
Determinism, Nondeterminism, Alternation, and Counting

Sanjay Gupta
(Department of Computer Science

Virginia Polytechnic Institute and State University
sgupta@vt.edu)

Abstract: Toda proved a remarkable connection between the polynomial hierarchy
and the counting classes. Tarui improved Toda’s result to show the connection to
a weak form of counting and provided an elegant proof. This paper shows that a
key step in Tarui’s proof can be done uniformly using the depth-first traversal and
provides the algorithm that generalizes Toda’s result to arbitrary alternating Turing
machines (ATMs). Tarui’s proof is carefully dissected to obtain an interesting relation-
ship between the running time of the constructed counting machine and the different
parameters of the original ATM: the number of alternation blocks, the number of non-
deterministic steps, and the number of deterministic steps.

Keywords: Theory of computation, Computational complexity, alternating Turing
machines, counting classes

Category: F.1

1 Introduction

Toda [7] proves a remarkable connection between the polynomial hierarchy and
the counting classes: PH ⊆ BP · PP. This result can be viewed as stating that
languages accepted by an alternating Turing machine (ATM) [2] that has O(1)
alternation blocks can be accepted by a probabilistic counting machine. A natu-
ral question is whether this result can be extended to ATMs where the number
of alternation blocks changes with the size of the input, even if it involves using
stronger counting classes. An analysis of Toda’s constructive proof reveals two
problems. First, the proof uses induction on the number of alternation block-
s, and hence, cannot be used as is when the number of alternation blocks can
change with the input. Second, the running time of the counting machine is
doubly exponential in the number of alternation blocks of the original ATM.

Tarui [6] improves Toda’s result to show the connection to a weak form
of counting, PH ⊆ BP · SPP, and provides an elegant proof which improves
the bounds on Toda’s construction to exponential in the number of alternation
blocks. An inspection of Tarui’s proof shows that an intermediate step in the
construction of the counting machine involves repeated substitutions of a polyno-
mial with an exponential number of product terms for O(1) steps, corresponding
to the number of alternation blocks of the original ATM. While this step can
be easily done when the number of alternation blocks is fixed, it is not clear
if the step can be performed efficiently when the number of alternation blocks

Journal of Universal Computer Science, vol. 7, no. 9 (2001), 816-825
submitted: 13/9/01, accepted: 4/6/01, appeared: 28/9/01 Springer Pub. Co.

changes with the input, especially since random access is not available on Turing
machines.

This paper makes three contributions. First, we show that the above step
in Tarui’s proof can be performed uniformly and efficiently using the depth-
first traversal without needing the repeated substitution done by Tarui. Second,
we explicitly provide the algorithm that generalizes Toda’s result to arbitrary
ATMs. Third, we carefully dissect Tarui’s proof to show how the running time
of the constructed counting machine relates to the various parameters of the
original ATM: the number of alternation blocks, the number of nondeterministic
bits guessed, and the bounds on the deterministic steps. This dissection reveals
that the running time of the new counting machine has the following interesting
form in terms of the bounds of the original ATM:

(Total nondeterministic bits guessed)Alternation blocks · Deterministic steps .

The analysis of the deterministic steps of the counting machine using the se-
quential tapes of a Turing machine is non-trivial. The dissection also identifies
an interesting hurdle to improving the running time of the counting machine
from its current exponential bounds. Not only does the counting machine guess
an exponential number of nondeterministic bits, it simulates the deterministic
steps of the original ATM on an exponential number of computation paths. This
naturally leads to the question: Are these exponential steps necessary? In [5],
we construct a different counting machine that makes only a polynomial num-
ber of nondeterministic steps, but needs an exponential number of random bits,
a polynomial number of independent random bits along different computation
paths. Furthermore, each computation path of the new machine simulates on-
ly a constant number of deterministic steps of the original ATM. These results
show that there is no a priori reason to believe that the bounds on the counting
machine cannot be further improved, at least based on our current knowledge.

2 Preliminaries

We assume the standard notation used in computational complexity theory. The
input is a string over some fixed alphabet Σ. The length of the input string is
denoted by n. The length of a string y is denoted by |y|. For two n-bit binary
strings u = u1u2 . . . un and v = v1v2 . . . vn, let u · v denote

∑n
i=1 uivi (mod 2).

The set of integers is denoted by Z.
Our model of computation is nondeterministic Turing machine (NTM). De-

terministic Turing machines are NTMs that do not make any nondeterministic
guesses. Alternating Turing machines (ATMs) [2] are NTMs that make nondeter-
ministic steps in one of the two categories: existential (∃) or universal (∀). Every
block of consecutive nondeterministic guesses in the same category is called an

817Gupta S.: Determinism, Nondeterminism, Alternation, and Counting

alternation block. In a generic sense, counting machines are nondeterministic ma-
chines, where the acceptance or rejection depends in some way on the number
of computation paths. Let a nondeterministic machine M output 1 on accepting
paths and −1 on rejecting paths. For input x, let AR(M, x) ∈ Z denote the sum-
mation of outputs on all the computation paths of M . AR functions are intimate-
ly tied to the counting classes [1, 3, 4]. A language L ∈ PP if there exists a non-
deterministic machine such that x ∈ L ⇔ AR(M, x) ≥ 0. A language L ∈ SPP
if there exists a nondeterministic machine such that x ∈ L ⇒ AR(M, x) = 1 and
x �∈ L ⇒ AR(M, x) = 0.

A nondeterministic machine can behave probabilistically by requiring random
bits as additional input. In this case, the output of the machine depends on both
the input and random bits. For input x, and random bits r, let AR(M, x, r) ∈ Z

denote the summation of outputs on all the computation paths of M . Toda’s
theorem proves that any language L accepted by an ATM that has a constant
number of alternation blocks can be accepted by a NTM M probabilistically such
that x ∈ L ⇔ AR(M, x, r) ≥ 0 with probability at least 3/4, where r denotes a
polynomial number of random bits chosen uniformly and independently.

3 Main Result

In this section, we generalize Toda’s theorem to arbitrary ATMs as follows.

Theorem 3.1 Let a language L be accepted by an alternating Turing machine
M that has a(n) alternation blocks, guesses p(n) bits during each alternation
block, and executes t(n) ≥ p(n)a(n) deterministic steps. Then, there exists a
nondeterministic machine M ′ such that for all input x

Prob
(

x ∈ L ⇒ AR(M ′, x, r) = 1
x �∈ L ⇒ AR(M ′, x, r) = 0

)
≥ 3

4
,

where r is chosen uniformly and independently from {0, 1}O(p3(n)a(n)). M ′ guess-
es (p(n)a(n))O(a(n)) bits and makes at most (p(n)a(n))O(a(n)) ·t(n) deterministic
steps.

Remarks:

1. Note that the running time of the new counting machine has the following
interesting form in terms of the steps of the original ATM:

(Total nondeterministic bits)Alternation blocks · Deterministic steps .

2. If t(n) ≥ (p(n)a(n))O(a(n)), then the running time of the counting machine
is the same as that of the original machine. Thus, all the alternation blocks

818 Gupta S.: Determinism, Nondeterminism, Alternation, and Counting

and nondeterministic steps can be subsumed by one weak counting operator.
For example, if a(n) = O(log n), p(n) = nO(1), and t(n) = nO(log n), then M ′

guesses nO(log n) bits and makes nO(log n) deterministic steps.

Proof of Theorem 3.1
For the sake of clarity, we write p, a, and t to denote p(n), a(n), and t(n)

respectively. Let the O(p3a) random bits be given on a separate tape, called
random bit tape, and grouped in O(pa) blocks of p2 bits each: w1, w2, . . . , wp,
|wi| = p, 1 ≤ i ≤ p.

1. Using the random reduction given by Valiant and Vazirani [8], Tarui
constructed a random polynomial q1(x1, . . . , x2p) over Z to approximate
NOR(x1, x2, . . . , x2p) as follows. Pick w1, . . . , wp uniformly and independent-
ly from {0, 1}p, and for each 0 ≤ i ≤ p and each 1 ≤ j ≤ 2p, let

ri
j =

1 if i = 0
1 if i ≥ 1 and binary(j − 1) · w1 = · · · = binary(j − 1) · wi = 0
0 otherwise,

where binary(j − 1) denotes the value of j − 1 written as a p-bit binary
vector. Let

q1(x1, . . . , x2p) =
p∏

i=0

(ri
1x1 + · · · + ri

2px2p − 1)2.

If NOR(x1, . . . , x2p) = 1, then q1(x1, . . . , x2p) = 1, and if
NOR(x1, . . . , x2p) = 0, then q1(x1, . . . , x2p) = 0 with probability at least
1
4 . There are (2p + 1)2(p+1) product terms 1 if we expand q1, each of which
can be indexed using 2(p + 1)(p + 1) bits: ith block of (p + 1) bits picks a
term ri

jxj (or −1, when j = 2p + 1) from ith factor. The polynomial has
degree O(p) and uses O(p2) random bits. Given w1, . . . , wp, calculating each
ri
j takes O(p2) deterministic steps.

Construct O(pa) polynomials q1(x1, . . . , xn) using independent random bits
and let q(x1, . . . , x2p) denote their product. The new polynomial approx-
imates NOR with one-sided error probability 1 − (3/4)O(pa), has degree
O(p2a), and uses O(p3a) random bits. Note that the constant in O(pa) can
be used to improve the probability of error to arbitrarily small values. The
polynomial has the following form:

q(x1, x2, . . . , x2p) = [()2︸ ︷︷ ︸
2p + 1 terms

· · · ()2]

︸ ︷︷ ︸
2(p + 1) factors for 0 ≤ i ≤ p

· · · [()2 · · · ()2
]

︸ ︷︷ ︸
O(pa) random bit blocks using independent bits

1 A polynomial in expanded form is written as a sum of product terms cixi1xi2 . . . xik .

819Gupta S.: Determinism, Nondeterminism, Alternation, and Counting

There are (2p + 1)2(p+1)O(pa) product terms in the expanded polynomial q,
which can be indexed using 2(p + 1)(p + 1)O(pa) bits by using (p + 1) bits
to pick a term from each factor.

2. Convert the ATM M into a clean form so that all the nondeterministic
bits are guessed before making any deterministic steps; that is, on input
x, |x| = n, the machine guesses p(n) nondeterministic bits jl in the lth
alternating block, 1 ≤ l ≤ a, and accepts if φ(x, j1, j2, . . . , ja), where φ is a
deterministic predicate that needs t(n) steps.

This conversion increases the number of computation paths without affecting
the worst case bounds for the machine. The computation tree of the clean
ATM M can be viewed as a “stratified” circuit of depth a with alternating
AND/OR gates, where the fan-in of each gate is 2p. Introduce a pair of NOT
gates in sequence at each input of all AND gates or, equivalently, at the out-
put of all OR gates. By combining one NOT gate with the AND gate and the
second with the OR gate, the “stratified” circuit of depth a can be viewed
as a circuit with only NOR gates. (We assume that the top gate is an AND
gate. Otherwise, negate the output; the output of the counting machine we
construct can be easily negated.) Note that the polynomial q(x1, x2, . . . , x2p)
constructed in Step 1 approximates all the O(2pa) NOR gates in the com-
putation tree with error probability less than O(2pa)(3/4)O(pa) ≤ 1/2O(1).

3. Replace 2 each NOR gate with the polynomial q(x1, x2, . . . , x2p) constructed
in Step 1 as shown in Figure 1. Note that all the polynomials are identical
and constructed using the same set of random bits; only their variables are
different, depending on the position in the tree.

As written in the syntactic form shown in Step 1, each q has several occur-
rences of the same variable: total number of factors in which each xj appears
is (p + 1)O(pa). For each occurrence of xj , add a corresponding child node
with polynomial q.

The tree defines a new polynomial Q that is obtained by substituting q in
each child node into the corresponding xj in the polynomial q for the parent
node. We want to simulate the resultant polynomial Q using a nondeter-
ministic machine so that each product term of the expanded polynomial
Q is simulated along a computation path of the nondeterministic machine.
Since computing the explicit description of Q seems expensive, we do the
simulation without it.

2 Our proof differs from Tarui’s from now on. Tarui repeatedly substitutes the poly-
nomials in child nodes into the corresponding term in the parent node to obtain
one polynomial as a sum of products. Then nondeterministic bits are used to index
each product term. This step is easily done non-uniformly, which is sufficient if the
number of alternation blocks does not change with the length of the input.

820 Gupta S.: Determinism, Nondeterminism, Alternation, and Counting

NOR

NOR NOR NOR q(· · ·)

NOR NOR

· · ·

· · ·

· · · a levels

· · ·

· · ·

· · · · · ·a levels

q(· · ·)

q(· · ·)

· · ·

q(· · ·)

φ(x, j1, j2, . . . , ja)

x1

φ(x, j1, j2, . . . , ja)

x1 xj1 x2p x2p

· · · · · · · · · · · ·
· · · · · ·xja xja

xj1

Figure 1: Computation tree of the ATM and the tree obtained by replacing each
NOR gate by the polynomial q(x1, x2, . . . , x2p).

In the next step, we nondeterministically guess 2(p + 1)2O(pa) bits to in-
dex each product term of the expanded polynomial q. This gives a term∏2(p+1)O(pa)

k=1 αk, where αk is picked from each of the 2(p + 1) factors of the
O(pa) random bit blocks of q. Thus, αk = rik

jk
xjk

or −1.

When αk �= −1 in a node, we replace it by a product term of the expanded
polynomial q that corresponds to the kth child of the node. The above process
of picking up a product term of the expanded polynomial q is repeated for all
αk’s and for all the a levels. Using 2(p+1)2O(pa) additional nondeterministic
bits for each variable at each level, we guess a product term of the expanded
polynomial Q. Thus, we need a total of (2(p + 1)2O(pa))a = O((p3a)a)
nondeterministic bits. The product term of the expanded polynomial Q so
selected is represented in Figure 2. Each node has 2(p + 1)O(pa) terms αk,
and when αk �= −1, then we have a child node.

Each product term of the expanded polynomial Q represented by Figure 2
evaluates to one of the values {0, 1,−1}. If the value is 0, then the corre-
sponding computation path guesses a bit and accepts on 1 and rejects on
0, so that the path contributes 0 to AR(M ′, x, r). Otherwise, accept or re-
ject depending on the sign so that the computation path contributes the
appropriate value to AR(M ′, x, r).

4. Guess the O((p2a)a) nondeterministic words jk, 1 ≤ k ≤ O((p2a)a), |jk| =
p + 1, to index a product term of the expanded polynomial Q. The product
term, obtained by picking one term rik

jk
xjk

(or −1) in each factor within

821Gupta S.: Determinism, Nondeterminism, Alternation, and Counting

· · ·

· · ·

· · ·

a levels · · ·

2(p+1)O(pa)∏
k=1

αlevel=1
k

2(p+1)O(pa)∏
k=1

αparent=l,level=2
k

α1 �= −1 αl �= −1

2(p+1)O(pa)∏
k=1

αparent=1,level=2
k

· · ·

αk = rik
jk

xjk
or − 1

Figure 2: Tree representing one product term of the expanded polynomial Q;
each node has one product term of the expanded polynomial q.

each random bit block of q, is represented by Figure 2. We assume that
the nondeterministic bits are ordered in the depth-first order of the tree
traversal. Within a node jk’s are ordered according to the order of random
bit blocks, and within each random bit block according to the value of ik.
Therefore, as we read jk’s from the tape on which the nondeterministic bits
are stored, we traverse the tree in Figure 2 in depth-first order.

For each iteration of the depth-first traversal, which accesses a new αk,
1 ≤ k ≤ O((p2a)a), do the following.

(a) Read the next p+1 nondeterministic bits jk. If jk = 2p +1, it indexes the
term −1 of the polynomial q. Toggle the sign bit. (Use one toggle bit to
keep track of the current sign of the product term of Q.) If jk > 2p + 1,
guess a bit and reject on 0 and accept on 1.

(b) Calculate rik

jk
by accessing the correct random bit block from the tape.

If rik

jk
= 0, then guess a bit and reject on 0 and accept on 1.

We have to be careful in ensuring that this step is done efficiently because
the random bits needed to calculate rik

jk
are stored on a sequential tape.

The analysis below shows that we can access the random bits in parallel
with the previous iteration of depth-first traversal.

(c) Every time the depth-first traversal reaches the leaf level of the tree,
we have computation paths jk1 , jk2 , . . . , jka , corresponding to each of

822 Gupta S.: Determinism, Nondeterminism, Alternation, and Counting

the a alternation blocks of the original ATM M , given by jk’s at each
level. Simulate the deterministic predicate φ(x, jk1 , jk2 , . . . , jka) and if it
rejects guess a bit and reject on 0 and accept on 1. We do not need to
perform the simulation if any jkl

is 2p + 1 and the indexed term is −1;
just toggle the sign bit.

(d) At the end of the depth-first traversal, all the O((p2a)a) computation
paths of the original ATM M accept and all the rik

jk
’s are 1. If the sign

of the product term is positive, then accept, otherwise reject.

Analysis:
It is easy to see that the counting machine needs O(p3a) random bits in Step 1
and guesses O(p(p2a)a) nondeterministic bits in Step 4. Step 4a simply moves the
tape head forward to access the O(p(p2a)a) nondeterministic bits in sequence.
Step 4c simulates the deterministic steps of ATM M on O((p2a)a) computation
paths and takes O(t(p2a)a) steps.

Calculating O((p2a)a) rik
jk

’s in Step 4b requires O(p2(p2a)a) deterministic
steps. However, we need to be careful in the analysis of deterministic steps
required to access the random bits needed to calculate rik

jk
’s. We show that

accessing the appropriate random bits can be done in parallel with the O((p2 +
t)(p2a)a) deterministic steps needed in Steps 4b and 4c during the previous
depth-first iteration.

At every step of depth-first traversal, the following tuple is pushed—popped,
when depth-first traversal retreats to an earlier level of the tree—on a separate
tape used as a stack: 〈Current level, current factor, current block〉, where 1 ≤
level ≤ a, 1 ≤ factor ≤ 2(p + 1), and 1 ≤ block ≤ O(pa). The factor and block
respectively are the indices of the current factor and random bit blocks of the
polynomial q, and level is the current level of the tree. The depth-first starts with
(1, 1, 1), level is incremented the fastest, followed by factor, followed by block.
The value of ik needed to calculate rik

jk
is given by factor, and block defines the

random bit block needed to calculate rik
jk

.
When the depth-first search accesses a child node for the first time, we need

to access the first random bit block. This can be done in O(1) steps by keeping
a copy of the first random bit block on a separate tape.

When the depth-first search moves forward within a node at the leaf level,
we need to access the random bits in their given order on the tape.

However, when the depth-first search retreats from a leaf node to one of the
ancestors, we need to access an intermediate blocks of random bits. This step
can be done in parallel by pre-checking the retreats while Steps 4b and 4c are
executed at the leaf level during the previous iteration of depth-first traversal.
When the last αk �= −1 of a node is being simulated at the leaf level in a depth-
first iteration, then the next iteration will retreat to an ancestor node that is

823Gupta S.: Determinism, Nondeterminism, Alternation, and Counting

1. The input is given on two tapes. The first tape contains (M, x) and the second
tape contains O(pa) independently chosen blocks of random bits w1, . . . , wp,
where each |wi| = p, for a total of O(p3a) random bits.

2. On a separate tape guess O((p2a)a) words of nondeterministic bits, where
each word is of size p+1. These identify ri

jxj ’s in each node and at each level
of the tree of Figure 2 in depth-first order. Note that each j, 1 ≤ j ≤ 2p + 1,
requires p + 1 nondeterministic bits and each node has 2(p + 1)O(pa) such
xj ’s and children for exactly a levels.

3. Traverse the tree of Figure 2 in the depth-first order, calculating ri
j using

the random bits and nondeterministic bits. Use one bit to keep track of
the current sign of the term represented by the tree. When j = 2p + 1
corresponding to the term −1, the sign bit toggles. If any ri

j = 0, guess a bit
and reject on 0 and accept on 1.

Every time the depth-first search reaches the leaf level of the tree, we have
computation paths j1, . . . , ja, corresponding to each of the a alternation
blocks of the ATM M , given by jk’s at each level. Simulate the deterministic
steps of the ATM M on this computation path and if it rejects guess a bit
and reject on 0 and accept on 1.

At the end of the depth-first traversal, all the O((p2a)a) computation paths
of ATM M accept and all the ri

j ’s are 1. If the sign of the term is positive,
then accept, otherwise reject.

Table 1: Algorithm for the counting machine

not at the last factor in the last random bit block. Search the stack tape back-
wards to access the first tuple 〈level , factor , block〉 such that factor is not equal
to 2(p + 1) or block �= O(pa). If factor < 2(p + 1), then we need to access the
same random bit block in the next iteration. Otherwise, retrieve the random bit
block given by block + 1 from the random bit tape and copy it on a separate
work tape. Since the deterministic simulation and calculation of rik

jk
’s requires

O((p2 + t)p2a) steps, we have ample time to access the correct random bit block
among O(p3a) random bits and to copy it on to a separate tape. ✷

The algorithm for the counting machine is summarized in Table 1. It is clear
from the proof that the error probability of 1/4 can be decreased to 1/2e using
e + O(pa) independent polynomials in Step 1.

824 Gupta S.: Determinism, Nondeterminism, Alternation, and Counting

4 Conclusion and Future Research

We have shown that a key step in Tarui’s proof can be performed uniformly and
efficiently on a Turing machine, which is needed to generalize Toda’s theorem
to ATMs that can have an arbitrary number of alternation blocks. We have
provided an explicit algorithm that generalizes Toda’s result to arbitrary ATMs.
We have also shown how the running time of the counting machine relates to
the bounds on the various parameters of the original ATM. As to the question
whether the exponential number of nondeterministic and deterministic steps are
really necessary, in [5], we construct a different counting machine that makes
only a polynomial number of nondeterministic steps, but needs an exponential
number of random bits, a polynomial number of independent random bits along
different computation paths. Furthermore, each computation path of the new
machine simulates a constant number of deterministic steps of the original ATM.
These results show that there is no a priori reason to believe that the bounds
cannot be further improved, at least based on our current knowledge.

References

1. R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. Journal
of Computer and System Sciences, 50(2):191–202, 1995.

2. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. JACM, 8(1):114–
133, 1981.

3. S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of
Computer and System Sciences, 48(1):116–148, 1994.

4. S. Gupta. Closure properties and witness reduction. Journal of Computer and
System Sciences, 50(3):412–432, 1995.

5. S. Gupta. PSPACE and the power of counting. Manuscript, 2001.
6. J. Tarui. Randomized polynomials, threshold circuits, and the polynomial hierarchy.

Theoretical computer science, 113:167–183, 1993.
7. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20:865–

877, 1991.
8. L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical

Computer Science, 47:85–93, 1986.

825Gupta S.: Determinism, Nondeterminism, Alternation, and Counting

