
An Implicit Recursive Language for the

Polynomial Time-space Complexity Classes

Emanuele Covino 1

(Dipartimento di Informatica dell'Universit�a di Bari, Italy
covino@di.uniba.it)

Giovanni Pani 2

(Dipartimento di Informatica dell'Universit�a di Bari, Italy
pani@di.uniba.it)

Abstract: We de�ne a language over an algebra of words by means of a version of
predicative recursion, and we prove that it represents a resource-free characterization
of the computations performed by a register machine in time O(nk), for each �nite k;
starting from this result, and by means of a restricted form of composition, we give a
characterization of the computations of a register machine with a polynomial bound
simultaneously imposed over time and space complexity.
Keywords: time-space classes, implicit computational complexity, predicative recur-
sion.
Category: F.1.3

1 Introduction

In the recent years, Leivant, Bellantoni & Cook and many others have given
di�erent characterization of ptime, showing that this complexity class can be
captured by means of a rami�ed (or safe, or unbounded) form of recursion (see
[Leivant, 94] and [Bellantoni, Cook, 92]). Starting from this result, several other
complexity classes have been characterized (see [Simmons, 88], [Leivant, 91],
[Leivant, 93] and [Leivant, 94] for a theoretical insight). All these approaches
have been dubbed Implicit Computational Complexity: they share the idea that
no explicitly bounded schemes are needed to characterize a great number of
classes of functions and that, in order to do this, it suÆces to appropriately
specify the role of the variables in the recursion scheme, pointing out the dif-
ference between safe and unsafe variables (or, following [Simmons, 88], between
dormant and normal ones). The distinction yields many forms of predicative re-

currence, in which the being-de�ned function cannot be used as counter into the
de�ning one. This approach should represent a bridge between the complexity
theory and the programming language theory; the mere syntactical inspection
of a program allows us to evaluate the complexity of that program.

Our version of the safe recursion scheme on a binary word algebra is such that
f(x; y; za) = h(f(x; y; z); y; za), where x; y; z are respectively devoted to the role
of auxiliary variable, parameter and recursion variable of f ; no other type of
variables can be used, and the identi�cation of z with x is not allowed.

1 This author was supported in part by the "Giovani ricercatori" research project and
by the "Centro Interdipartimentale Logica e Applicazioni", University of Bari.

2 This author was supported in part by the "Centro Interdipartimentale Logica e
Applicazioni", University of Bari.

Journal of Universal Computer Science, vol. 8, no. 1 (2002), 75-84
submitted:8/9/00, accepted: 30/4/01, appeared: 28/1/02 J.UCS

We de�ne the hierarchy of classes of programs fTkgk<!, where T1 is a charac-
terization of the class of register machines which compute their output in linear
time, and Tk+1 is the class of programs obtained by exactly one application
of safe recursion to elements in Tk. We then restrict fTkgk<! to the hierarchy
fSkgk<!, whose elements are the classes of programs computable by a register
machine in at most linear space; this classes are similar to the classes of non-
size-increasing functions showed in [Hofmann, 99], but we obtain them without
the use of types. By means of a restricted form of composition, we de�ne a
polytime-space hierarchy fT Sqpgqp<!, such that, for all k; q; p � 1, we have:

1. Tk is the class of programs computable by a register machine within time
O(nk);

2. T Sqp is the class of programs computable by a register machine within time
O(np) and, simultaneously, space O(nq).

A corollary of the �rst result is that
S

k<! Tk captures ptime. Even though

this is a well-known result (see [Leivant, 94]), we use it to show the second one
(see also [Hofmann, 99] and [Leivant, Marion, 00] for other approaches to the
characterization of joint time-space classes). We feel that this is a preliminary
step in the implicit classi�cation of the hierarchy of time-space classes between
ptime and pspace, as de�ned in [Clote, 92].

2 Basic instructions and de�nition schemes

We de�ne in this section the language we will use to provide our characterizations
(for a similar approach see [Caporaso, Pani, Covino]). It is a natural language
over a binary word algebra, with the only restriction that words are packed into
lists, in which each word is divided from the following one by means of the digit
0. In this way, we are able to handle a sequence of words as a single object. The
reader should consider this ternary word as a list (like those in Lisp) in which
each zero plays the role of a comma.

2.1 Recursion-free programs and classes T0 and S0

T is the ternary alphabet f0; 1; 2g. p; q; : : : ; s; : : : are the word 0 or words over
T not beginning and not ending with 0; � is the empty word. B is the binary
alphabet f1; 2g. U; V; : : : ; Y are words over B. a; b; a1; : : : are letters of T or B.
The i-th component (s)i of a word s in the form Y10Y20 : : : 0Yn�10Yn is Yi. jsj is
the length of the word s, that is the number of letters occurring in s.
We write x; y; z for the variables used in our programs, denoted with f; g; h, and
we write u for one among x; y; z. The objects of our language will have the form
f(x; y; z), where some among the variables may be absent.

De�nition 1. The basic instructions are:

1. the identity i(u), which returns the value s assigned to u;
2. the constructors c

a
i (u), which, when s is assigned to u, adds the digit a at

the right of the last digit of (s)i, with a = 1; 2 and i � 1;
3. the destructors di(u), which, when s is assigned to u, erases the rightmost

digit of (s)i, with a = 1; 2 and i � 1.

76 Covino E., Pani G.: An Implicit Recursive Language ...

Constructors cai (s) and destructors di(s) leave s unchanged if it has less than i
components; see the section 3 for a note on the complexity of constructors and
destructors.

Example 1. The word s = 120220011 had to be understood as the sequence
12; 22; �; 11; in this case, jsj = 9 and, for example, (s)2 = 22. We also have
c
1
1(12022) = 121022, d2(1010) = 100, d2(100) = 100.

De�nition 2. Given the programs g and h, f is obtained by simple schemes if
it is obtained by:

1. identi�cation of x as y in g, that is, f is the result of the assignment of the
value of y to all occurrences of x into g. Notation: f =idtx=y(g);

2. identi�cation of z as y in g, that is, f is the result of the assignment of the
value of z to all occurrences of x into g. Notation: f =idtz=y(g);

3. branching in g and h, when for all s; t; r assigned to x; y; z we have

f(s; t; r) =

�
g(s; t; r) if the rightmost digit of (s)i is b
h(s; t; r) otherwise;

with i � 1 and b = 1; 2. Notation: f =branchbi (g; h).

Example 2. f =idtx=y(g) implies f(t; r) = g(t; t; r). Similarly, f =idtz=y(g) im-

plies f(s; t) = g(s; t; t). Let s be the word 1102121, and f =branch12(g; h); we
have f(s; t; r) = g(s; t; r), since the rightmost digit of (s)2 is 1.

De�nition 3. Let C a class of programs. f is obtained by safe composition of
h and g (with respect to C) in the variable u if it is obtained by substitution of
h to u in g, with g or h in the class C and, when u = z, with x absent in h.
Notation: f =scmpu(h; g).

De�nition 4. A modi�er is obtained by the safe composition of a sequence of
constructors and a sequence of destructors.

De�nition 5. T0 is the class of programs de�ned by closure of modi�ers under
branch and scmp.

De�nition 6. Given f 2 T0, the rate of growth rog(f) is such that

1. if f is a modi�er, rog(f) is the di�erence between the number of constructors
and the number of destructors occurring in its de�nition;

2. if f =branchbi (g; h), then rog(f) := max(rog(g); rog(h));
3. if f =scmpu(h; g), then rog(f) := rog(h) + rog(g).

De�nition 7. S0 is the class of programs in T0 with non-positive rate of growth,
that is S0 = ff 2 T0jrog(f) � 0g.

Note that all elements in T0 and in S0 modify their inputs according to the result
of some test performed over a �xed number of digits. Moreover, elements in S0
cannot return values longer than their input.

77Covino E., Pani G.: An Implicit Recursive Language ...

2.2 Safe recursion and classes T1 and S1

De�nition 8. Given the programs g(x; y) and h(x; y; z), f(x; y; z) is de�ned by
safe recursion in the basis g and in the step h if for all s; t; r we have

�
f(s; t; a) = g(s; t)
f(s; t; ra) = h(f(s; t; r); t; ra):

Notation: f =srec(g; h).
In particular, f(x; z) is de�ned by iteration of h(x) if for all s; r we have

�
f(s; a) = s
f(s; ra) = h(f(s; r)):

Notation: f =iter(h). We write hjrj(s) for iter(h)(s; r) (i.e. the jrj-th iteration
of h on s).

De�nition 9. T1 (respectively, S1) is the class de�ned by closure under simple
schemes and scmp of programs obtained by one application of iter to T0 (resp.
S0).

Throughout this paper we will call x; y and z the auxiliary variable, the param-
eter, and the principal variable of a program obtained by means of the previous
recursion scheme. Note that since identi�cation of z as x is not allowed (see def-
initions 2 and 3), the step h cannot assign the previous value of the object being
de�ned by srec to the recursion variable: hence, we always know in advance the
number of recursive calls of the step. We obtain that z is a dormant variable,
according to the Simmons' approach, or a safe one, following Bellantoni&Cook.

De�nition 10. 1. Given f 2 T1, the number of components of f is maxfijdi
or cai or branchbi occurs in fg. Notation: #(f).

2. Given a program f , its length is the number of constructors, destructors and
de�ning schemes occurring in its de�nition. Notation: lh(f).

3 Computation by register machines

We recall in this section the de�nition of register machine (see [Leivant, 94]),
and we give the de�nition of computation with a given time (or space) bound.

De�nition 11. Given a free algebra A generated from constructors c1; : : : ; cn
(with arity(ci) = ri), a register machine over A is a computational device M
having the following components:

1. a �nite set of states S = fs0; : : : ; sng;
2. a �nite set of registers � = f�0; : : : ; �mg;
3. a collection of commands, where a command may be:

(a) a branching si�jsi1 : : : sik , such that when M is in the state si, switch
to state si1 ; : : : ; sik according to whether the main constructor (i.e., the
leftmost) of the term stored in register �j is c1; : : : ; ck;

78 Covino E., Pani G.: An Implicit Recursive Language ...

(b) a constructor si�j1 : : : �jri ci�lsr, such that when M is in the state si,

store in �l the result of the application of the constructor ci to the values
stored in �j1 : : : �jri , and switch to sr;

(c) a p-destructor si�j�lsr (p � max(ri)i=1:::k), such that when M is in
the state si, store in �l the p-th subterm of the term in �j , if it exists;
otherwise, store the term in �j .

A con�guration of M is a pair (s; F), where s 2 S and F : �! A. M induces a
transition relation `M on con�gurations, where � `M �0 holds if there is a com-
mand of M whose execution converts the con�guration � in �0. A computation

of M on input X = X1; : : : ; Xp with output Y = Y1; : : : ; Yq is a sequence of
con�gurations, starting with (s0; F0), and ending with (s1; F1) such that:

1. F0(�j0(i)) = Xi, for 1 � i � p and j0 a permutation of the p registers;

2. F1(�j00(i)) = Yi, for 1 � i � q and j00 a permutation of the q registers;
3. each con�guration is related to its successor by `M ;
4. the last con�guration has no successor by `M .

De�nition 12. A register machine M computes the program f if, for all s; t; r,
we have that f(s; t; r) = q implies that M computes (q)1, : : : ; (q)#(f) on input

(s)1, : : : ; (s)#(f), (t)1; : : : ; (t)#(f); (r)1; : : : ; (r)#(f).

De�nition 13. 1. For each input X (with jXj = n), M computes its output
within time O(p(n)) if its computation on t runs through O(p(n)) con�gu-
rations; M computes its output in space O(q(n)) if, during the whole com-
putation, the global length of the contents of its registers is O(q(n)).

2. For each input X (with jXj = n), M needs time O(p(n)) and space O(q(n))
if the two bounds occur simultaneously, during the same computation.

Note that the number of registers needed by M to compute a given f has to be
�xed a priori (otherwise, we should have to de�ne a family of register machines
for each program to be computed, with each element of the family associated to
an input of a given length). According to de�nition 10 and 12, M uses a number
of registers which linearly depends on the highest component's index that f can
manipulate or access with one of its constructors, destructors or branchings (that
is, depends on #(f), a constant value); and which depends on the number of
times a variable is used by f , that is, on the total number of di�erent copies of
the registers that M needs during the computation.
Unlike the usual operators cons, head and tail over Lisp-like lists, our construc-
tors and destructors can have access to any component of a list, according to
de�nition 1. Hence, their computation by means of the previously de�ned regis-
ter machine requires constant time, but it requires an amount of time which is
linear in the length of the input, when performed by a Turing machine.

Codes.We write hsi; Fj(�0); : : : ; Fj(�k)i for the word that encodes a con�gura-
tion (si; Fj) of M , where each comma is a zero and each component is a binary
word over f1; 2g.

Lemma14. Let f be a program; the following are equivalent:

1. f belongs to T1.

79Covino E., Pani G.: An Implicit Recursive Language ...

2. f is computable by a register machine within time O(n).

Proof. To prove the �rst implication we show (by induction on the structure of
f) that each f 2 T1 can be computed by a register machine Mf in time cn,
where c is a constant which depends on f .
Base. f 2 T0. We note that a modi�er g can be computed in time lh(g), i.e. by
a machine running over a constant number of con�gurations; the result follows,
since the safe composition and the branching can be easily simulated by our
model of computation.
Step. Case 1. f =iter(g), with g 2 T0. We have f(s; r) = gjrj(s). A register
machine Mf can be de�ned as follows: (s)i is stored in the register �i (i =
1 : : :#(f)) and (r)j is stored in the register �j (j = #(f) + 1 : : : 2#(f)); it
computes g (in time lh(g)) for jrj times. Each time g is computed, Mf erases
one digit from one of the registers �#(f)+1 : : : �2#(f); the computation stops,

returning the �nal result, when they are all empty. Thus, Mf computes f(s; r)
within time jrjlh(g).
Case 2. Let f be de�ned by simple schemes or scmp. The result follows by direct
simulation of the schemes.
In order to prove the second implication, we show that the behaviour of a
k-register machine M which operates in time cn can be simulated by a pro-
gram in T1. De�ne a program nxtM 2 T0, such that nxtM operates on input
s = hsi; Fj(�0); : : : ; Fj(�k)i and it has the form if state[i](s) then Ei, where
state[i](s) is a test which is true i� the state of M is si and Ei is a modi�er
which updates the code of the state and the code of one among the registers,
according to the de�nition of M . By means of c � 1 scmp's we de�ne nxtcM in
T0, which applies c times nxtM to the word that encodes a con�guration of M .
We de�ne now in T1�

linsimM(x; a) = x
linsimM(x; za) = nxtcM (linsimM(x; z))

We have that linsimM(s; t) iterates nxtM (s) for cjtj times, returning the code
of the con�guration which contains the �nal result of M .

4 The time hierarchy

In this section we de�ne our time-hierarchy and we state the relation between
this hierarchy and the classes of register machines which compute their output
within a given amount of time. We write:

1. �(C) for the class of programs obtained by one application of the scheme �
to the class C;

2. (C;�) for the closure of C under �.

Writing simple for the set of the simple schemes of de�nition 2, we have

De�nition 15. 1. T1 = (iter(T0); scmp, simple);
2. Tk+1 = (srec(Tk); scmp, simple).

80 Covino E., Pani G.: An Implicit Recursive Language ...

This means that Tk+1 is obtained by one application of the safe recursion scheme
to the previously de�ned class Tk, and by closure under safe composition and
simple schemes.

De�nition 16. 1. S1 = (iter(S0); scmp, simple);
2. Sk+1 = (srec(Sk); simple).

This means that Sk+1 is obtained by one application of the safe recursion scheme
to the previously de�ned class Sk, and by closure under the simple schemes.
Hierarchy fSkgk<! is a version of fTkgk<! , in which each program returns a
result whose length is exactly bounded by the length of the input; this doesn't
happen if we close the class Sk under scmp. We will use this result to evaluate
the space complexity of our programs.

Lemma17. Each f(s; t; r) in Tk (k � 1) can be computed by a register machine
within time jsj+ lh(f)(jtj+ jrj)k .

Proof. Base. f 2 T1. The relevant case is when f is in the form iter(h), with h
a modi�er in T0. In lemma 14 (case 1 of the step) we have proved that f(s; r) is
computed within time jrjlh(g); hence, we have the thesis.
Step. f 2 Tp+1. The most signi�cant case is when f =srec(g; h). The inductive
hypothesis gives two register machines Mg and Mh which compute g and h
within the required time. Let r be the word a1 : : : ajrj; recalling that f(s; t; ra) =

h(f(s; t; r); t; ra), we de�ne a register machine Mf such that it calls Mg on
input s; t, and calls Mh for jrj times on input stored into the appropriate set of
registers (i.e., the result of the previous recursive step has to be stored always
in the same register). By inductive hypothesis, Mf needs time jsj + lh(g)(jtj)p

in order to compute g; for the computation of the �rst step of h, it needs time
jg(s; t)j+ lh(h)(jtj+ jajrj�1ajrjj)

p.

After jrj calls of Mh, the �nal con�guration is obtained within overall time
jsj+max(lh(g); lh(h))(jtj+ jrj)p+1 � jsj+ lh(f)(jtj+ jrj)p+1.

Lemma18. The behaviour of a register machine which computes its output
within time O(nk) can be simulated by an f in Tk.

Proof. Let M be a register machine respecting the hypothesis. As we have al-
ready seen, there exists nxtM 2 T0 such that, for input the code of a con�guration
of M , it returns the code of the con�guration induced by the relation `M .
Given a �xed i, we write the program �i by means of i safe recursions nested
over nxtM , such that it iterates nxtM on input s for ni times, with n the length
of the input:
�0 :=iter(nxtM) and �n+1 :=idtz=y(n+1), where n+1 :=srec(�n; �n).
We have that

�0(s; t) = nxt
jtj
M (s);

�n+1(s; t) = n+1(s; t; t);

and �
n+1(s; t; a) = �n(s; t)
n+1(s; t; ra) = �n(n+1(s; t; r); t) = n(n+1(s; t; r); t; t)

In particular we have

81Covino E., Pani G.: An Implicit Recursive Language ...

�1(s; t) = 1(s; t; t) = �0(�0(: : : �0(s; t) : : :))| {z }
jtj times

= nxt
jtj2

M

�2(s; t) = 2(s; t; t) = �1(�1(: : : �1(s; t) : : :))| {z }
jtj times

= nxt
jtj3

M

By simple induction we see that �k�1 iterates nxtM on input s for jtjk times,
and that it belongs to Tk. The result follows de�ning f(t) = �k�1(t; t), with t
the code of an initial con�guration of M .

Theorem19. Let f be a program; the following are equivalent:

1. f belongs to Tk.
2. f is computable by a register machine within time O(nk).

Proof. By lemma 17 and lemma 18.

We recall that register machines are polytime reducible to Turing machines; this
implies that

S
k<! Tk captures ptime (see [Leivant, 94]).

5 The time-space hierarchy

In this section we de�ne a time-space hierarchy (see [Cobham, 62]), and we state
the equivalence with the classes of register machines which compute their output
within a bounded amount of time and space.

De�nition 20. Given the programs g and h, f is obtained by weak composition

of h in g if f(x; y; z) = g(h(x; y; z); y; z). Notation: f =wcmp(h; g).

Note that the di�erence between the weak form of composition and the safe one
is that the former is applied to programs which can be in any class, while the
latter applies only when g or h belongs to T0.

De�nition 21. For all p; q, T Sqp is the class of programs obtained by weak
composition of h in g, with h 2 Tq , g 2 Sp and q � p.

Lemma22. For all f in Sp, we have jf(s; t; r)j � max(jsj; jtj; jrj).

Proof. By induction on p. Base. f 2 S1 and f is de�ned by iteration of g in
S0 (that is, rog(g) � 0); in all other cases the result trivially follows. We have,
by induction on r, jf(s; a)j = jsj, and jf(s; ra)j = jg(f(s; r))j � jf(s; r)j �
max(jsj; jrj):
Step. Given f 2 Sp+1, de�ned by srec in g and h in Sp, we have

jf(s; t; a)j = jg(s; t)j by de�nition of f
� jmax(jsj; jtj)j by inductive hypothesis.

and

jf(s; t; ra)j = jh(f(s; t; r); t; ra)j by de�nition of f
� jmax(jf(s; t; r)j; jtj; jraj)j by inductive hypothesis on h
� jmax(max(jsj; jtj; jrj); jtj; jraj)j by induction on r
� jmax(jsj; jtj; jraj)j:

82 Covino E., Pani G.: An Implicit Recursive Language ...

Lemma23. Each f in T Sqp (with p; q � 1) can be computed by a register
machine within time O(np) and space O(nq).

Proof. Let f be in T Sqp. By de�nition 21, f is de�ned by weak composition of
h 2 Tq into g 2 Sp, that is, f(s; t; r) = g(h(s; t; r); t; r). The theorem 19 states
that there exists a register machine Mh which computes h within time nq, and
there exists another register machineMg which computes g within time np. Since
g belongs to Sp, lemma 22 holds for g; hence, the space needed by Mg is at most
n.
De�ne now a machine Mf that, by input s; t; r performs the following steps:
(1) it calls Mh on input s; t; r;
(2) it calls Mg on input h(s; t; r); t; r, stored in the appropriate registers.
According to lemma 17, Mh needs time equal to jsj+ lh(h)(jtj+ jrj)q to compute
h, and Mg needs jh(s; t; r)j + lh(g)(jtj+ jrj)p to compute g.
This happens because lemma 17 shows, in general, that the time used by a
register machine to compute an element of our language is a polynomial in
the length of its inputs, but, more precisely, it shows that the time complexity is
linear in jsj. Moreover, since in our language there is no kind of identi�cation of x
as z,Mf never moves the content of a register associated to h(s; t; r) into another
register and, in particular, into a register whose value plays the role of recursive
counter. Thus, the overall time-bound is jsj+ lh(h)(jtj+ jrj)q + lh(g)(jtj+ jrj)p

which can be reduced to np, being q � p.
Mh requires space nq to compute the value of h on input s; t; r; as we noted
above, the space needed by Mg for the computation of g is linear in the length
of the input, and thus the overall space needed by Mf is still nq .

Lemma24. A register machine which computes its output within time O(np)
and space O(nq) can be simulated by an f 2 T Sqp.

Proof. Let M be a register machine, whose computation is time-bounded by
np and, simultaneously, it is space-bounded by nq . M can be simulated by the
composition of two machines,Mh (time-bounded by nq), and Mg (time-bounded
by np and, simultaneously, space-bounded by n): the former delimits (within nq

steps) the space that the latter will successively use in order to simulate M .
By theorem 19 there exists h 2 Tq which simulates the behaviour of Mh, and
there exists g 2 Tp which simulates the behaviour of Mg; this is done by means
of nxtg , which belongs to S0, since it never adds a digit to the description of Mg

without erasing another one.
According to the proof of lemma 18, we write �n�1 2 Sn, such that �n�1(s; t) =

nxt
jtjn

g . The result follows de�ning sim(s) = �p�1(h(s); s) 2 T Sqp.

Theorem25. Let f be a program; the following are equivalent:

1. f belongs to T Sqp.
2. f is computable by a register machine within time O(np) and space O(nq).

Proof. By lemma 23 and lemma 24.

83Covino E., Pani G.: An Implicit Recursive Language ...

References

[Bellantoni, Cook, 92] S. Bellantoni and S. Cook, A new recursion-theoretic character-

ization of the poly-time functions. Computational Complexity 2(1992)97-110.
[Caporaso, Pani, Covino] S. Caporaso, G. Pani, E. Covino, Predicative Recursion,

Constructive Diagonalization and the Elementary Functions, Workshop in Implicit
Computational Complexity (ICC'99), Trento.

[Clote, 92] P. Clote, A time-space hierarchy between polynomial time and polynomial

space. Math. Sys. The. 25(1992)77-92.
[Cobham, 62] A. Cobham, The intrinsic computational diÆculty of functions. Y. Bar-
Hillel (ed), Proceedings of the International Conference on Logic, Methodology, and
Philosophy of Science, pages 24-30, North-Holland, Amsterdam, 1962.

[Hofmann, 99] M. Hofmann, Linear types and non-size-increasing polynomial time

computation. Proceedings of the Fourteenth IEEE Symposium on Logic in Computer
Science (LICS'99), 464-473.

[Leivant, 91] D. Leivant, A foundational delineation of computational feasibility. Proc.
of the 6th Annual IEEE symposium on Logic in Computer Science, (IEEE Computer
Society Press, 1991), 2-18.

[Leivant, 93] D. Leivant, Strati�ed functional programs and computational complexity.
Conference Records of the 20th Annual ACM Symposium on Principles of Program-
ming Languages, New York, 1993, ACM.

[Leivant, 94] D. Leivant, Rami�ed recurrence and computational complexity I: word

recurrence and polytime. P.Clote and J.Remmel (eds), Feasible Mathematics II
(Birkauser, 1994), 320-343.

[Leivant, Marion, 00] D. Leivant and J.-Y. Marion, A characterization of alternating

log time by rami�ed recurrence. Theoretical Computer Science, 236(2000).
[Simmons, 88] H. Simmons, The realm of primitive recursion. Arch.Math. Logic,
27(1988)177-188.

84 Covino E., Pani G.: An Implicit Recursive Language ...

