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Abstract: In this paper I celebrate the evolution of the Vienna Development Method (VDM)
along its Irish branch and attempt to tell the story that Peter Lucas played in it.

There are two parts to the paper. In the first part I tell my story of the early day of the origins of
the Irish School of the VDM (VDM♣), beginning with pre-history in 1978 up until the radical
decisions of 1995 which led to the Irish School of Constructive Mathematics (M♣

c ).

In 1995 the School committed itself to the development of the modelling of (computing) systems
in full generality. This was achieved by embracing Category Theory and by exploring a geometry
of formal methods using techniques of fiber bundles. From fiber bundles to sheaves was a natural
step. Concurrently, the School moved from the algebra of monoids to categories, and from cate-
gories to topoi (alt. toposes). The second part of the paper illustrates, with simple examples, how
I introduce topos logic into modelling in 2001.
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1 Prologue

“We stress here, as was stressed in the introduction to this volume, that the
meta-language is to be used, not for solving algorithmic problems (on a com-
puter), but for specifying, in an implementation-independent way, the archi-
tecture (or models) of software. Instead of using informal English mixed with
technical jargon, we offer you a very-high-level ‘programming’ language. We
do not offer an interpreter or compiler for this meta-language.And we have ab-
solutely no intention of ever wasting out time trying to mechanize this meta-
language. We wish, as we have done in the past, and as we intend to continue
doing in the future, to further develop the notation and to express notions
in ways for which no mechanical interpreter system can ever be provided.
[emphasis is mine]” [Bjørner and Jones 1978] p. 33.

These words had a profound effect on me and on the development of the Irish School of
the Vienna Development Method (VDM♣). I remember being an angry young(er) man
and throwing them back verbatim in the faces of their authors, Dines Bjørner and Cliff
Jones, in the ‘basement’ of the Berlaymont headquarters of what was then known as the
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European Economic Community (EEC) in the heart of Brussels, Belgium. The occa-
sion, as I remember it, concerned the launching, or at least the promotion of the Inter-
national Standards Organization (ISO) standard VDM-SL (where SL abbreviates spec-
ification language). Both Dines and Cliff were very much in support. I was adamantly
and vociferously against it. I still am! [As I write this now in 2001 and use words such
as ‘remember’ I know that my account is strictly a story (= history). I may get some
facts terribly wrong. However, the spirit of what I remember is close enough. Perhaps
others will correct the inaccuracies. Certainly it is better to have this story than none
at all.]

The lengthy quotation heading the prologue is taken from the first substantial ac-
count of the Vienna Development Method published in 1978 in the (new) Springer-
VerlagLecture Notes in Computer Science61. I bought the book in that same year and
first read words by someone called Peter Lucas. Permit me to quote the last three sen-
tences from his introductory paper,On the Formalization of Programming Languages:
Early History and Main Approaches.

“So far most research in formal semantics has been concerned with constructs
as found in traditional languages. Here is a piece of language, what does it
mean, was the question in the light of the discussed software problems. We
should start from the other end, i.e. construct novel denotations and associate
a name after we are satisfied with their properties.” [Lucas 1978] p. 23.

To put this another way, Peter Lucas was basically requiring of us that we carry out
a programme of research into constructive mathematics. Ultimately, this is what has
led to the VDM♣ and subsequently and necessarily to the Irish School of Constructive
Mathematics (M♣

c).
Who is this man Peter Lucas? Why am I writing this contribution to theFestschriftin

his honour? Naturally, it is an opportunity to explain one’s own (intellectual) insights of
the time (which I date as 18–19 May 2001, the occasion of the Colloquium to mark his
retirement from the Institute for Software Technology, Graz University of Technology,
Austria) and to try to relate same in the context of the one to be honoured (Peter Lucas).
But the insights and this writing (Schrift) must be correlated with one’s experience of
the man whose (intellectual) life we celebrate. Elsewhere within the collected writings
of theFestschriftthere shall be a variety of accounts and perspectives of Peter Lucas,
the man and his work. The perspective of each story teller (narrator, writer,. . . ) will
have space-time threads each of which is a sequence of events

EVENT�,

dated appropriately
EVENT −→ DATE,

and pegged to location

LOCATION −→ (EVENT −→ DATE),
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either real or virtual, and the perspective will be peculiar to the story teller (her/him)-
self. Each story teller will relate their understanding of Peter Lucas within their own
conceptual framework and according to the roles and relationships that have charac-
terised their own life and their relationship directly or indirectly with the one to be
honoured.

In thisSchriftI wish to honour him from the perspective of his influence on my own
intellectual development and of all that work which now goes by the name of theIrish
School of Constructive Mathematics(M♣

c), incorporating the Irish School of the VDM.
I hope that it will be clear from what I write that Lucas and I have had a very special
relationship throughout the past 24 years! That relationship was based upon a very few
chance meetings which took place in strange countries (exclusively in Europe). Over
those 24 years we have had a few conversations and touched upon quite a range of
topics. Some few of those conversations were related to the VDM. In fact, so rarely
did I meet him that I shall often speak of those who knew him and worked for him,
especially Dines Bjørner and Cliff Jones. I may have occasion to speak of others such as
Andrzej Blikle whom I remember with great affection and who is certainly one of those
who worked in the research direction, advocated in [Lucas 1978], from denotations to
syntax [Blikle 1987] [Blikle 1990]. Such people come within a collection of persons
that I would associate with all that happened in and that came out of the IBM Vienna
Laboratory of the nineteen-seventies. I certainly met, albeit briefly, Erich Neuhold and
learned of Hans Bekic († October 1982) and Wolfgang Henhapl.

Perhaps the most significant collection of persons with whom I might now identify
when I think of Peter Lucas is that once named VDM Europe (established in 1985?).
For the very first VDM Europe Symposium (1987) there were four members of the Pro-
gramme Committee (and four editors): Dines Bjørner, Cliff Jones, Erich Neuhold and
the stranger/outsider: Ḿıchéal Mac an Airchinnigh. I was the substitute for the invited
Hans-J̈urgen Kugler. The rest is now history. Subsequently VDM Europe collectively
agreed to evolve into Formal Methods Europe (FME). At the FME Symposium in 1994
(Barcelona, Spain) I lobbied that Peter Lucas might become our chairman and so it be-
came and became us and became him. I subsequently met him again at FME 2001 in
Berlin, Germany, in 2001.

I most certainly read his writings before I met the man. I had thought that our first
meeting was at the VDM Europe Conference in Kiel, Germany in 1990. I was wrong!
Peter told me that we met in Brussels in 1987. Most significantly was his presence at all
of the three tutorials that I have presented at the Symposia: 1987 in Brussels, Belgium,
1991 in Noordwijkerhout, the Netherlands and 2001 in Berlin, Germany. (I wonder will
he make it to the next one?) Thus was Peter Lucas well-placed to experience at first
hand the emergence and the evolution of the VDM♣ ⊆ M♣

c over 14 years. But first let
me tell my story, starting with a cycling trip in Germany that brought me to Köln and
to a bookshop on the 14th of August 1978.

“ . . . in fact our only way to talk scientifically about the relation of humans to
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their natural languages is in terms of computer notions (or so it seems to me).”
[Lucas 1978] p. 3.

I had just completed my primary degree (BSc) in pure mathematics with the University
of London and was about to embark upon a master’s degree (MSc) in computer science
with the University of Dublin, Trinity College (1978–79). It was in this shop in Köln
that I bought my first book on the VDM. I wasn’t searching for it. I was merely curi-
ous to see what sort of mathematics texts German university students might be using
in the Köln region. I was indulging in my browsing habit. The VDM text was newly
published, written in English, and was entitledThe Vienna Development Method: The
Meta-Language. My guess is that I purchased the book precisely because it was vol-
ume61 in the now very successful seriesLecture Notes in Computer Science(LNCS).
I had never come across the LNCS before that.

I can see myself now, tall, lean, very long mid-shoulder length hair (cut in January
1979), full beard and no spectacles, in cycling shorts dusty from the roads of Ger-
many standing there in the shop, taking the book down from the shelf, flicking through
it quickly, being impressed with the apparently easy mathematical notation scattered
throughout. I bought it there and then, put it into the paniers of my racing bike and
set off for theConference in Mathematics Educationwhich was about to take place in
Ghent, Belgium. (I suppose the shop owner in Köln was used to selling mathematics
books to Irish ‘hippies’ on racing bicycles!) I arrived exactly on time at the youth hostel
in Ghent where I received two items waiting for me—a telegram to say that I had been
successful in my London University Degree examinations and a very large package in a
box containing my suit, shirt, tie, shoes, socks, etc. for the Conference and the Banquet.
The Youth Hostel staff were very surprised at my appearance the following morning. I
was very surprised at how difficult the LNCS61 book on the VDM really was.

It was a full 5 years later when I began to see the light, when I began to understand,
and all thanks to one man who gave a lecture in a very crowded room that seated 20
in Pearse Street, Dublin. (There were about 50 of us, with barely standing space, at
the lecture. Most were the 4th year undergraduate students in our Computer Science
degree programme.) The guest speaker was Dines Bjørner and the date was the 30th of
November 1983. (I think the date is right! Dines signed my copy of LNCS61 and dated
it thus:DUBLIN 30 XI 83). I was a junior lecturer in Computer Science at the University
of Dublin, Trinity College, and had obtained most of my serious understanding of the
subject whilst at Graduate School in the State University of New York (SUNY) at Stony
Brook (1979–80). I was already quite familiar with algebraic specifications thanks to
my German colleague Hans-Jürgen Kugler. Dines presented a VDM specification of
something or other as a collection of the usual domain equations. Then he covered up
the right-hand side (where the VDMmodellingdetails were given) and, of the left-hand
side, said that this was just like algebraic specifications. The difference being that the
VDM presented specific models of everything. That did it. My blindness was cured.
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2 Enter the VDM♣ on Stage in Noordwijkerhout in 1991

“When I create models, I am the Creator, I am God.” [Peter Gorm Larsen’s
memory (Reinhardt’s Restaurant, near Unter den Linden, Berlin, 11th March
2001) of the opening words of the author at the first Irish VDM Tutorial in
the deconsecrated circular chapel of the Noordwijkerhout conference centre in
1991. This was indeed the first one. The naming of the Irish VDM only took
place in 1990.]

Looking back over ten years to that time of the first public presentation of the Irish
School [Mac an Airchinnigh 1991] it is interesting to ask what was it exactly that con-
stituted the school? In what manner was it different from traditional VDM?

Then I declared that “a formal (development) method is essentially constructive
applied mathematics”, and therefore that “the starting point of all work must be the
problem domain” and that this modelling ought be be considered analogous to the for-
mulation of partial differential equations (pdes). In particular it was emphasised that
just as there were both closed form solutions and approximations topdes then one
ought to expect similar results in formal modelling.

The School had method as well as mathematics. More importantly it had a specific
philosophy which was sketched out inConceptual Models and Computing[Mac an
Airchinnigh 1990]. Most significantly, Irish VDM was deemed to have an inner world
or self-contained reality of its own.

“ the application of the Irish School of the VDM is opening up a whole new
branch of constructive mathematics. In other words, there is a perspective of
the School that hasovertly nothing whatsoever to do with the specification,
design and implementation of systems.” [Mac an Airchinnigh 1991].

Among those in the very small audience taking the tutorial were Peter Gorm Larsen,
Dines Bjørner and Peter Lucas. The chapel looked very empty. In a parallel tutorial
session Jim Woodcock had the much larger audience. Such is life! Dines was one of
my Doctoral Thesis examiners (Stephen Goldsack of Imperial College, London, was
the other.) and so might be expected to have a vested interest in being there. Both Peter
Gorm Larsen and Peter Lucas were keenly interested in VDM, or at least so it seemed
to me then.

2.1 Method

“ In applied mathematics, the use of the standard models expressed as partial
differential equations was undoubtedly a major factor in scientific progress”
[Mac an Airchinnigh 1991].
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In 1991 it seemed that everything could be built out of five standard models. (Prod-
ucts of the formA×B were then considered to be too obvious to need mention.) More-
over, a model consisted on some structures and some operations on those structures.
The basic structure was the monoid.

For any setX one could apply the powerset operator to obtain the set of all the
subsets ofX, denotedPX. From a practical constructive point of view it was always
assumed thatX would be finite. I certainly did not agonize overPN. There were two
isomorphic structures

(PX,∪, ∅) and (PX,∩, X)

but it seemed that only the former was the most useful in ‘practical’ specifications.
All of the other operations on sets were of course available and used. It was only very
recently that the real significance of the second monoid(PX,∩, X) became clear in its
role for practical specifications. First I thought that the proper structure ought to be the
Boolean lattice. Finally, I recognized that it was most appropriate to use the Heyting
algebra [Mac an Airchinnigh 2001]. With it one could do logic algebraically.

For any setX one could apply the star operator to obtain the sequences of elements
ofX, denotedX�. Again it was always assumed thatX would be finite in practice. The
basic structure was the free monoid

(X�, ·, 1)

where· denotes concatenation. Sequences were deemed to be the essential abstraction
for the concept of “implementation on a computer”.

The most important model was provided by the collection of partial (and total) maps
fromX to Y , denotedX −→ Y . The basic monoid was

(X −→ Y , †, θ)

where† denoted override andθ was the empty map. Composition of maps is the nor-
mal operation in mathematics. Override of maps is peculiar to computer science and
override is especially significant in the context of partial maps.

At any given time one might consider one such map, sayµ. It is my recollection
that the convention adopted to denote this was to name the collection of maps, sayM ,
and to write

µ ∈M = X −→ Y .

I am almost certain that I picked up this convention from Andrzej Blikle at one of
those early Brussels’ meetings.However, this convention is to be abandoned even as I
write. I now have an urgent need to integrate the VDM♣ fully with topos theory and an
expression such asX −→ Y is already well established to denote one total map from
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X toY in the topos of sets. I am also happy to useX ����� Y to denote a strictly partial
map fromX to Y . One can think of it as shorthand for the pair of total maps

X domµ� �i�� µ �� Y.

How then ought one to denote the collection of maps? I certainly can no longer use
X −→ Y . The simplest solution is to useY X for the collection of total maps and̃Y X

for both partial and total maps, wherẽY = Y + 1 in the topos of sets. The notation
is taken directly from that used in topos theory. I must also say goodbye to the ‘Blikle
convention’ at least in the introductory work. (It can be completely rescued by an appro-
priate definition of ‘membership’.) In whatever topos one finds oneself one can always
pick out a mapµ by writing µ : 1 −→ Ỹ X or

1
µ �� Ỹ X

But in my opinion this is not completely psychologically satisfying from the desire to
handle partiality directly as we are wont to do in the VDM♣.

Relations were treated as set-valued maps. I adopted this (philosophical) position
from the very beginning, following [Eilenberg 1974], one of the two founders of Cate-
gory Theory. (The other was Saunders Mac Lane).

X −→ PY

For example, the usual model of doctors(DOC) and their patients(PAT) that I had
become accustomed to use is that which associates with each doctord in the klinik κ
her/his set of current patientsS. This is the classical doctor-patient relationship. This
model is captured by

κ ∈ KLINIK = DOC −→ PPAT

and a typical klinikκ might have the form

κ =



c �→ {p, q, r}
d �→ {p, s}
e �→ ∅




It will be noticed that in this model the same patientp might be shared between two
doctorsc and d, and there is a doctore with no patients.

This model of a klinik was considered to be the most general abstract model of
the doctor-patient relation. It is adirectedmodel in the sense that the relation is “the
doctord has the set of patientsS”.

However, this is definitely not the end of the story of relations in the M♣
c. In the

Berlin paper [Mac an Airchinnigh 2001] I gave another map-oriented approach to rela-
tions. There is yet a further development in the use of maps to model relations. Unfor-
tunately, this will have to wait until the next paper/tutorial. Suffice it to say that I still
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adhere to the principle of handling relations as maps, though not limited to set-valued
ones. Fortunately, the discovery of the topos and its logic fits in with that view very
nicely.

Finally, distributions, indexed structures, etc. took the form

X −→ (Y −→ Z)

It was quite clear that one could model anything by putting together these mathematical
structures. The result was not always very elegant. Things are better now and more
elegant, 10 years later.

In the method of the School presented in Noordwijkerhout I also presented a va-
riety of development (reification or development or elaboration) steps: partitioning (or
subdividing), splitting, parameterising, and joining. The interested reader is directed to
[Mac an Airchinnigh 1991]. Proofs relied upon the use of commuting diagrams which
I took directly from category theory.

Many important developments of the School took place in the intervening years
from 1991 (Noordwijkerhout) to 2001 (Berlin). The best public record and summary
of these is [Mac an Airchinnigh 2001]. Now I should like to introduce the second part
of the paper. It consists largely of a very elementary introduction to topos logic. How-
ever, before jumping straight in, it is necessary to put on record, the primacy which
constructive mathematics will occupy in computer science for the foreseeable future.
Like everyone else in Mathematics, I am a constructive mathematician from Monday to
Friday and a Neoplatonic mathematician at the week-end.

3 Intensional Reality

“First we want to distinguish betweenfunctions andforms. 2×x+y is a form
containingfree variables x andy. Implicitly by convention or explicitly, each
variable is associated with a domain of values. A map from the free variables
of a form to their value domain is called a value assignment. A form together
with avalue assignment to all its free variables denotes a value. To account for
undefined situations the value domain has to include an error element or the
‘meaning function’ is defined to be a partial function.” [Lucas 1985] p. 147.

In 1985 I might have agreed with Peter Lucas’ distinction between functions and
forms. By 1990 when I finished my doctoral thesis,Conceptual Models and Computing
[Mac an Airchinnigh 1990] I disagreed!

In trying to establish the School of Constructive Mathematics, I wanted to avoid
any ‘taint’ with classical intuitionistic mathematics. I knew that the mathematics of
computing was de facto constructive mathematics. That much was self-evident. That a
formal method was essentially the mathematics of computing was also obvious. That
most formal methodists used classical logic and pooh-poohed intuitionistic logic was
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clear. I was not comfortable with any logic, classical or intuitionistic! Then I discovered
Topos Theory.

One is so conditioned by prior education to think of maps extensionally that even
when one is fully aware of the intrinsic intensional nature of maps in computing one
still resorts to extensional confession. This conditioning is effectively a Neoplatonic
hangover from the pre-computing era.

Let me give the example that I normally use in class. Consider the mapsR
f ��R

andR
g ��R where

f : x �→ (x+ 1)2

and

g : x �→ x2 + 2x+ 1

Were one to graph the two maps (using Mathematica [Wolfram 1996] for example) then
it would be immediately obvious that bothf andg were the same map in the sense that
given an inputx one would get exactly the same outputf(x) = g(x).

To be more precise one would say that extensionally we have a map defined uniquely
by the set of pairs〈x, y 〉 wherey is computed byf(x) or equally byg(x), i.e., one
refers to the unique map

{〈x, y 〉 | y = f(x)}

Such a Neoplatonic perspective may be termed thecatholic view (where catholic is
taken to mean universal). There is an equally valid alternativemathematicalview, es-
pecially significant for computer scientists. In contradistinction to the from-heaven-
descending Neoplatonic view of the ideal,the given, there is the more obvious from-
earth-ascending Neo-aristotelian view of the obvious becoming, the process. In short
to our mindsf andg are distinct. Thanks eventually to theElements of Intuitionism
of [Dummett 2000] I can now comfortably take hold of and align myself with a philo-
sophically acceptable position on intuitionism and be freed from any direct reliance
upon Brouwer, though must acknowledge the direct influence of Heyting:

“The description by which a mathematical object is given must always be such
as to enable it to be distinguished from other objects of the same kind. However,
since mathematical objects are mental constructions, and the mental construc-
tion is expressed by means of the description in terms of which the object is
given, the objects of intuitionistic mathematics must, in general, be considered
as intensional objects; that is to say, that criterion of identity which is given
together with the manner in which the object is presented relates to the iden-
tity of the description. Thus, for example, if an effectively calculable function
is thought of as given by means of a rule of computation, different rules will
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determine intensionaly distinct functions, even if these functions are extension-
ally equivalent, i.e. have the same values for the same arguments.” [Dummett
2000] p. 17.

Let us apply this criterion of identification and description to the two mapsf andg
given above. As computer scientists we know that maps which are defined using al-
gebraic formulae are determined intrinsically by both a parse tree and an evaluation
mechanism or process. This is the Lucas’ view. For example, the parse tree off is
uniquely determined; that ofg is ambiguous. The formula may be written either as
x2 +(2×x+1) or as(x2 +2×x)+1. My choice of the former is designatedg1. In ad-
dition to the parse tree structure there is the evaluation mechanism. Again we computer
scientists are familiar with three classical canonical evaluation mechanisms for binary
parse trees: prefix, infix, and postfix. More significantly, these evaluation mechanisms
may be given very precisely (i.e. formally as recursive algorithms over structure; there
is also the possibility of the more general probabilistic algorithm over structure.
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Since computer scientists know these distinct conceptual constructive descriptions
then according to the fundamental principle of intuitionistic mathematics these are ob-
jects of the same kind but presented differently. These are intensionally different ob-
jects. For example, and it seems to me now to be a trivial remark, I can define a simple
complexity function which highlights the extraordinary richness of the formally given
description of the intensional objects. Specifically, by adopting thebinary parse tree
conceptual framework as part of our description language, I can immediately speak of
a height (or depth or level) function which gives the height of the tree. Thus, forf the
height ishf = 2. Forg1 the height ishg1 = 3. In a sense,g1 is more complex thanf .
(Note that I definesqr(x) = x × x.) Let us then define the ‘cost’ of addition to bea
units and the cost of multiplication to bem units (saym = 10a). This enriches in a most
extraordinary way the intensionality of the concept of function. Specifically the concep-
tual framework becomes increasingly more relevant. In other words, the speed of the
processor in computing additions and multiplications (et cetera) becomes conceptually
significant. Using this notion of a cost function then the cost of computingf indepen-
dent of evaluation processis cf = m+ a; the cost of computingg1 is cg1 = 2m+ 2a.
Not only is the cost of computingg1 twice that of computingf but also the structure
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(i.e. height of parse tree) ofg1 is more complex than that off . Furthermore, computer
scientists know that there is a cost associated with parse trees, a storage cost. Hence in
the determination of the conceptual understanding of the presentations of the functions
f andg there is another cost function—the storage function. It is no wonder that the
mathematics of computing, constructive or intuitionistic mathematics is so very differ-
ent from the usual classical and (mostly) irrelevant mathematics of the natural sciences!

Once freed from the extensional constriction one can explore other intensional
forms other than the singly-rooted parse trees given above:

+/〈 sqr,
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 1 〉

x 2 x

In particular, any polynomial expression such asx2 +2x+1 is quickly associated with
the reduction+/〈x2, 2x, 1 〉. Such a reduction is simply another way of representing, in
this case, a summation

∑3
k=1 σk whereσ is the vector (i.e., sequence) of three poly-

nomial expressions. Such a reduction is naturally associated with parallel execution, at
least conceptually. In this case we have three parallel trees to be evaluated and the final
result is a summation of these.

To say that one confuses function with algorithm is an argument whose time is long
past! The framework of topos theory with its associated logic exhibits in a most pro-
found manner that not only is the intensional worldat least on a par withthe extensional
one given to us by Cantor, but is in fact much richer. On the other hand there does not
seem to be any way in which to exhibit this richness without going through topos theory
itself. This is the task at hand. This is the subject matter for the remainder of the paper.

4 Logic for VDM♣ via Topoi

“There will be much [discussion] about the analysis that goes into deciding
what need[s] to be done, and in what order. Anyone who has struggled with
a genuine problem without having been taught an explicit method knows that
this is the hardest part.[slightly paraphrased by the author] ” [Lawvere and
Schanuel 1997] p. xiii

In August 2000 I reached the decision that the time was ripe for the next interna-
tional tutorial of the VDM♣. It was called “Modelling for Formal Methods” and was
delivered at FME 2001 in Humboldt-Universität zu Berlin on the 12th of March 2001.
In essence it was a one day personal exposition and view ofConceptual Mathematics
[Lawvere and Schanuel 1997] seen from the practical perspective of our School. The
target audience was “Anyone interested in the learning how to apply category
theory and topos theory for the purposes of abstract modelling.” The morning
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session covered thehighlightsof category theory, the afternoon session those of topos
theory, both with an emphasis on modelling. In attendance was Peter Lucas.

Since March 2001 I have condensed this mini-tutorial to 45 minutes. Since the
School had just spent an intensive year molding and fashioning topos theory to suit
its needs and since the topos carried inherent programming structure/process together
with the corresponding inseparable logic I realized that it was possible to introduce
topos theory directly without having to wade through an enormous amount of ‘cate-
gorical preliminaries’. For an audience of computer scientists, a direct assault on topos
logic was feasible. Therefore, a 45 minute delivery was also feasible. Peter Lucas and
friends and colleagues and students were all subjected to this at his Colloquium on
Friday, the 18th of May in Graz, Austria. The following is a brief description of the
technical material covered.

I assume that the reader is at least familiar with the most basic concept of a category.
(If not, I recommend that the reader do a thorough study ofConceptual Mathematics
[Lawvere and Schanuel 1997]. Proceed as follows. Start at the beginning, i.e. thefront
cover, and read right through to the end. Do not wait to study. Do not do exercises. Note
the things that surprise. Then start at the beginning again with an open mind.) Specifi-
cally, one has a collection of things called objects. There is also a collection of things
called maps (or arrows or. . . ) which may be combined under a law of composition.
For each mapf : A → B, we say that the domain off is the objectA (i.e. objectA
is the source of the map) and that the objectB is the codomain of the map (i.e. object
B is the target of the map). The composition of mapsf : A → B, andg : B → C, is
the mapgf : A → C, read ”g afterf ” or ” g of f ”. Composition of maps satisfies the
associative law. For each objectX there is an identity map1X : X → X. Finally, there
are certain ”housekeeping rules” which must be observed.

The importance of the category lies in the simple observation that it provides the
machinery for conceptual mathematics, that is to say, it provides the mathematics that
facilitates the formalization of thought, in general.

Were one to ask what is the essence of computing, then one might provide a great
variety of different answers. A simple yet inclusive answer is to reply by one word:pro-
gramming. Of all the programming language paradigms currently in existence, surely
that of functional programming is closest to that of the conceptual mathematics of cat-
egories? Without wishing to be overly simplistic I can say that functional programming
is essentially founded on the Cartesian Closed Category (abbreviated CCC). The quick-
est way to grasp CCC is to think of the programming language Pascal as an overt and
direct realization/manifestation of it. By this I mean that every key construct in Pas-
cal corresponds directly to a key aspect of the CCC. (I am sure that there must be a
good reference for this claim somewhere.) Now there remains but one more essential
concept, that oflocality or of ’part-ness’. For to know whether one object is a part of
another, and to classify it as such, one introduces the concept of the truth value object
which provides the basis for an inherent ‘intuitionistic’ logic. Essentially the CCC to-
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gether with the truth value object gives us a very special type of category which we
call a topos. (For details see [Lawvere and Schanuel 1997].) Its significance lies in the
fact that not only can we be precise about what we can compute but also that we can
reason and make judgments about what we compute locally. The very nature of the
topos and, in particular its locality facet, lends itself pre-eminently to the modelling of
bothdistributed systems, in general, andmobility in particular. From the perspective of
the mathematician, the topos provides a setting for theunification of algebra, geometry,
and logic. (See [Mac Lane and Moerdijk 1992].)

It has long been known that mathematics is the foundation of science as we know
it. Mathematicians know that in many respects mathematics is like poetry. It is a dif-
ferent way of knowing and manifesting the world. Let us look at some simple notions
concerningcitizenship and information. Now I would like to demonstrate that it is
indeed possible to use mathematics, more specifically the conceptual mathematics of
topos theory, to model the notions of citizenship and information and to reason in a
precise manner about their inter-relationships. Undeniably, in order that one may feel
at home in such a mathematical framework, one needs to be familiar with the language.
It does take time to achieve fluency and familiarity. Like any language, it takes some
years. Yet, I trust that this part of the paper might encourage some readers to make that
effort and so come to know a little of the conceptual mathematics that will be taken for
granted in our future.

Let us then begin. In the first instance let us assume that we are in the usual mathe-
matical world (i.e. topos) of sets and total maps (denotedS). We let upper-case letters,
A, B, . . . , X, Y , denote sets. We let lower-case letters,a, b, . . . , f , g, h, . . . , x, y,
z, denote elements of a set and total maps. A mapf from X to A is usually written
f : A → B. LetX be a set of, say, three colours,r, g, andb (representing red, green,
and blue, respectively). We customarily denote this byX = {r, g, b}. Now let us choose
a set of one element{∗} which we shall denote by1. Then it is clear that there is exactly
one map fromX to 1. In computer science, we might consider this singleton set1 to
represent the end point or sink state or terminal state of a development or process. From
the point of view ofX, the unique map!X : X → 1 takes every element ofX to ∗. We
can make this explicit by writing

!X =



r �→ ∗
g �→ ∗
b �→ ∗


 .

It is customary to call1 the terminal object. I often think of it asthe unique one! There
is also the unique identity map1 → 1. From a modelling perspective we might prefer
something a little bit more concrete and applicable to the ‘real’ world.

Let us suppose that we have some non-empty setA which models a collection of
students in a class. Then the ‘unique one’ will be deemed to be thefocus of attention
of the collection. To model this we introduce a map from the collectionA to the1. This
abstraction captures quite nicely the relationship between a class of students (A) and
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their lecturer (1) or a flock of sheep (A) and their shepherd (1). We call the focus of
attention ofA on the1 a constant map where by constant we mean unchanging and
unchangeable.

Returning to the colours, now let us put ourselves in the place of the terminal1 and
look back at the coloursX. What is it that we see? If we model ‘seeing’ by a map then
there are three distinct maps which we shall denote byr : 1 → X, g : 1 → X, and
b : 1 → X. Quite obviously, these three mapspoint out the three colours ofX. This is
the reason that we name the maps (and the colours)r, g, andb. In general, it is always
the case (in the category of setsS) that a map1 → A picks out, or points to, an element
of A (provided, of course thatA is not empty). Formally, in this mathematical world
(i.e. topos) we define any such map1 → A to be a point.

DEFINITION 1 A point of a setX is a map1 → X [Lawvere and Schanuel 1997]
p. 19.

Armed with the terminal1 and the definition of point as map we can now construct
(i.e. model) some very interesting concepts in this world of sets and total maps. For
example, suppose that we imagine a setC to represent the citizens of a particular region.
Then every point ofC, denoted by the map1 → C is a citizen ofC and the number
of such points gives the number of citizens. Would we not like to be able to distinguish
between citizens and non-citizens of a region? In other words if we ask the question “is
so and so a citizen of this region?”, then we expect to get an answer such asyes or no.
How might we model that?

First, we introduce a two point set. Each point will represent a truth value. This two
point set will be denoted byΩ and the points byt : 1 → Ω, andf : 1 → Ω, representing
true andfalse, respectively. It is usually called the truth value object. (Other notations
in common use for theΩ of the topos of sets areB (for Boolean) and2 (for two-point).
To be more precise we want a map to model what it means for something to be true.
Once we have decided on this then we alsode factohave determined what it means for
something not to be true (i.e. to benot-true, i.e. to be false).

Now let us look at the maps fromΩ to itself. There are exactly|Ω||Ω| = 22 = 4
such maps. The identity map, which always exists between a set and itself, is here de-
noted1Ω . Of the other three maps, the ‘inversion’ map, which we usually call negation
and denote by¬ : Ω → Ω, is especially noteworthy. It takest to f andf to t. In other
words we have the compositions¬t : 1 → Ω → Ω, and¬f : 1 → Ω → Ω, with
¬t = f and¬f = t. The other two maps are constant maps which we will denote byT

andF , respectively. They are defined in the obvious way:Tt = t, Tf = t andFt = f ,
Ff = f .

In general, for any two non-empty setsA andB a map between them, sayA→ B,
can be understood in terms ofstructuringeither the domainA or the codomainB [Law-
vere and Schanuel 1997] p. 81. Let us look at domain-structuring maps. Consider the
mapg : X → B. We will say that g is a sorting or fibering ofX byB intoB sortsor
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B fibers, respectively. (The language used evokes ‘application domains’ and therefore
‘modelling abstractions’. The word sort suggests ‘kind’ and ‘type’. There is a famous
brand of sweets called ‘liquorice all sorts’, meaning all sorts of liquorice. The word
fiber evokes agricultural terms used very successfully by the French mathematicians in
geometry.)

Let us consider a simple example. IfX were to denote a set of people (i.e. citizens
and non-citizens) in a given region andB were to denote the truth value objectΩ, then
there is a mapg which takes the citizens ofX to the truth valuet in Ω. We call such
a mapg a (subobject) classifier. As a fibering,g structuresX into exactly two sorts or
fibers, one of which we identify as the sort of citizens, precisely because every point of
the fiber maps tot. There yet remains the problem as to how we can pick out the citizens
in X. Clearly, if we have this classifierg, then the inverse image or pullbackg−1 of t
are the citizens.

On the other hand, consider a mapf : A → X which produces structure in the
codomain. We think of the image ofA inX underf as anA-shaped figure. Other ways
of viewing the structuring of the codomain is to think off as naming the elements ofX
or even as a sampling or parameterizing ofX by A. Now let us introduce the set of
citizensC and an inclusion map (which is by definition an injective map or one-to-one

map)C � � i ��X which identifies the citizen part ofX, that is to say theC-shape of
X is exactly that part (or subset) ofX which we want to classify as the citizens. More
generally,

DEFINITION 2 In any category, a mapS � � i ��X is an inclusion, or monomorphism,
or monic, if it satisfies: For each objectT and each pair of mapss1, s2 from T to S,
is1 = is2 impliess1 = s2 [Lawvere and Schanuel 1997] p. 336.

Finally, the compositiongi : C → X → Ω takes every citizenc : 1 → C to
t : 1 → Ω. We can be even more precise about the way in which we denote the exact
relationship between that part ofX which we pick out asC and our judgment to clas-
sify the part as denoting citizens. Specifically, instead of using an arbitrary letter, such
asg we recognize that our choice is and must be directly related toC. Two common
conventions areϕC andχC . In other words, the classifying map corresponds exactly to
the part being classified. We capture the totality of this relationship by saying that we
have the natural bijection

C � � i ��X

X
ϕC

��Ω

This means that corresponding to each mapC � � i ��X (which is a subset inclusion

and which one might write in set notation asC ⊆ X) there is a map,X
ϕC ��Ω , called

the classifying map or characteristic map, indexed byC, which classifies this subset,
andvice versa.
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This classifying of the citizens automatically classifies the non-citizens at the same
time. Furthermore we say thatnot C is the largest part of X which is disjoint fromC.
This is our (intuitively correct) definition of whatnot means with respect to part-ness.
The next obvious question is how this sense ofnot fits in with the notion of negation.
Given what we have done so far it should not be difficult for the reader to demonstrate
that in this topos

ϕnot C = ¬ ◦ ϕC , abbreviated to¬ϕC

Clearlynot not C is exactlyC. Correspondingly,¬2 = 1Ω . Our world of sets and total
maps gives us the classical two valued (Boolean) logic. In particular, there can never
be any doubt about whether or not one is a citizen. [Aside: A more comprehensive
understanding of the relationship betweennot and negation is outlined in [Lawvere
and Schanuel 1997] p. 350–1. I do not explore this here now for the simple reason that
I do not yet have a satisfactory intuitive way of explaining therelationshipbetween

‘logical implication’ Ω ×Ω ⇒ ��Ω and part-ness. It is work in progress.]
Let us now consider ‘information’. To be more precise we will deal with an infor-

mation resource. Such a resource is a well-defined and easily recognised entity which
can be named and pointed to. Such a resource will be deemed to consist of a collection
of information units organized in some fashion and inter-related (e.g. cross-referenced).
We shall model an information resource in a graph theoretic manner. Specifically, each
vertexm of a graph shall represent a specific unit of information which might be the
page of a book, a World-wide Web (www) page, a resource person, etc.

A directed edgee from vertexm to vertexn shall be used to model a reference,
a citation, a link, etc. from one information unit to another information unit. Clearly,
there will be cases when an information unit might reference itself. For simplicity, we
will refer to the vertices as dots and to the edges as arrows. Our vision of the model of
an information resource is a directed multi-graph. In itself it is an object which consists
of a set of dotsD, a set of arrowsA and two maps fromA toD called the source
and target maps, denoteds : A → D andt : A → D, respectively. The corresponding
topos of directed multi-graphs we denote byG. A simple example shall make this clear.
Suppose that a particular information resource consists of a collection of interlinked
www pages numbered 0, 1, and 2. The links between the three information units are
given by arrows (in triplet form):

〈 0, a, 1 〉, 〈 1, b, 1 〉, 〈 1, c, 2 〉, and 〈 2, d, 2 〉,

where the triple〈x, e, y 〉 designates an arrowx e ��y , namede which has sourcex
and targety. (See [Fig. 1] below.) Thus, for example, page 1 has a self link namedb

and a link namedc to page 2 of the collection of information units. Formally, this in-
formation resource which consists of three interlinked pages is an objectG determined
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fully by the following data:

AG = {〈 0, a, 1 〉, 〈 1, b, 1 〉, 〈 1, c, 2 〉, 〈 2, d, 2 〉}
DG = {0, 1, 2}

s =




〈 0, a, 1 〉 �→ 0
〈 1, b, 1 〉 �→ 1
〈 1, c, 2 〉 �→ 1
〈 2, d, 2 〉 �→ 2




t =




〈 0, a, 1 〉 �→ 1
〈 1, b, 1 〉 �→ 1
〈 1, c, 2 〉 �→ 2
〈 2, d, 2 〉 �→ 2




0 1 2

a

b

c
dG 

S

Figure 1 The object G.

It is customary to represent this object by a diagram such as that shown above in Fig-
ure 1. Note that a part of the objectG, namedS, is indicated on the diagram by a dashed
oval. The data forS is clearly

AS = {〈 0, a, 1 〉}
DS = {0, 1}
s = [〈 0, a, 1 〉 �→ 0]

t = [〈 0, a, 1 〉 �→ 1]

To say thatS is a part ofG one must also say that there is an inclusion mapS � � i ��G .
Thus, it is more precise to say thatS, i is a part ofG. Alternatively, if one is aware that
the inclusion mapi is furnished with domainS and codomainG then the mapi says it
all [Lawvere and Schanuel 1997] p. 338.

In this world the terminal object1 is a graph which has exactly one dot and a self-
loop. The typical picture looks like

1

Figure 2 the terminal graph object.
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By definition a point must have the shape of the terminal. Hence there are just two
points inG: 〈 1, b, 1 〉 and〈 2, d, 2 〉. From a modelling perspective, self-references in
information units are points. The truth value objectΩ for directed multi-graphs is given
by the following data [Lawvere and Schanuel 1997] p. 341:

AΩ = {〈 1, t, 1 〉, 〈 1, b, 1 〉, 〈 1, d, 0 〉, 〈 0, f, 0 〉, 〈 0, c, 1 〉}
DΩ = {0, 1}

s =




〈 1, t, 1 〉 �→ 1
〈 1, b, 1 〉 �→ 1
〈 1, d, 0 〉 �→ 1
〈 0, f, 0 〉 �→ 0
〈 0, c, 1 〉 �→ 0




t =




〈 1, t, 1 〉 �→ 1
〈 1, b, 1 〉 �→ 1
〈 1, d, 0 〉 �→ 0
〈 0, f, 0 〉 �→ 0
〈 0, c, 1 〉 �→ 1




1

0

f

t

d cb

Ω

Figure 3 The truth value
object for graphs.

A typical picture of the truth value object is shown
opposite in Figure 3.
This encodes seven possible truth relations (or
statements) that one can make about the subgraph
of a graph [Lawvere and Schanuel 1997] p. 341:
1. 〈 1, t, 1 〉: arrow in; source in; target in;
2. 〈 1, b, 1 〉: arrow out; source in; target in;
3. 〈 0, f, 0 〉: arrow out; source out; target out;
4. 〈 1, d, 0 〉: arrow out; source in; target out;
5. 〈 0, c, 1 〉: arrow out; source out; target in;
6. 1 : dot in;
7. 0 : dot out.

Note that the labelling of dots and arrows is local to the object in question. In particular,
DG = {0, 1, 2} andDΩ = {0, 1} have nothing in common!

Moreover, it also clear that there are only three truth values in the truth value ob-
jectΩ. These are the points named by the arrowt (for true), the arrowf (for false)
and the arrowb (for in-between, i.e. neither true nor false). Now there is a subobject
classifier mapg : G → Ω which takes the objectS to true (i.e., which classifiesS, i to
be a part ofG). The rest is classified appropriately. For example, the arrow〈 2, d, 2 〉 in
G is mapped to〈 0, f, 0 〉 (i.e. false) inΩ since〈 2, d, 2 〉 is not inS. We define notS to
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be the largest part ofG which is disjoint fromS [Lawvere and Schanuel 1997] p. 351.
We illustrate this in Figure 4.

0 1 2

a

b

c
dG 

S

not S

Figure 4not S.

Since the formal data of a graph is given in terms of two sets, and two maps, then we
can calculatenot S quite simply. The construction is as follows. First we observe that
the dots play a crucial role andDnot S should be calculated first:

Dnot S := DG\DS

Hence

Dnot S = {0, 1, 2}\{0, 1} = {2}

The only arrows ofAG which have source2 and target2 is 〈 2, d, 2 〉. Hence,

Anot S = {〈 2, d, 2 〉}

Now let us calculateT = not not S. Pictorially, the result is shown below in Fig-
ure 5. Again we can calculate the formal data for the subobjectnot not S, beginning
necessarily with the dots.

Dnot not S := DG\Dnot S

Hence

Dnot not S = {0, 1, 2}\{2} = {0, 1}.

ThenAnot not S consists of all the arrows which have 0 and 1 as source and target dots.
Hence

Anot not S = {〈 0, a, 1 〉, 〈 1, b, 1 〉}.
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0 1 2

a

b

c
dG 

S

not Snot not S

Figure 5not not S.

From the diagram we observe two very important things, typical of intuitionistic logic
[Dummett 2000]. First, it is clear thatS andnot S do not re-constituteG. Second,S
is strictly contained withinnot not S. From a practical point of view let us suppose
that we have an information resource modelled byG. Then if we focus on that part
of G which we have namedS and ask what is inG which is not modelled byS? The
answer must be given relative toG; it is that part which is a self-referencing page 2.
There can be no notion of a reference from page 1 to page 2. In effectnot S identifies
the largest information resource inG which is independent ofS. That is a very useful
and practical result. In short, suppose that we have identifiedS as being un-trustworthy.
Then we should concentrate our attention onnot S in the hope that we can retrieve
some trustworthy information fromG.

Now, focusing on page 2 (i.e.not S), we ask what is inG which is not innot S we
obtain pages 0 and 1 together with their own self contained references. Again there is
a practical outcome! Suppose that we have identifiedS as being trustworthy. Now we
seek to maximise that subpart ofG which is trustworthy. By constructingnot S and
interpreting it as potentially un-trustworthy thennot not S gives the maximal subobject
containingS in G which can be self-contained and, therefore, potentially independent
and trustworthy. Now let us ask what is the boundary of all the possible maximal sub-
objectsnot not S for any subobjectS with two pages (i.e. two dots)? The answer is
clear: any maximal subobject must be part of (including the possibility of ‘being equal
to’ in the limit) the complete multi-graph on two nodes. If we allow an arbitrary number
of edges between nodes then this complete graph is potentially infinite. In a practical
design one will wish to impose a limit on the number of edges.

With this particular observation on the practicality of intuitionistic logic for infor-
mation resources and their trustworthiness we must draw the modelling section to a
close. Let us sum up the previous discussion by presenting the classifiers in a VDM
map style alongside the actual graphs:
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classifier ofS wrt G

ϕS =




a �→ t

b �→ b

c �→ d

d �→ f


 0 1 2

a

b

c
dG 

S

classifier ofnot S wrt G

ϕnot S =




a �→ f

b �→ f

c �→ r

d �→ t


 0 1 2

a

b

c
dG 

S

not S

In general,S ∪ not S ⊆ X, where∪ is used to denote the ‘unions’ of sets of arrows
and sets of dots, and the respective source and target maps. It is an interesting exercise
to write this out in detail in VDM♣ notation. In this particular case, one immediately
observes thatS ∪ not S �= X.

classifier ofnot not S

ϕnot not S =




a �→ t

b �→ t

c �→ d

d �→ f




0 1 2

a

b

c
dG 

S

not Snot not S

In general,S ⊆ not not S. In this particular case, one immediately observes thatS �=
not not S.

Finally, the reader is invited
to demonstrate that in the
topos of graphs¬ ◦ ¬ �= 1Ω .

¬ =




t �→ f

b �→ f

f �→ t

d �→ r

r �→ d

1 �→ 0
0 �→ 1




The logic of the topos of graphs is not the classical two valued logic. It is, in fact
a three valued logic, as seen from the outside, from the position of an external viewer.
We deduce this fact by counting the number of points. Internally, there is a richness of
levels of truth.
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From the perspective of the computer scientist, the result is startling. We are very
accustomed to use graph theory to model all sorts of things such as communication
networks, flow graphs of programs, etc. The natural reasoning that underlies this is
founded on intuitionistic logic. We have just demonstrated that reasoning with the latter
seems to be a little bit more complicated than reasoning with classical logic. In a topos
theoretic framework both reasoning processes are ‘identical’. The difference depends
on the shape of the topos. The M♣

c can cope with both equally well. Our future looks
bright!

5 Epilogue

“A startling aspect of topos theory is that it unifies two seemingly wholly dis-
tinct mathematical subjects: on the one hand, topology and algebraic geometry,
and on the other hand, logic and set theory. Indeed, a topos can be considered
both as a ‘generalized space’ and as a ‘generalized universe of sets’.”
[Mac Lane and Moerdijk 1992] p. 1.

The challenge of the M♣c is to make topos theory accessible to all who are inter-
ested in the evolution of modelling and specification and to turn it into a very practical
mathematical tool for computer science. The [Lawvere and Schanuel 1997] work,Con-
ceptual Mathematics, is a landmark publication. The only thing missing from it is the
introduction of the override operator for maps. In a recent doctoral thesis in the M♣

c,
Elements of an Operator Calculus[Hughes 2001] has taken the first step to remedy this
omission by giving the semantics of override in several different topoi. Our future in
the School looks very bright indeed.

However, I must confess that I think Peter Lucas is not yet convinced of the practi-
cality of our topos theoretic approach. Such, I believe was his opinion in Berlin (2001)
during our inaugural tutorial on the subject. Indeed, he is quite correct. There is still a
lot of work to be done, mostly at the pedagogical level. It is time to draw this paper to
a close.

I brought my old 1978 LNCS61 with me to the Colloquium in Graz. It is now
physically (and topologically) separated into about 23 different parts, many of which
are single-leaved, and is customarily held together on the bookshelf by a large elastic
band. On the 18th of May I obtained, at last, the signatures of Cliff Jones and Peter
Lucas, both dated, Cliff’s dated using the ISO date form 2001-05-18, which form I
always use myself. I am impressed. The only contributor to the volume whose signature
I have not yet got and whom I have never yet met is that of Wolfgang Henhapl. I have
not given up hope.

LNCS 61 is for me a very valuable book. I used always to think of it in terms of
[Bjørner and Jones 1978] . Now after the Lucas’ Colloquium I will also think of it
in terms of [Lucas 1978] which, of course, occurs in the title of this paper. The other
reference in the title of this paper is now fruitfully ambiguous. Originally, I intended it
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to refer to my FME 2001 Berlin paper [Mac an Airchinnigh 2001] which gives a clear
indication of how far the School has come. It is my first paper ever to the classified in
the ‘logic section’ of a formal methods conference. I find that idea extremely amusing.
Others may prefer to see as a self-reference to this paper which I am writing. I also find
that idea quite amusing.
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