 1.297
TB

QF -78938.30 -6171.462 -40.732 -8.4274 -1.1389 -0.6744 1.9012 10−2 1.275
AS+AD -76467.97 -5964.837 -51.640 -12.0879 -1.1823 -0.6803 1.8965 10−2 6.926
AS -76467.95 -5964.835 -51.640 -12.0879 -1.1823 -0.6803 1.8965 10−2 1.137

Table 1: Quality Tests for Different Inclusion Functions

These numerical results emphasize the real interest of affine representations.
If one compares the standard affine form with the first new affine representation,
we can note that the CPU time is divided by three with exactly the same results.
This proves the interest to discard the first difficulty due to the use of standard
affine arithmetic. The second affine form and the quadratic form confirm that the
second difficulty, inherent to the use of affine arithmetic, can be really attenu-
ated (about 25% of improvement). Thus, the quadratic representation QF gives
always the best lower bounds compared to AF, AF1, AF2, with an interesting
CPU-time close to AF.

In comparison to other inclusion functions NE, T1, TB , AS, we can remark
that (according to these numerical results):

1009Messine F.: Extensions of Affine Arithmetic ...

– when the studied box is wide,NE is the best method, howeverQF produces
similar results,

– when the studied box has not too small a width, QF produces the best
results,

– when the studied box has a small width (less than 0.01), TB orAS produces
the best results. However, these results can be improved by computing an
enclosure of the gradient by using affine or quadratic forms. Furthermore,
QF gives directly equivalent results.

In order to summarize, QF produces (on these polynomial examples) efficient
enclosures which are always very close to the best method. Table 1 shows the
difference of inclusion function behaviors between on one hand NE which gen-
erally has an α−convergence at the order 1 and on the other hand T1 which has
an α−convergence at the order 2.

Remark. AS (which is the most efficient method when the widths of the box
are very small) computes only lower bounds. That is not the case for all other
methods (attention must be paid to TB due to Baumann [3], because the lower
bounds are optimal but not the upper bounds and conversely). Observe that,
the computation of the gradient by using automatic differentiation (denoted by
+AD) is very expensive in CPU-time.

¿From these first numerical results, the interest of the improvements of the
standard affine arithmetic by the introduction of new representations is numer-
ically shown. Thus, for small boxes, the new inclusion function constructed by
using quadratic forms QF, produces enclosures very close to T1, TB and AS
methods which require the expensive computation of an enclosure of the gradi-
ent. That seems to confirm the above Conjecture 5.

6.2 Tests on Optimization Problems

In this paper, the global minimizers of polynomial functions of 2, 3, or 4 variables
with different degrees were searched with a great accuracy, less than 10−4.

The stopping criterion of the Ichida-Fujii Branch and Bound algorithm [9]
occurs when the maximal width of each remaining box, is less than 10−4 for all
the considered following functions, except 10−3 for f6.

Remark. In this paper, it is difficult to compare all these methods versus the
efficient affine global optimization code developed in [7], because it depends
on the compiler, the computer, the branch and bound algorithms: ordering of
the elements in the list (lower bound, oldest box), the implementation of the

1010 Messine F.: Extensions of Affine Arithmetic ...

list (using arrays, pointers). Thus, standard affine arithmetic AF has been re-
implemented in this work to carry out remarks and comparisons between all
these different techniques NE, T1, TB , AS, AF, AF1, AF2 and QF.

The upper bounds produced by all these inclusion functions are not taken
into account. The different methods are only compared with the lower bounds
they produce.

f1(x) = 1 + (x2
1 + 2)x2 + x1x

2
2, with X = [1, 2]× [−10, 10],

f2(x) = 2x2
1 − 1.05x4

1 + x2
2 − x1x2 +

1
6
x6

2, with X = [−2, 4]2,
f3(x) = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2, with X = [−2.5, 3.5]× [−1.5, 4.5]
f4(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]

×[30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

with X = [−2, 2]2, Golstein Price function,

f5(x) = (x1 − 1)(x1 + 2)(x2 + 1)(x2 − 2)x2
3, with X = [−2, 2]3

f6(x) = 4x2
1 − 2x1x2 + 4x2

2 − 2x2x3 + 4x2
3 − 2x3x4 + 4x2

4 + 2x1 − x2 + 3x3

+5x4, with X = [−1, 3]× [−10, 10]× [1, 4]× [−1, 5]
f7(x) = 0.26(x2

1 + x2
2)− 0.48x1x2, with X = [−100, 100]2, Matyas function,

f8(x) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2, with X = [−1000, 1000]2,
Ratschek function,

f9(x) = 12x2
1 − 6.3x4

1 + x6
1 + 6x2(x2 − x1), with X = [−100, 100]2,

Three Hump function,

f10(x) = 6.94x4
1 + 0.96x3

1 + 9.68x2
1 + 4.16x1 + 7.53x4

2 − 7.68x3
2 + 8.21x2

2 − 1.75x2

−7.45x1x2 + 9.15x1x
2
2 + 3.70x1x

3
2 − 4.81x2

1x2 − 3.06x2
1x

2
2 − 0.79x3

1x2

−0.18, with X = [−50, 50]2, A random polynomial function.

Except for f10, all these functions are taken in the literature [8, 14, 16].
In the following tables, these notations are used:

– N: Number of iterations,

– T(s): CPU time in seconds,

– C: Number of elements which enclose the optimizers in the list L at the end
of the algorithm,

– —: the algorithm does not give any solution after 100000 iterations, and
then the average and the ratio are not computed.

1011Messine F.: Extensions of Affine Arithmetic ...

– Avg: the mean value between the 10 considered functions,

– Ratio: the ratio between all the methods and T1.

– In the following Tables NE, T1, TB, AS, AF, AF1, AF2 and QF denote
the Ichida-Fujii optimization algorithm using respectively as inclusion func-
tion NE, T1, TB , AS, AF, AF1, AF2 and QF.

Pbs NE T1 TB AS
N T(s) C N T(s) C N T(s) C N T(s) C

f1 6333 0.70 1308 1363 0.15 206 1327 0.15 206 1327 0.18 206
f2 4598 0.43 1152 4266 0.97 1073 4241 1.12 1073 4239 2.75 1073
f3 926 0.04 154 741 0.08 117 710 0.05 117 712 0.07 117
f4 — — — 6657 7.04 923 4581 3.81 914 4512 3.78 915
f5 25087 17.60 4624 13311 8.79 2256 13015 9.47 2264 13015 9.58 2262
f6 — — — 3949 1.68 210 980 0.39 109 832 0.36 113
f7 13261 0.60 380 1629 0.16 42 539 0.11 14 353 0.08 8
f8 — — — 4425 1.62 836 4012 0.57 832 1580 0.36 778
f9 6657 0.69 10 3385 0.75 14 1408 0.18 6 759 0.13 6
f10 73398 53.92 30049 1572 1.16 90 654 0.35 81 612 0.21 79
Avg — — — 4130 2.24 577 3147 1.62 562 2794 1.75 556
Ratio — — — — — — 24% 28% 3% 32% 22% 4%

Table 2: Global Optimization using Standard Inclusion Functions

In table 2, AS [14] and TB [3] produce generally the most interesting results.
In comparison toT1 an improvement about 20% is noted. All these computations
are performed by using interval automatic differentiation [10, 11].

Observe in table 2 that the clustering problem is strongly reduced if T1, TB

or AS are considered, see Section 1.2.
In table 3, the improvements of the standard affine arithmetic is shown.

Generally, the quadratic representation produces the most interesting results.
However, as these polynomial examples are often ”simple” (low degree, few oc-
currences of the variables), the first or the second new affine forms are sufficient
(there are not enough occurrences of each variables to produce interesting de-
pendency problems).

The comparison with the two previous tables shows that the best CPU-time
results are obtained by AF1 and QF. A gain about 80% for the CPU-time
and about 33% for the number of iterations is noted. We can remark that T1,
TB , AS, AF, AF1, AF2 and QF produce equivalent results when just the
number of clusters are considered. Nevertheless a substantial gain for affine and
quadratic forms is noted when the function f4 is considered.

1012 Messine F.: Extensions of Affine Arithmetic ...

Pbs AF AF1 AF2 QF
N T(s) C N T(s) C N T(s) C N T(s) C

f1 1344 0.05 203 1342 0.04 203 1338 0.05 203 1339 0.05 204
f2 4260 0.45 1077 4250 0.45 1070 4244 0.41 1071 4244 0.40 1073
f3 724 0.02 116 724 0.02 116 719 0.02 116 719 0.02 116
f4 2068 0.26 458 1774 0.22 453 1774 0.21 453 1678 0.23 454
f5 13064 4.02 2255 13044 2.96 2238 13044 4.08 2242 13067 3.27 2264
f6 2518 0.28 176 2443 0.21 145 1559 0.15 120 1596 0.17 149
f7 1241 0.03 32 1241 0.02 32 985 0.02 26 985 0.02 26
f8 3516 0.58 1046 2997 0.29 552 2108 0.10 588 2100 0.11 680
f9 2264 0.13 14 2264 0.08 14 1387 0.06 8 1257 0.05 8
f10 1161 0.15 138 1084 0.06 60 775 0.10 61 708 0.13 70
Avg 3216 0.60 552 3116 0.44 488 2793 0.52 489 2769 0.45 504
Ratio 22% 73% 4% 25% 81% 15% 32% 77% 15% 33% 80% 13%

Table 3: Global Optimization using Affine and Quadratic Forms

Therefore, in these polynomial examples, we can note that affine methods
have the same behaviour as methods which have an α-convergence at the order
2. Thus, the Conjecture 5 seems to be numerically confirmed.

Remark. Sometimes, we do not get the same number of iterations between AF
and AF1, that seems to be due to floating approximations and floating compu-
tations.

Remark. All these numerical tests have also been performed with T1
AF , T1

AF1,
T1

AF2, T1
QF , TB

AF , TB
AF1, TB

AF2, TB
QF . Nevertheless, as the polynomial

functions are ”simple” (low degree and few occurrences), no significant improve-
ment has been noted, except for f4 where QF (used for the computation of
enclosures of the gradient) improves considerably the three methods T1, TB

and also AS. Doing so, AS produces the best numerical result with 823 itera-
tions during 0.15 seconds, and 198 clusters.

These numerical results show the efficiency of the three new inclusion functions.
These approaches are validated on polynomial functions, but could be also easily
extended to other cases even if the functions are not differentiable.

7 Conclusion

In this paper, we emphasize the interest of using affine arithmetic to reduce
the dependency problem, presented in Section 1.1. Indeed, the new forms AF1,
AF2 and QF, permit to improve standard affine arithmetic by discarding and
attenuating the two problems introduced in Section 2.5. Since all the conversions
between all the representations (interval, AF, AF1, AF2, QF) can be carried

1013Messine F.: Extensions of Affine Arithmetic ...

out, many other new forms could be constructed analogously. Furthermore, ex-
tensions to non-polynomial functions are possible even if the considered function
is not differentiable.

The numerical tests presented here show perfectly the improvements (with
respect to both accuracy and CPU-time) provided by the methods using AF1,
AF2, and QF, in comparison to the standard NE, T1, TB, AS and AF. Fur-
thermore, the application of these techniques to global optimization leads to
think that AF, AF1, AF2 and QF have the same behavior as T1and TB , T1

and TB having an α-convergence at the order 2. That seems to corroborate the
above Conjecture 5, without needing enclosures of the gradient.

These new methods could also be applied at several stages of interval Branch
and Bound algorithms:

1. for the construction of Inclusion Function, as we did in this paper,

2. for the computation of the enclosure of the gradient: improving thereby T1,
TB and AS, and also improving the monotonicity test,

3. for the computation of the enclosure of the Hessian: improving thereby T2,
and the convexity test and also the interval Newton steps, refer to [8].

Finally, the approach presented in this paper can be implemented in an analogous
manner in order to create other new forms yielding the construction of new
inclusion functions perfectly adapted to a given problem.

References

1. G. Alefeld and J. Herzberger Introduction to Interval Computations, ACADEMIC
PRESS, INC., 11 Fifth Avenue, New York, New York 10003 - (1983).

2. M.V.A. Andrade, J.L.D. Comba and J. Stolfi Affine Arithmetic, Interval’94, St.
Petersburg (Russia), March 5-10 - (1994).

3. E. Baumann Optimal Centerd Form, BIT, Vol. 28, pp 80-87 - (1988).
4. J.L.D. Comba and J. Stolfi Affine Arithmetic and its Applications to Computer

Graphics, Sibgrapi’93, Recife, PE (Brazil), October 20-22 - (1993).
5. K. Du, R. B. Kearfott The Cluster Problem in Multivariate Global Optimization,

Journal of Global Optimization : 10 (27-32) - (1996).
6. L.H. De Figueiredo Surface Intersection using Affine Arithmetic, Proceedings of

Graphics Interface’96, 168-175 - (1996).
7. L.H. De Figueiredo, R. Van Iwaarden and J. Stolfi Fast Interval Branch and

Bound Methods for Unconstrained Global Optimization with Affine Arithmetic,
Submitted in SIAM Journal of Optimization, available on ftp://ftp.icad.puc-
rio.br/pub/lhf/doc/go.ps.gz - (1997).

8. E. Hansen A generalized interval arithmetic, in Interval Mathematics, K. Nickel,
ed., no. 29 in Lecture Notes in Computer Science, Springer Verlag, 331-344 - (1975).

9. K. Ichida, Y. Fujii An Interval Arithmetic Method for Global Optimization, Com-
puting : 23 (85-97) - (1979).

10. R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer Academic
Publishers, Dordrecht, Boston, London - 1996.

1014 Messine F.: Extensions of Affine Arithmetic ...

11. F. Messine Méthodes d’Optimisation Globale basées sur l’Analyse d’Intervalle pour
la Résolution de Problèmes avec Contraintes, Ph D Thesis, Polytechnic National
Institute of Toulouse France - (1997).

12. F. Messine Theorem on Affine or Quadratic Inclusion Functions, Internal Report
number R2I 01 04, available on www.univ-pau.fr/∼messine/R2I.html, Computer
Science Department of Pau France - (2001).

13. F. Messine, B. Nogarede, J.L. Lagouanelle Optimal Design of Electromechanical
Actuators: A New Method Based on Global Optimization, IEEE Transactions on
Magnetics, Vol. 34, No 1, pp 299-307 - (1998).

14. F. Messine, J.L. Lagouanelle Enclosure Methods for Multivariate Differentiable
Functions and Application to Global Optimization, Journal of Universal Computer
Science, Vol. 4, No 6, pp 589-603, Springer Verlag - (1998).

15. R. E. Moore Interval Analysis, Prentice Hall, Inc. Englewood Cliffs, N.J. - (1966).
16. H. Ratschek, J. Rokne New Computer Methods for Global Optimization, Ellis

Horwood Limited Market Cross House, Cooper Street, Chichester, West Sussex,
PO19 1EB, England - (1988).

1015Messine F.: Extensions of Affine Arithmetic ...

