Journal of Universal Computer Science, vol. 7, no. 2 (2001), 159-174
submitted: 1/9/00, accepted: 13/10/00, appeared: 28/2/01 1 Springer Pub. Co.

Diagram Refinements for the Design of Reactive Systems

Dominique Cansell
(Universi# de Metz & LORIA, France
cansell@loria.fr)

Dominique Méry
(Universi# Henri Poincag’& LORIA, France
mery@Ioria.fr)

Stephan Merz
(Institut fur Informatik, Universiéit Miinchen, Germany
merz@informatik.uni-muenchen.de)

Abstract: We define a class of predicate diagrams that represent abstractions of—possibly in-
finite-state—reactive systems. Our diagrams support the verification of safety as well as liveness
properties. Non-temporal proof obligations establish the correspondence between the original
specification, whereas model checking can be used to verify behavioral properties. We define a
notion of refinement between diagrams that is intended to justify the top-down development of
systems within the framework of diagrams. The method is illustrated by a number of mutual-
exclusion algorithms.

Key Words: refinement, abstraction, verification, temporal logic, TLA, diagrams.

Category: D.2.2,D.2.4,F.3.1

1 Introduction

Applications of increasingly complex reactive systems in sensitive areas such as pro-
cess control or protocols for telecommunication or electronic commerce call for the
use of formal methods and tools to establish the correctness of such systems. Model
checking techniques have found wide acceptance, essentially because they are easy to
integrate into conventional design methods and because they provide useful informa-
tion in the form of counter-examples. However, they are usually applicable only to
finite-state system models of relatively small size. This has been found acceptable in
certain domains such as hardware design, but is a rather strong limitation when trying
to develop software-intensive systems. On the other hand, interactive theorem provers
can in principle be used to verify systems of arbitrary size and complexity, but they
require special expertise and often lack sufficient automation for use in industrial-scale
development projects.

Abstraction and composition are generally considered as the two key ingredients
to bridge the gap between finite-state model checking and general-purpose theorem
proving [KP98]. Among abstraction techniques, Boolean abstractions {l95Fhave
become very popular because they are both powerful and easy to define in terms of
predicates over the concrete state space. In previous work [CMMO0O] we have defined
the concept opredicate diagrams to represent Boolean abstractions. Besides abstract
states and state transitions, which are necessary to reason about safety properties of
systems, predicate diagrams also include annotations related to fairness conditions and
well-founded orderings, and can therefore be used to reason about liveness properties.

160 Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ...

Temporal system properties are established by model checking the predicate diagram,
viewed as a finite-state transition system. In particular, failed verification attempts pro-
duce counter-examples in terms of the abstract system, which can help to either debug
the algorithm or improve the abstraction. We have also presented techniques based on
abstract interpretation and automatic theorem proving that can be used to compute a
predicate diagram for a given system specification and a set of predicates that define the
abstraction.

In this paper, we propose the use of predicate diagrams in a top-down approach:
starting from an initial diagram that expresses key correctness properties, the system
is obtained as the result of successive, property-preserving refinements. Although the
idea of development by stepwise refinement is a classical one, our contribution is the
definition of proof obligations for refinement that are bditixible andtractable. By
flexibility, we mean that non-trivial refinements must be supported. In particular, it must
be possible to implement high-level fairness constraints by a combination of fairness
assumptions on the lower-level actions and arguments based on well-founded orderings
that underly typical implementations based on counters or queues. We say that a set
of proof obligations is tractable if it can be effectively discharged, at least in principle,
using standard verification tools. In our case, all verification conditions are either non-
temporal (and therefore fall in the domain of interactive or automatic theorem provers)
or are amenable to finite-state model checking.

We give two definitions of refinement between predicate diagrams: the simpler one
assumes that the state space of the implementation extends that of the specification,
whereas the more general one allows the state spaces to be connected by a gluing in-
variant, and thus provides support for hiding of abstract state components. We argue
that our definitions are useful by deriving a series of mutual-exclusion protocols.

We formalize our concepts in Lamport’s Temporal Logic of Actions TLA [Lam94].
Although this choice is not essential, it is convenient for two reasons. First, TLA formu-
las are invariant with respect to invisible state changes and therefore naturally support
refinement. Second, TLA distinguishes two layers of formulas: action formulas con-
cern states and state transitions, whereas temporal formulas are interpreted over runs,
and this distinction is reflected in our definitions.

2 Predicate Diagrams

We briefly recall the main concepts of TLA, a variant of linear-time temporal logic
that we use to write system specifications and proof obligations. TLA formulas are
built from state predicates and action formulas; the latter may contain primed state
variables. For example; > 3 is a state predicate, and< y’ + 1 is an action. For
an action formulad, we denote byeNABLED A the state predicate obtained frofn
by existential quantification over the primed state variables. For a state preldicede
denote byP’ the action formula obtained fromby replacing all flexible variablesthat
occur inP by v'. For an action formul# and a tuples of state variabledA], denotes
the formulaA v V' = v, and(A)y denotes the dual formulaA v’ # v.

Temporal formulas are built from state predicates and action fornjlasus-
ing boolean connectives, tteways operatori], and quantification over rigid (state-
independent) variables (writteix : F) or flexible (state-dependent) variables (written
Ax : F). We write OF for -0O-F and {(A), for -O[—-A],. Other derived connectives
include theleadsto operator, which is defined by ~~ G = O(F = {G) and the

Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ... 161

formulas

WF,(A) = OOENABLED (A)y = O0(A)y
SK/(A) = OO ENABLED (A)y = OO(A)y

that assert weak and strong fairness conditions for the action foxhuja

The semantics of state formulas is defined with respecstatq i.e. an assignment
of values to state variables, and a valuation of the rigid variables. Action formulas are
interpreted relative to a pais,t) of states, where andt interpret respectively the
unprimed and primed state variables. Temporal formulas are interpretelsbagiors,
i.e.w-sequences = 5 ... of states [Lam94]. In particular, the formulhx : F is
true of a behavior = sy5; . . . if there exists some behavior= tyt; ... such thas and
t; differ at most in the valuation of. The precise semantics of flexible quantification is
somewhat involved because it has to ensure invariance under stuttering, but the details
are unimportant for this paper.

System specifications can be written as formulas of the fiitrA C[Next], A L
wherelnit is a state predicate that characterizes the system’s initial Matejs an
action formula representing the next-state relatiois the tuple of state variables of
interest, and. is a conjunction of formulas WFA) or SK,(A).

In the following we assume the underlying assertion language to contain a finite
setQ of binary relation symbol« that are interpreted by well-founded orderings. For
< € O, we denote by its reflexive closure. We writ®= to denote the set of relation
symbols< and=, for < in O.

A predicate diagram [CMMOQQ0] is a finite graph whose nodes are labelled with sets
of (possibly negated) predicates, and whose edges are labelled with action names as
well as optional annotations that assert certain expressions to decrease with respect to
an ordering inO=. Intuitively, a node of a predicate diagram represents the set of sys-
tem states that satisfy the formulas contained in the node. (We indifferentlyrwiote
the set and the conjunction of its elements.) An eftgen) is labelled with actiorA
if the action may cause a transition from a state representaddwg state represented
by m. An actionA may have an associated fairness condition; it applies to all transi-
tions labelled byA rather than to individual edges. We let edges be labelled with action
names instead of action formulas because, in a top-down development, the precise ac-
tion formula that defines an action is not known until the final specification has been
derived.

Formally, the definition of predicate diagrams is relative to finite getsd.A that
contain the state predicates and the (names of) actions; we will later ¢seA to
denote the stuttering action. We wriieto denote the set containing the predicates in
‘P and their negations.

Definition 1. A predicatediagramG = (N, I, 4, 0,) overP and.A consists of
— afinite setN C 27 of nodes,
— afinite sett C N of initial nodes,

— afamilyé = (da)aca Of relationséa C N x N (by 6= we denote the reflexive
closure of the union of these relations),

— an edge labelling that associates finite sefst;, <1),..., (&, <)} of termst;
paired with a relation<; € O~ with the edgegn, m) € §, and

162 Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ...

— amapping : A — {NF, WF, SF} that associates a fairness condition with every
action in A; the possible values represent no fairness, weak fairness, and strong
fairness.

We say that the actioA € A can betaken at noden € N iff (n,m) € holds for some
m € N, and denote b¥n(A) C N the set of nodes wherecan be taken. a

We now define traces through a diagram as behaviors that correspond to fair runs
satisfying the node and edge labels. To evaluate the fairness conditions, we identify the
enabling condition of an actioh € .4 with the existence of-labelled edges at a given
node.

Definition2. LetG = (N, 1,4,0, () be a predicate diagram ovfrand.A. A run of G
is anw-sequence = (Sp, Ng, Ao)(S1, N1, Ar) ... of triples wheres; is a staten, € N is
anode, and\; € AU {7} is an action such that all of the following conditions hold:

— np € | is aninitial node,

— s E=njholds for alli € N,

— foralli € N, eitherA; = 7 andn; = ni;1, orA € Aand(nj, Ni+1) € dp,
— if A € Aand(t, <) € o(ni,ni+1), then(s,s+1) =t < t,

— if Al =7 then(s,s+1) E t' X tholds for allme N and(t, <) € o(n;, m),

— for every actiomA € A such that{(A) = WF there are infinitely manye N such
that eitherA; = A or A cannot be taken at;, and

— for every actionA € A such that{(A) = SF, eitherA; = A holds for infinitely
manyi € N or there are only finitely manye N such thatA can be taken at;.

The setir(G) of traces through G consists of all behaviors = sys; . .. such that there
exists a rurp = (S, No, Ao)(S1, M, A1) ... of G based on the states in O

In addition to the transitions that are explicitly represented by edges of the diagram,
we allow stuttering transitions that remain in the source node. Note that we do not
require that the statesands ;1 be identical whem\; = T is a stuttering step; they are
only required to satisfy the same node label. Moreover, if mgdeas an outgoing edge
with an ordering annotatioft, <), stuttering transitions are forbidden to increase the
value oft. Fairness conditions are used to prevent infinite stuttering.

For example, consider the predicate diagram shown on the right-hand side of Fig. 1
(the example is due to [DGG94]). By convention, the getand.4 contain the predi-
cates and action names that appear in the diagram, and the edgiidstislomitted.
Traces through the diagram avesequences of states that satisfy the node labels and
are related by edges shown in the diagram or by stuttering transitions. For example,
the diagram rules out transitions from a state represented by the upper left node to one
represented by the lower right node. In addition, the ordering annotations exclude be-
haviors that cycle forever between the two left-hand nodes because the value assigned
to the variablen would have to decrease infinitely often, but can never increase. As-
suming weak fairness fdext, it follows that all states of the diagram must be visited
infinitely often during each run.

Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ... 163

Int=neNatAn#0
AC ="T"Ac ="
Eato = cp = “t" A ever(n) o =t ¢ = "
ACHy="“e"ACi=Cc AN =n neNatn#0
Thko = co =“€"Acp =“t" —ever(n)
AN =ndiv2Ac =¢
Eat; = ¢; = “t” A —even(n)
ACL =“€"ACh=coAN =n
Thk; = ¢, =“e"Ac; ="
AN =3xn +1A C{) = Co co=‘€" ¢ =1 Co =" ¢ ="¢e"
Next = Eato V Thko V Eat; V Thk; n € Nat n0 n € Nat n#0
v= (Co, ci, n) ever(n) —ever(n)

Figure 1: The “dining mathematicians” example.

3 System verification using predicate diagrams

We briefly describe the use of predicate diagrams for the verification of reactive sys-
tems. In linear-time formalisms such as TLA, trace inclusion is the appropriate im-
plementation relation. Thus, a specificatigmec implements a property or high-level
specificationF if and only if the implicationSpec = F is valid [Lam94]. Predicate
diagrams can be used to refine this implication into two conditions: first, all behaviors
allowed bySpec must also be traces through the diagram (in other words, the diagram

is a correct abstraction &pec), and second, every trace through the diagram must sat-
isfy F. Although both conditions are stated in terms of trace inclusion, we use different
proof techniques. To show the correctness of the abstraction, we consider the node and
edge labels of diagrams as predicates on the concrete state siee, @nd reduce

trace inclusion to a set of proof obligations that concern individual states and transitions.
On the other hand, to show that the diagram implies the high-level property, we regard
all labels as Boolean variables. The predicate diagram can therefore be encoded as a
finite labelled transition system, whose temporal properties are established by model
checking. In this respect, predicate diagrams act as an interface between interactive and
automatic proof methods. We now consider both aspects in more detalil.

3.1 Reéating specifications and predicate diagrams

In order to compare a TLA specification and a predicate diagram, we must first assign
meaning to the action names that appear in the diagram. We assume given a fanction
that assigns an action formula to every action name. Because no confusion is possible,
we will leave this assignment implicit, and again wrténstead ofx(A) when referring
to the formula assigned to the nae

We say that a predicate diagra&conforms to a specificatiorBpoec if every be-
havior that satisfie§pec is a trace througlG. In general, proving conformance re-
quires reasoning about entire behaviors. The following proposition, whose proof ap-
pears in [CMMOOQ], allows us to reduce this temporal reasoning to a set of “local” proof
obligations.

164 Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ...

Proposition3. Let G = (N,1,4,0,() be a predicate diagram over P and .4, and
Spec = Init A O[Next]y A L be a system specification. If all of the following conditions
hold then G conforms to Spec.

L Emit=\/n
nel

2. EnA[Net]y =n'vV \/(A)v Am holdsfor every noden € N.
{(A,m):(n,m)Eda}

3. Foraln,me Nandall (t,<) € o(n,m):

@ Enan A \/(A)y =t <t and
{A:(n,m)Eda}

() EnANet]yAN =t <t

4. For every action A € A suchthat ((A) # NF:
(@ If ¢(A) = WF then = Spec = WF,(A).

(b) If ((A) = SFthen = Spec = SK,(A).
(¢) = n = ENABLED (A)y holds whenever A can be taken at node n.

(d) EnA (A)y = —-m holdsfor all n,m e N such that (n,m) ¢ da.

Proposition 3 can be used to show that the predicate diagram of Fig.1 conforms to
the specificatioidM that appears on the left-hand side of Fig. 1. For example, we have

Co="e"Ac ="t"Ane€ NatAn#0Aever(n)
Achy="t"Ac] ="t"An" € NatAn' # 0 Aever(n')
A (Next)y

=n<n

because only the actiofhk, is applicable in any state described by the precondition,
andn div 2 < nholds for any positive integer.

Because of condition 4(d), which ensures that the effects of actions with nontrivial
fairness assumptions are fully represented in the diagram, the number of proof obli-
gations can be quadratic in the number of nodes of the diagram. We have studied
techniques based on abstract interpretation that can construct predicate diagrams that
conform to a given specificatidgpec [CMMOOQ].

3.2 Model checking predicate diagrams

Regarding predicate diagrams as finite labelled transition systems, their runs can be
encoded in the input language of standard model checkers such as Spin [Hol97]. Two
variables indicate the current node and the last action taken. The predicBRtassmep-
resented by boolean variables, which are updated according to the label of the current
node—nondeterministically, if that label contains neitReror —P. (Our actual imple-
mentation is slightly more general, because variables over arbitrary finite types rather

Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ... 165

than just the Booleans are allowed to appear in node labels.) We also add variables
b,<), for every termt and relation< € O such that(t, <) appears in some ordering
annotatioro(n, m). These variables are set2df the last transition taken is labelled by

(t, <), tolifitis labelled by(t, <) or is a stuttering transition, and @ootherwise.

The fairness conditions associated with the actions of a diagram are easily expressed
as LTL assumptions for Spin. As in definition 2 we assume that a&igenabled
whenever the currently active node has an outgoing edgg.ifio capture the effect of
the ordering annotations, we add Streett-type formulas

00 (b, <) = 2) = O0(b,<) = 0)

as additional assumptions for every variablg ., introduced. These assumptions en-
sure that transitions known to strictly decreaseith respect to< can not be taken
infinitely often unless infinitely often some transitions are taken that may increase the
value oft.

Propertied whose atomic formulas are contained in the7Beif predicates of in-
terest can now be established by model checking the transition system that results from
the encoding. If verification succeeds then every trace through the diagram sé&tjsfies
and by transitivity of trace inclusion it follows th& holds of any specification that
conforms to the diagram. On the other hand, counter-examples produced by the model
checker need not correspond to actual system runs, because detail has been lost in the
abstraction. Nevertheless, such counter-examples are helpful in order to refine the ab-
straction, for example by adding ordering annotations. Obviously, the size of diagrams
that can be effectively analyzed in this way is mostly limited by the number of fairness
conditions and ordering annotations present in the diagram.

Continuing the “dining mathematicians” example shown in Fig. 1, the following
properties can all be verified from the predicate diagram:

(Pos) O(ne NatAn#0) (Excl) O-(co ="“e"Acy ="e”)
(Livep) OO(cy = “e”) (Live;) OO(c, = "e")

The first two properties are invariants; they assertihratnains a positive natural num-

ber and that mutual exclusion is ensured. The remaining properties are liveness prop-
erties that assert starvation-freedom for both processes. As indicated at the end of sec-
tion 2, the verification of propertfLive;) relies on the ordering annotations that forbid

the cycle between the left-hand nodes to be followed indefinitely.

4 Refinement of predicate diagrams

Not only can predicate diagrams be used to support bottom-up system verification,
but they can also conveniently underpin top-down system development: starting from
a coarse abstraction that represents overall system behavior, more and more detail is
added until the system specification can be directly “read off” the final design. Techni-
cally, we have to define an appropriate refinement relation between diagrams. Whereas
trace inclusion is all that is semantically required—in particular, addition of detail is
possible thanks to stuttering invariance, methodologically we require a definition that
is both flexible (i.e., supports non-trivial refinements) and tractable. Keeping with our
general methodology, we require a definition in terms of “local” proof obligations. In
other words, the overall structure of the abstract diagram will be preserved in the refin-
ing diagram.

166 Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ...

4.1 Structural refinement

To simplify matters, we initially assume that the refining diag@hinterprets all pred-
icates and actions that occur in the abstract diaggZmin particular, the set of state
variables that appear 6! is a superset of those that appeaiGh. A more general
definition that allows predicates &2 to be represented differently @', and there-
fore allows for change of representation of the underlying data, will be considered in
section 4.3.

Definition 4. Assume given two predicate diagra®@$ = (N', 11,4, 0!, (') overP?
andA! andG? = (N?,12,62,0?, (%) overP? and.A? whereP! D P2 and Al D A2,
and letf : N* — N2. We say thaG' structurally refines G? wi.r.t. f iff all the following
conditions hold:

1. f(1h) C 12
2. En=f(n) holds for every node € N!.

3. Forallnyme N! and allA € A! such tha{n,m) € 65
(@) if A e A2 then(f(n),f(m)) € 42, and

(b) if A A\ A2 then(f(n),f(m)) € 62.

4. For alln,m e N!, all A € A! such thai{n,m) € §x(n, m), all termst and relations
<€ 0=
(@) (t,<) € o'(n,m) whenevert, <) € o?(f(n),f(m)),

(b) (t,<) € o'(n,m) wheneverf(n) = f(m) and(t, <) € o?(f(n),m’) for some
m € N2,

5. For every rum! = (s, N0, Ag)(S1, Ny, Ay) ... of Gt and every actiol € A? such
that(?(A) = WF, eitherAy = Aorf(n;) ¢ En?(A) holds for infinitely manyi € N.

6. For every rum! = (9, N, Ao)(S1,N1,A;) ... of G! and every actiod € A2 such
that(?(A) = SF, eitherA; = A for infinitely manyi € N or f(n;) € En?(A) for
only finitely manyi € N.

We say thatG' structurally refines G2 iff G' structurally refinesG? w.r.t. some
functionf : N! — N2.]

The definition of structural refinement w.ift.is such that conditions (1)—(4) are
either purely structural or can be verified using non-temporal reasoning. On the other
hand, conditions (5) and (6) are based on the runs of the diagrams and can therefore
be established by model checking, using the encoding described in section 3.2. Note
in particular that we do not require high-level fairness conditions to be syntactically
preserved in the refining diagram; as we will see in the examples below, this makes our
definition flexible. On the other hand, we require that transitior@lirpreserve any or-
dering annotations asserted for the corresponding transitic®$,aind that transitions
of G! that correspond to stuttering step<3f do not increase terms for which ordering
annotations are present@!. This requirement of strict preservation could be relaxed
by allowing a transition of the abstract diagram with an associated ordering constraint
(t, <) to be simulated by a sequence of transitions in the refining diagram such that each
transition ensureg < t and at least one transition ensutres t.

Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ... 167

~

—‘(O\an A Oan)

/—\/

Owny —0wn,
=0Owns Owns
1.2 1.3

Figure 2: Mutual exclusion: initial diagram and first refinement.

The following theorem asserts that structural refinement ensures trace inclusion, and
is therefore sound. In particular, all properties show@Géfremain valid forG'.

Theorem5. If Gt structurally refines G? then tr(G!) C tr(G?).

Proof. Assume thaG', G2 andf are as in definition 4, and that= sys; . .. is a trace
of G'. We must prove that € tr(G?).

By the definition of a trace, choose some e (So,Ng, Ag)(St, Ny, Ap) ... of G
based orr. We will define a sequence = (sp,f(ng),Bo)(si,f(ny),By) ... and prove
thatr is a run ofG2. Define the set#; by

B ={A€ A% (f(n),f(ns1)) € 63}

and letB = B; if f(n) # f(ni41), andB* = B; U {r} otherwise. Condition (3) of
definition 4 ensures th#t* # () holds for alli € N. Now choose a sequenBg, By, . ..

of actionsB; € B} such that every actioA € .A? that appears in infinitely many sets
B is chosen infinitely often. (Such a choice is possible because thé’stfinite.)

Sincep is a run of G!, we know thatn, € I', hence condition (1) ensures that
f(ng) € 1. Moreover,s; = n for alli € N, and condition (2) implies; = f(n).
Similarly, the choice oB; and condition (3) ensures that eiti&r = 7 andf(n;) =
f(ni41) or B € A% and (f(n),f(ni+1)) € 3. Finally, using condition (4) and the
fact thatp is a run ofG!, it follows that(s,s+1) = t' < t holds wheneve(t, <) €
o?(f(ny),f(ni1)) if Bi € A%, and that(s,s+1) = t' < tif B = 7 and nodd (n;) has
an outgoing edge labelled l§§; <).

It remains to show that satisfies the fairness conditions associated @thThus,
let A € A? be some action such th&t (A) = WF, and assume thé{n;) € En*(A)
holds for all but finitely many € N (otherwise, the fairness condition is trivially satis-
fied). Condition (5) implies thad; = A holds for infinitely manyi € N, and condition
(3a) ensures thad € B holds for infinitely manyi € N. The choice of action8;
impliesB; = Afor infinitely manyi € N, which completes the proof. The argument for
actionsA € A? such that?(A) = SF is analogous, replacing “all but finitely many” by
“infinitely many” and using condition (6) instead of (5). O

4.2 Example: mutual exclusion protocols

We will now argue that the notion of structural refinement is flexible by performing a
sequence of refinements that lead to different two-process mutual exclusion protocols,

168 Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ...

‘ Drops

Figure 3: Mutual exclusion: adding requests.

a standard benchmark problem in the design of reactive systems. The basic requirement
is to ensure that the two processes can never simultaneously access a shared resource.
The simplest diagram that expresses this requirement is shown on the left-hand side of
Fig. 2. It does not indicate how mutual exclusion is achieved, nor does it satisfy any
liveness properties.

A first step towards implementation is represented by the diagram shown on the
right-hand side of Fig. 2, which rules out direct hand-overs of the resource from one
process to the other. (We no longer show the loops on the nodes because they are im-
plicit in the definition of a run.) Here and in the following diagrams, we use a humber-
ing convention to indicate the refinement function: a negeof the refining diagram
is mapped to nodg of the abstract one. It is easy to see that the second diagram is a
structural refinement of the first one because every node label iml@sn ; A Owns)
and every transition is allowed by the loop on the only node of the initial diagram.

Continuing our development, we want to add fairness requirements for processes
that have requested the resource. We therefore add predRegtesindReq, that indi-
cate which processes have issued a request and split the nodes accordingly (see Fig. 3).

We have also introduced actiofiake;, Take,, Drop;, andDrop, that model ac-
quisition and release of the resource by the processes. The conditions of definition 4
are again easily checked,; in particular, transitions such as the one from riotiéo
1.1.2 where proces$ requests the resource are covered by stuttering transitions in the

Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ... 169

=0wn; —0Owny

—Reqr —Reqz
1.1.1

Droplﬁkel /

Owny - 0wng -=0wn; —Owns -0wn; —Owns

Red —Req Reg1 Reqe Req. Reqs
1.2.1 turn=1 1.1.4.1 turn=2 1.1.4.2

Take;

Takes

Drop; ‘ Dropz

Figure 4: Mutual exclusion: priority-based implementation.

previous diagram.
We require strong fairness of tffeke; actions, and weak fairness of tBeop; ac-
tions to ensure that conflicts are resolved in a fair way, and that no process monopolizes
the resource. (Note that strengthening fairness conditions is a particular case of struc-
tural refinement.) Model checking establishes that the diagram satisfies the liveness
properties
Req; ~~ Owny and Rega ~~ Own,

We have now reached a diagram that represents a semaphore implementation of
mutual exclusion: the semaphore is taken in those states where some process owns the
resource, and free otherwise. Interestingly, we can continue our development to obtain
an implementation along the lines of Peterson’s algorithm if we assign priorities to the
processes and ensure that priorities change whenever both processes compete for access
to the resource. We only need to split nddé.4 into two subnodes as shown in Fig. 4;
the noded.1.4.1 and1.1.4.2 assign priority to different processes. Because there is no
longer a conflict between the actiofake,; andTake,, the strong fairness requirement
for these actions is replaced by weak fairness.

It is easy to establish conditions (1)—(4) in order to prove that the diagram of Fig. 3
is structurally refined by that of Fig.4 because the latter diagram allows fewer transitions
than the former. Proving refinement of the original fairness conditions is more subtle

170 Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ...

because the nodésl.4.1 and1.1.4.2 are both mapped to the abstract nade4 where

both Take, and Take, are enabled. However, the alternation of priority ensures that
conflicts are fairly resolved, and in fact the model checker confirms that condition (6)
of definition 4 is satisfied. The predicate diagram shown in Fig. 4 therefore inherits
all the desired safety and liveness properties that had been obtained for the previous
diagrams.

4.3 Datarefinement

Structural refinement ensures that every trace through the refining diagram is also a
trace through the original diagram. We now present a generalization of definition 4
and allow the refining diagra®' to be based on a different set of predicates than the
original diagranG2. Consequently, there may be variabtéshat occur inG? but notin

G!'; in other words, the representation of data may have changed. We require the state
spaces of the two diagrams to be connected by a “gluing invariant” that, intuitively,
allows the abstract variables and predicates to be computed from the concrete ones.
The definition ensures that for every trace through the refining diagram there exists a
trace through the original diagram such that corresponding states in the traces satisfy
the gluing invariant. It follows that properties established for the original diagram are
preserved up to the gluing invariant. Similar notions of data refinement are used in the
refinement calculus [BvW98] and its descendants such as Z [Spi92] and B [Abr96a].

Definition 6. Assume given two predicate diagra@$ = (N', 11,4, 0!, (') overP?
andA! andG? = (N2,12,62,07%,¢?) overP? and. A% whereA! D A2, as well as a
state predicatk. Letx? be a tuple of all variables that occur@?, but notinP!, and let
f . N — N2. We say thaG' structurally refines G2 up to L w.r.t. f iff all the following
conditions hold:

1. (1) C 12,
2. En=3x*:LAf(n) holds for every node € N!.

3. Foralln,me N' and allA € A" such tha{n,m) € §,:
(@) if A e A? then(f(n),f(m)) € 63, and
(b) if Ae A\ A2 then(f(n),f(m)) € §2.

4. Foralln,me N! and allA € A' such that{n,m) € §3:

(@) for all (t,<2) € 0*(f(n),f(m)) there exists somé;, <;) € o'(n,m) such
that

—EnAmMALALAY <1t =t <2t and
- |:n/\n’/\L/\L’/\t’1 j1t1:>tl2 <9 1o,

(b) if f(n) = f(m) and(t2, <2) € 0*(f(n),) holds for soman’ € N? then there
exists somét;, <;) € o' (n, m) such that

EnAMALALAL <1 ti=th <oty

5. For every rum! = (s, N0, Ag)(S1, Ny, Ay) ... of Gt and every actiol € A? such
that(?(A) = WF, eitherAy = Aorf(n;) ¢ En?(A) holds for infinitely manyi € N.

Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ... 171

6. For every rump! = (s, N, Ao)(S1,N1,A;) ... of G! and every actiod € A2 such
that(?(A) = SF, eitherA; = A for infinitely manyi € N or f(n;) € En?(A) for
only finitely manyi € N.

We say thaG' structurally refines G2 up to L iff G! structurally refine$s? up toL
w.r.t. some functiorfi : N! — N2, O

We still require the actions of the original diagram to appear in the refining di-
agram. This requirement could be dropped, in particular for actions without fairness
conditions, but this would complicate the statement of definition 6, and does not seem
to be very useful—recall that only action names appear in predicate diagrams, and that
an implementation may assign the same action formula to different action names. Other
generalizations would allow the abstract variatxi&so be related to concrete-level vari-
ables by history and prophecy simulations [AL91] instead of a simple gluing invariant
L. Our current experience is too limited to determine a useful and tractable formulation
of such a more flexible definition.

The correctness property associated with structural refinement up to a gluing invari-
ant is stated in the following theorem.

Theorem 7. Assumethat G! structurally refines G2 up to L, and let x2 again denote a
tuple of all variablesthat occur in G2, but notin G'.

1. For everytrace o = 5 ... through G! there exists a trace = = tot; ... through
G? such that t; differs from s, at most in the valuation of the variables x2, and such
thatt; = L holdsfor all i € N.

2. If G2 satisfiesformula F then G! satisfies3x2 : OL A F.

Proof. 1. The proof follows the argument used in the proof of theorem 5, except that
for the definition of the corresponding run G somex2-variantt; of every state
S needs to be chosen such thal= L. The existence of such states is ensured by
condition (2). The actionB; are chosen as before, and the proof obligations for the
ordering annotations iG! ensure that the run @2 meets all required conditions.

2. Animmediate consequence of assertion 1. O

To illustrate the application of definition 6, we continue the development of mutual-
exclusion protocols to derive an atomic version of Lamport’s two-process Bakery algo-
rithm. Figure 5 shows a diagram with the same structure as the diagram of Fig. 4, but
with a different labelling of the nodes and some additional action names. (Thipk of
andp. as program counters whose values correspond to “non-critical”, “requesting”,
and “critical”.) As before, we require weak fairness of ¥ae; andDrop; actions.

Itis easy to prove that the diagram of Fig. 5 structurally refines the diagram of Fig. 4
up to the gluing invariant defined as

(Own; = p; = “cr”) A (Owny = pe = “cr”)

/\(Reqlztl #O)A(RquEtQ#O)
A (turn = if t; <ty then1else2)

In particular, theorem 7.2 and simple temporal reasoning implies that the properties

ty 0~ pp ="cr” and to # 0 ~ pp = “cr”

172 Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ...

~
p1="nc” pa='nc’
t1=0 12=0
1.1.1
Req: Regz

t1#0 to=0
1.1.2

t1=0 ta#0

1.1.3

Reqy

p1=rcr po=nc” PI=1q" pa="rq” P1=rq" p2=*rq”

th#£0 t=0 t#0 10 1h#0 t2£0
1.21) | <t 1.1.4.1) (ty>t, 1.1.4.2

.

Reqgs Take; Takes

pL=Tg" pe=rer”

t1#0 1270
1.2.2 1.3.2
Drop: ‘Dropg

pL='er’ p2="rq’

t1#0 t#0

Figure 5: Mutual exclusion: Bakery algorithm.

hold of the diagram of Fig. 5. Thus, whenever a process has “drawn a ticket”, it is
guaranteed to eventually enter its critical section.

In order to arrive at an actual implementation, we must find an assignment of action
formulas to action names that satisfies the conditions of proposition 3. One possible
solution is to let thdReq actions assign the ticket value of the other process, incremented
by one, to the ticket of the own process, and to letlinep action reset the ticket value
to 0. We thus arrive at a conventional presentation of the atomic version of Lamport’s
Bakery algorithm, as shown in Fig. 6.

5 Related Work

There have been many suggestions for visual notations that support the formal devel-
opment and analysis of systems. Owicki and Lamport [OL82] defined proof lattices to
structure proofs of concurrent programs. A proof lattice is an acyclic finite graph with
input assertiorP and output assertio; it represents the proof of a liveness prop-

erty P ~» Q. A structuring mechanism was sketched to introduce or remove invari-
ants. Anderson’s implementation of tbelITy logic in the interactive theorem prover

HoL [And92] makes use of proof lattices. Radhia Cousot [Cou85] introduced proof
charts to reason about parallel programs. Termination proofs are based on annotations

Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ... 173

nit=p1 ="Nc"Ap2 ="NC"Ati =0At2 =0

Reqi = p1 =“nc” A py = “rq” At] =t2 + 1 A UNCHANGED (p2, t2)

Regz = p2 = “nc” A py = “rq" Aty = t; + 1 A UNCHANGED (p1, t1)
Taker = p1 = “rq” Ati <t Ap) = “cr’ A UNCHANGED (t1, P2, t2)
Take: = p2 = “rq” Aty > t2 APy = “cr” A UNCHANGED {t2, p1, t1)
Drop; = p1 = “cr” Apy = “nc” At = 0 A UNCHANGED {ps, t2)
Drops = p2 = “cr” Apy = “nc” Aty = 0 A UNCHANGED {py, t1)

Next = Req; V Reqe V Take; V Take, V Drop; V Drop,

V= (p1, P2, 11, t2)
Bakery = Init A O[Nextly A WF,(Take;) A WF,(Take;) A WF,(Drop:) A WF,(Drop:)

Figure 6: TLA specification of the two-process atomic Bakery algorithm.

that identify well-founded orderings. Lamport [Lam95] defines predicate-action dia-
grams that represent TLA specifications, restricted to safety properties. His diagrams
are intended to communicate aspects of specifications; diagrammatic verification is not
considered.

Work by Manna et al [dAMSU97, MBSU98] in the context of the STeP verification
system is most closely related to our use of diagrams. Our definitions differ in technical
details, but share the general motivations. For example, our ordering annotations are
local to edges of the diagram, which simplifies the presentation and reduces the number
of proof obligations. Refinement transformations on diagrams such as node splitting
and transition removal are considered in [dAMSU97]. In contrast, our definitions of
refinement are not restricted to isolated modifications applied to single nodes or edges,
but support non-trivial refinements of fairness and liveness properties.

Our style of top-down development owes heavily to the B approach to system de-
velopment [Abr96a, Abr96b, Abr00]. However, working in the more general setting of
temporal logic, we prefer to state abstract fairness requirements early in the develop-
ment; they can be implemented by well-founded orderings later on.

6 Conclusions

Predicate diagrams provide a framework for reasoning about reactive systems, based
on Boolean abstractions. We have proposed to use predicate diagrams as the basis of
a top-down refinement method. Throughout, care has been taken to separate the rea-
soning about states and state transitions from the reasoning about behaviors, which is
required for the proof of liveness properties. This separation makes the proof obligations
tractable. In particular, all proof obligations concerning temporal properties are stated
in terms of finite transition systems and can therefore be discharged by model checking.
Nevertheless, we have argued that our definitions are flexible enough to support non-
trivial refinements of fairness conditions by a mix of low-level fairness assumptions and
arguments based on well-founded orderings.

We are developing a prototype tool that will enable us to carry out more substantial
case studies. We expect that these will point us to useful generalizations of the refine-
ment relations defined in this paper, especially concerning data refinement. We also
intend to study the representation of parameterized systems by predicate diagrams.

174 Cansdll D., Mery D., Merz S:: Diagram Refinements for the Design ...

Acknowledgements

We are grateful to the anonymous referees for many helpful comments and suggestions.
This work has been partly supported by a PROCOPE grant from EGIDE and DAAD.

References

[Abr96a] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

[Abroeb] J.-R. Abrial. Extending B without changing it (for developing distributed systems).
In H. Habrias, editorlst Conference on the B method, pages 169-190. IRIN Institut
de recherche en informatique de Nantes, 1996.

[Abr00] J.-R. Abrial. Event-driven sequential programs. http://www-sop.inria.fr/fEJC2000/
edspc.V12.ps.gz, March 2000.

[AL91] Martin Abadi and Leslie Lamport. The existence of refinement mappifigsoret-
ical Computer Science, 81(2):253—-284, May 1991.

[And92] F. Anderson. A theorem prover for UNITY in Higher Order Logic. PhD thesis,
Technical University of Denmark, 1992.

[BvW98] R. Back and J. von Wright. Refinement calculus—A systematic introduction.
Springer-Verlag, 1998.

[CMMO0O] Dominique Cansell, Dominique Bty, and Stephan Merz. Predicate diagrams for
the verification of reactive systems. 2nd Intl. Conf. on Integrated Formal Meth-
ods (IFM 2000), volume 1945 ofLecture Notes in Computer Science, Dagstuhl,
Germany, November 2000. Springer-Verlag.

[Cou85] Radhia CousotFondements de méthodes de preuve d’invariance et de fatalité de
programmes paralleles. PhD thesis, INPL, 1985.

[dAMSU97] Luca de Alfaro, Zohar Manna, Henny B. Sipma, and &snribe. Visual veri-
fication of reactive systems. In Ed Brinksma, ediffapls and Algorithms for the
Construction and Analysis of Systems (TACAS 97), volume 1217 ol ecture Notes
in Computer Science, pages 334—-350. Springer-Verlag, 1997.

[DGGY94] Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation of reac-
tive systems: Abstractions preservid@TL*, 3CTL* and CTL". In Ernst-Ridiger
Olderog, editorProgramming Concepts, Methods, and Calculi (PROCOMET ’94),
pages 561-581, Amsterdam, 1994. North Holland/Elsevier.

[Hol97] Gerard Holzmann. The Spin model check&EE Trans. on Software Engineering,
23(5):279-295, may 1997.

[KP98] Y. Kesten and A. Pnueli. Modularization and abstraction: The keys to practical
formal verification. In23rd Intl. Symp. Mathematical Foundations of Computer
Science (MFCS 98), volume 1450 of_ecture Notesin Computer Science, pages 54—

71. Springer-Verlag, 1998.

[Lam94] Leslie Lamport. The Temporal Logic of ActionACM Transactions on Program-
ming Languages and Systems, 16(3):872-923, May 1994.

[Lam95] Leslie Lamport. TLA in Pictures.|EEE Transactions on Software Engineering,
21(9):768-775, September 1995.

[LGS*95] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Anmed Bouajjani, and Saddek Ben-
salem. Property preserving abstractions for the verification of concurrent systems.
Formal Methods in System Design, 6:11—-44, 1995.

[MBSU98] Z. Manna, A. Browne, H.B. Sipma, and T.E. Uribe. Visual abstractions for temporal
verification. In A. Haeberer, editoAMAST' 98, volume 1548 of_ecture Notes in
Computer Science, pages 28—41. Springer-Verlag, 1998.

[OL82] Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent pro-
grams.ACM Transactions on Programming Languages and Systems, 4(3):455-495,
July 1982.

[Spi92] M. Spivey.The Z Notation: A Reference Manual. Prentice Hall, 1992.

