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Abstract: In this paper we describe the formal speci�cation and veri�cation of an eÆ-
cient algorithm based on bitvectors for real-time model checking with the KIV system.
We demonstrate that the veri�cation captures the essentials of the C++ algorithm as
implemented in the RAVEN model checker. Veri�cation revealed several possibilities
to reduce the size of the code and to improve its eÆciency.

Categories: D.2.1 { Requirements/Speci�cations, D.2.4 { Software/Program Veri-
�cation, F.3.1 { Specifying and Verifying and Reasoning about Programs, F.3.2 { Se-
mantics of Programming Languages, F.4.1 { Mathematical Logic
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1 Introduction

Model checking is an important technique to detect errors or to prove their ab-
sence in safety critical soft- and hardware systems. Model checking automatically
veri�es properties of state based systems. For eÆciency, it is usually implemented
using highly optimized data structures and algorithms. On the other hand, when
a property can be shown, the only result we usually get from a model checker
is a \yes". The absence of a comprehensible proof raises the question: can the
model checker be trusted?

In this paper, we will answer this question for the case of the real-time model
checker RAVEN [RK97, RK99, Ruf00a]. RAVEN uses time-extended �nite state
machines (interval structures) to describe systems and a timed version of CTL
(clocked CTL, CCTL) to describe their properties. Optimized algorithms based
on extended characteristic functions are used to compute the extension sets in
the model checker.
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Our solution consists in the application of formal methods to ensure the
correctness of formal methods: We apply the interactive veri�cation system KIV
[RSSB98] to formalize and prove the algorithms of RAVEN.

To our knowledge, our case study is the �rst to tackle formal veri�cation
of a state-of-the-art real-time model checker. This paper is the result of the
cooperation of two groups, in the context of a research programme on formal
methods for engineering applications: the developer of RAVEN (last author),
and the development group of KIV (remaining authors).

The veri�cation of RAVEN in KIV consists of three parts. First, it is shown
that a simple, unoptimized model checking algorithm correctly implements the
semantics of CCTL. Second, the simple algorithm is optimized using so-called
time-jumps, and third the optimized algorithm is implemented using bitvectors.
An overview over the veri�cation steps can be found in [RRSV00], which focuses
on the modularization of the proof and the veri�cation of the second optimization
step, where some errors were found.

This paper is about the implementation correctness of the bitvector imple-
mentation. We will compare the C++ code of the RAVEN implementation with
the imperative programs de�ned in KIV, and demonstrate that the latter are
suitable to capture the essentials of the former: veri�cation revealed several pos-
sibilities to reduce size and improve the eÆciency of the RAVEN implementation.

Our paper is organized as follows: Section 2 sketches interval structures,
CCTL formulas, and the basic model checking algorithm informally, using an
example. Section 3 de�nes the optimized algorithm. Both the simple and the op-
timized algorithm use abstract sets of natural numbers to represent time points.

The main part of the paper is Sect. 4 which gives details on the representation
of sets by bitvectors and its veri�cation in KIV. It also contains a comparison
to the real C++ code. Section 5 concludes the paper.

2 Real-Time Model Checking

Model checking is a well established method for the automatic veri�cation of
�nite state systems. It checks whether a given state transition system satis�es a
given property speci�ed as a propositional temporal logic formula.

The approach we examine is developed for timed systems and timed speci�-
cations. In this section, we give an informal introduction to the main ideas using
an example. This is suÆcient for the purpose of the paper. Formal de�nitions
may be found in [RK97, RK99] and in [Ruf00b].

The structures representing real-time systems are interval structures. An
interval structure is a state transition system with labeled transitions. The labels
are intervals of delay times. Figure 1 shows an interval structure, which we will
use as a running example. The initial states are doubly circled. States are marked
with the values of propositional variables (so in state ab, a is true, b is false). Each
structure has one discrete clock. This clock is reset to zero in the initial states and
also if a state change is performed. Possible transitions are displayed as arrows
in Fig. 1. If the actual clock value reaches some value labeled at an outgoing
transition (i.e. the clock value is an element of an interval) the structure may
change to the connected successor state and the clock is reset to zero. To avoid,
that the described system rests in�nitely long in a state, a state must be left,
when the maximal delay time of an outgoing transition is reached. Otherwise,
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Figure 1: Interval structure

the system may choose indeterministically between the possible delay times of
an outgoing transition as well as between possible successor states.

To explain the model checking algorithms, we introduce con�gurations of
interval structures. A con�guration is a pair of a state and a clock value. For
con�gurations there exist two di�erent kinds of successor con�gurations, local
and global successors.

{ The local successor con�guration stays in the same state, i.e. the clock has
to be increased: (s; n)! (s; n+1) if n+1 is not the maximal delay time of
the state s.

{ A global successor is one of the connected states together with a zero time:
(s; n)! (t; 0) if there exists a transition between s and t and the transition
is labelled with the delay time n+ 1.

A con�guration c is a local (global) predecessor of con�guration c0, i� c0 is a
local (global) successor of c.

The properties which have to be checked over a given interval structure are
formulated in CCTL, an extension of CTL [CES83] with quantitative timed
operators. In addition to the usual operators of CTL like EF ' (there is a path
on which eventually ' holds) CCTL also has time-bounded operators EFn '
(there is a path such that within n steps ' holds). For the full set of operators
and their formal semantics see [RK99]. We consider an example where only
EFn ' and EX ' (there is a step after which ' holds) are used. The example
property with respect to Fig. 1 is EF 3(a ^ b). Its meaning is \There is a path
such that within 3 steps a state is reached for which a ^ b holds". The property
holds for an interval structure if it holds in all initial states.

The basic idea of model checking is a recursive computation of extension sets.
For a formula ', the extension set ext(') is computed as the set of con�gurations
satisfying the formula, i.e.

ext(') := f (s; n) j the con�guration (s; n) satis�es the formula 'g.

The algorithm starts in the leaves of the syntax tree of the formula and �-
nally determines the extension set for the complete property. Finally the model
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checking algorithm tests whether the initial states are contained in the exten-
sion set for the full formula or not, i.e. whether the structure is a model of the
speci�cation or not.

The computation of extension sets is simple for atomic propositions: collect
all con�gurations with a state labeled with the proposition. In our example:

ext(a) = f(ab,0),(ab,1),(ab,2),(ab,0),(ab,1)g

ext(b) = f(ab,0),(ab,1),(ab,2),(ab,0),(ab,1)g.

The extension set of propositional operations can be computed by applying the
corresponding set operations to the arguments, e.g. the conjunction is realized
by intersection, the negation is computed by the complement set with respect to
the full set of con�gurations. Applied to our model checking example we obtain:

ext(a ^ b) = ext(a) \ ext(b) = f(ab,0),(ab,1)g

The temporal operators may be de�ned recursively (for n = 1 the recursion is
unfolded until it becomes stable and computes the least �xpoint). For instance,
the EF-operator is formally de�ned through

EFn(') = ' _ EX(EFn�1(')) (1)

This shows that the temporal operators may be unrolled by using the EX-
operator. Therefore, the computation of extension sets for the EX-operator is
very important. The extension set ext(EX (')) contains all predecessor con�gu-
rations of those in ext('). We can de�ne a function EX (C; T ) which performs n
predecessor computations for a given set C := ext(') and the transition relation
T . The predecessor con�guration computation for our example is shown in the
following equation:

EX(ext(a ^ b); T ) = f(ab; 1); (ab; 1); (ab; 2); (ab; 2)| {z }
predecessors of (ab,0) and

; (ab; 0)| {z }
(ab,1)

g

Then a call EF (C; n; T ) to the program in Fig. 2 computes ext(EFn ') when
given C := ext('). The program implements the tail recursion of formula (1) by
a while loop. The implementation of the other temporal operators is similar.
Putting things together we have in the example

EF(ext(a ^ b),1,T) = ext(a ^ b) [ EX(ext(a ^ b),T)

= f(ab,0),(ab,1),(ab,1),(ab,1),(ab,2),(ab,2)g

EX(EF(ext(a ^ b),1,T),T)

= f(ab,0),(ab,0),(ab,1),(ab,0),(ab,1),(ab,2),(ab,1),(ab,2)g

EF(ext(a ^ b),2,T) = ext(a ^ b) [ EX(EF(ext(a ^ b),1,T),T)

= f(ab,0),(ab,1),(ab,0),(ab,1),(ab,0),(ab,1),(ab,2),(ab,1),(ab,2)g
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confset EF(confset C, natinfty n, transrel T)

begin

confset old := ;, R := C;

while n > 0 ^ old 6= R do

begin

old := R;

R := C [ EX(R,T);

n := n � 1;

end

return R;

end

Figure 2: The basic EF-algorithm

and obtain

ext(EF3(a ^ b)) = EF(ext(a ^ b),3,T)

= f(ab,0),(ab,1),(ab,0),(ab,1),(ab,0),(ab,1),(ab,2),(ab,0),(ab,1),(ab,2)g

as �nal result. ext(EF 3(a ^ b)) is (by accident) the full set of all possible con-
�gurations, and since the initial states (ab; 0) and (ab; 0) are contained in it, the
property EF 3(a ^ b) holds in our example.

For eÆciency the implementation of the model checking algorithms uses
MTBDDs to represent con�guration sets. For instance, the set f(ab; 0); (ab; 1)g
is represented as shown in Fig. 3 in the dashed box on the left.

The transition relation T of the interval-structure in Fig. 1 can be represented
as the cascaded BDD of Fig. 3 that gives the predecessor con�gurations for every
con�guration (s; 0). Please note, that the clock values contained in the leaves
correspond to the values attached to the transitions, each decremented by one.

In [RRSV00] we have veri�ed that the basic model checking algorithm cor-
rectly implements the semantics of CCTL formulas.

3 Time Prediction

If we analyze the computation of predecessor states in the function EX we �nd
two cases: For a con�guration (s; 0) global predecessors must be computed by
looking at the transition relation, since only a state-changing transition resets
the clock to zero. On the other hand, a con�guration (s; n) with n 6= 0 has only
one local predecessor (s; n � 1). Of course computing it is much cheaper than
computing global predecessors. We also observe, that the global predecessors
computed by the calls to EX in Fig. 2 often do not change between iterations
of the while loop. As an example the �rst two calls to EX with ext(a ^ b) and
EF (ext(a ^ b); T ) both compute global predecessors for the same set f(ab,0)g of
con�gurations. Therefore, we use a technique called time prediction to overcome
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Figure 3: BDD representation of the transition relation

the single step iteration and to avoid unnecessary global predecessor compu-
tations [RK97, RK98]. The idea is to de�ne a time prediction function that
predicts how many steps the global predecessors remain unchanged. This time
prediction operation for EF (other operators work similarly, but need a di�erent
prediction function) can be computed locally, i.e. for each state separately by a
function local-predict-EF de�ned below. The minimum p of the computed pre-
diction times is the time span which can elapse without any change in the set of
the global predecessors. In our example the �rst time prediction is p = 2, and
one computation of global predecessors is saved. Arguments of local-predict-EF
are the sets of clock values c � IN0 and g � IN0 which contain the last in-
terim result of the computation and the results of the last computation of global
predecessors.

local-predict-EF(c; g) :=

�
v if v = min(c,g� 1) ^ v > 0

1 otherwise
(2)

The set operation g � 1 decrements all members of g by one.
After the prediction the �xpoint iteration of the temporal operators may be

performed p times. Analogous to the above, the computation of p iterations with
the same set G of global predecessors can be broken down to applications of a
function local-EF on every state which is recursively de�ned as

local-EF(c,g,p) =

�
c if p = 0

local-EF(c,g,p� 1) [ local-EF(c,g,p� 1)� 1 [ g
(3)

Putting together the above de�nitions and considerations, we obtain the opti-
mized algorithm shown in Fig. 4. The notation C(s) used in the program inter-
prets a set of con�gurations as an extended characteristic function from states to
sets of natural numbers, i.e. C(s) abbreviates fn : (s,n) 2 Cg. Functions local-EF
and local-predict-EF from equations 2 and 3 are called with c := C(s) and g :=
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confset EF(confset C, natinfty n, transrel T)

begin

confset old := ;, R := C, G := ;;

natinfty p;

while n > 0 ^ old 6= R do

begin

old := R;

G := global-pre(R,T);

p := mins2Slocal-predict-EF(C(s),G(s));

if p > n then p := n;

R := [ s2S local-EF(C(s),G(s),p);

n := n � p;

end

return R;

end

Figure 4: The optimized EF-algorithm

G(s) for every state s. Correctness of the optimization was proven for all tem-
poral operators with KIV. [RRSV00] gives a detailed account on the theorems
which were necessary for the proof.

4 Time Jumps using Bitvectors

In the previous sections we �rst introduced a basic model checking algorithm
computing on sets of con�gurations represented by MTBDDs. Then we sketched
an optimization called time prediction. The optimized algorithm for each tempo-
ral logic operator uses two functions working on leaves of the MTBDDs (i.e. sets
of natural numbers). We gave explicit de�nitions of the two resulting functions
local-EF and local-predict-EF for the temporal operator EF. More details on the
optimization, and on the veri�cation, that both algorithms correctly re
ect the
semantics of the underlying logic CCTL, can be found in [RRSV00].

In this paper, we now give details on the veri�cation of an eÆcient implemen-
tation of these functions based on bitvectors. The implementation will consist of
two steps, and as in the previous section, we will give details for the EF operator.

The �rst step, called \time jumping", optimizes the de�nition of the evalua-
tion function (here local-EF ). Its de�nition and correctness proof are discussed
in the �rst subsection. The second step implements the optimized de�nition
of local-EF and the de�nition of local-predict-EF. It is de�ned in Sect. 4.3, us-
ing the speci�cation of bitvectors as given in Sect. 4.2. Veri�cation, using proof
obligations is discussed in Sect. 4.4 and Sect. 4.5 gives some statistics on the
correctness proofs. Finally Sect. 4.6 compares the imperative code veri�ed with
the actual C++ code used in RAVEN.

200 Reif W., Schellhorn G., Vollmer T., Ruf J.: Correctness of Efficient ...



4.1 Time Jumping

The main idea of time jumping [Ruf00b] is to replace the recursive de�ni-
tion of local-EF by a single complex operation. Fig. 5 shows sample input sets
c = f2; 17g and g = f7; 20g (�rst two lines of the picture) as well as the cor-
responding results of local-EF (c; g;m) after up to 7 iterations (i.e. m 2 [1; 7]).
Each row in the picture represents a set of natural numbers. If the nth box is
shaded, the clock value n is contained in the set.
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Figure 5: Results of computation of local-EF

A closer look shows that the result after n iterations can be computed without
performing intermediate steps. We may draw triangles starting at the inputs
and take the nth row of the resulting picture as result of the computation. If we
convert the picture into a formula, we get the following theorem:

Theorem1. The recursive de�nition (3) of local-EF is equivalent to the fol-
lowing, nonrecursive de�nition:

v 2 local-EF(c,g,p)

= 9v0 2 c \ [v; : : : ; v + p]

_ 9v0 2 g \ [v; : : : ; v + p� 1] ^ p 6= 0

(4)

The formal proof of each equivalence using KIV is straightforward and can
be done within a single day. For local-EF it requires about 400 proof steps, over
half of them being automatic. About two third of the proof e�ort lies in proving
the case m = 1, where the upper bound v + m of de�nition (4) collapses {
suitable lemmas are needed to show that the results of (4) are also contained in
the recursive de�nition (3) of local-EF.

The rest of the proofs are typical proofs over sets of natural numbers. Since
sets and natural numbers are contained in the KIV library, a large number
of simpli�er rules (about 250) were already available to automate the proofs.
About 30 rules had to be added to automate proofs for naturals extended by an
1-element. Proofs then were nearly fully automatic. Full automation could be
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achieved (saving some hours of work) for these proofs by implementing a suitable
decision procedure.

Using the new de�nition of local-EF, it is now much simpler to derive a
bitvector based implementation than by using the recursive de�nition. Also,
proving correctness of the implementation is eased signi�cantly by the use of the
nonrecursive de�nition. Before discussing the implementation and its veri�cation
in detail, we will �rst introduce the speci�cation of bitvectors.

4.2 Speci�cation of Bitvectors

Since the leaves of the MTBDDs representing sets of con�gurations are just �nite
sets of natural numbers, bitvectors can be used to represent these sets. A bitvec-
tor has a one at position i, i� the set represented contains the clock value i. Using
a bitvector representation bears the advantage, that most of the set operations
can be performed very eÆciently using hardware machine instructions.

In order to verify algorithms working on bitvectors, we �rst have to give
formal de�nitions of bitvectors and their associated operations. Arbitrary length
bitvectors are de�ned in KIV using a data type:

bitvector = 0 j 1 j . .0 (pop : bitvector) j . .1 (pop : bitvector)

size function # : bitvector ! nat

The formula states that a bitvector can be constructed starting with a single
0 or 1 by appending further zeros and ones at the end (operations .0 and .1,
written post�x). KIV automatically generates the proper axioms for this data
type de�nition, the length function # and the selector function pop which re-
moves the least signi�cant bit of the bitvector. An alternative to the de�nition
of a new data type would have been to use lists of boolean values. Proofs would
not have been very similar, except that an additional case, the empty bitvector
would have to be considered. Since the original C++ code uses arrays to imple-
ment bitvectors (see Sect. 4.6), and there is no vector of zero length in C++, we
preferred the de�nition of a new datatype over using lists of bits.

Based on this datatype, bit vector operations & (bitwise AND), j (OR), �
(XOR), � (shift left) and � (shift right) can be speci�ed. In addition, a selec-
tion function � [ � ] for the nth bit of a bitvector is de�ned. x[0] denotes the least
signi�cant bit. To guarantee a minimal representation of sets and therefore space
eÆciency of the implementation, a restriction predicate r is de�ned which ex-
presses that bitvectors contain (with the exception of the bitvector 0) no leading
zeros. Later we will verify, that all operations (including local-EF ) keep up this
restriction, thereby minimizing the complexity of bit operations. Exemplarily,
Fig. 6 shows the axioms for the restriction predicate r, the bitvector operations
� and & as well as the bit-selection function �[�].

In the case of � and &, the de�nition has to be split into several axioms
in order to prevent the operation from introducing leading zeros. The other
bitvector operations are de�ned similarly.

1 � ? � : 
 denotes � if � is true and 
 otherwise. This corresponds to the semantics
of the conditional operator in C++.
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r(x) $ x = 0 _ rh(x)

x � 0 = x

x = 0 ! x � n + 1 = 0

1 & y = lsb(y)

x & 0 = 0

x & 1 = lsb(x)

0 & y = 0

rh(x) $ x = 1 _ x 6= 0 ^ rh(pop(x))

x 6= 0 ! x � n + 1 = (x � n) .0

x[n] = (x & (1 � n) = 0 ? 0 : 1)1

x .0 & y .0 = ((x & y) = 0 ? 0 : (x & y).0)

x .1 & y .0 = ((x & y) = 0 ? 0 : (x & y).0)

x .0 & y .1 = ((x & y) = 0 ? 0 : (x & y).0)

x .1 & y .1 = ((x & y) = 0 ? 1 : (x & y).1)

Figure 6: Axioms for bitvector operations

In order to gain automation in proofs concerned with bitvectors, we also had
to add and prove some 120 simpli�er rules which are automatically applied by
the KIV system to solve goals concerned with bitvectors automatically.
A typical simpli�er rule used for conditional rewriting looks like

r(x) ^ x 6= 0 ! x[#(x)] = 1

It states that every bitvector (with the exception of the bitvector 0) free of
leading zeros (the term r(x)) has a one at its top position. Simpli�er rules were
de�ned and proved as needed. Almost all simpli�er rules had very easy proofs,
the total e�ort to prove them was only a few hours.

4.3 Implementation of Time Jumps using Bitvectors

Fig. 7 shows the implementation of both, the time-jump function local-EF and
the time prediction function local-predict-EF which were taken from the RAVEN
C++ source-code.

The idea of the implementation of local-EF (left part of Fig. 7) is to traverse
both input bitvectors starting at the most signi�cant bit. After examining the ith
bit of the inputs, the ith bit of the result is computed: A look at the nonrecursive
de�nition of local-EF shows, that if a one in the bitvector g is encountered, the
next n bits have to be set. The variable state memorizes the number of ones that
remain to be set. In each step a one is output, i� state � 1 holds.

The time-prediction (right part of Fig. 7) algorithm works similarly. In or-
der to compute the term min(c; g + 1) contained in the formal de�nition of
local-predict-EF , the inputs c and g are traversed starting at the least signi�cant
bit. When the �rst \one" is encountered, its position (or the position +1 in the
case of g) is returned. Two special cases have to be handled by extra conditionals
in the implementation of Fig. 7: The case of both sets being empty would cause
nontermination of the while-loop and the case of c[0] = 1 where the predicted
value is 1.
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bitvec local-EF(bitvec c, g, nat n)

begin

nat m := 0, state := 0,

pos := max(#(c),#(g)) +1;

bitvec r := 0;

if n = 1 then m := pos;

else m := n;

while pos 6= 0 do

begin

pos := pos � 1;

if g[pos] = 1 then state := m;

if c[pos] = 1 then state := m +1;

if state � 1 then

begin

r := (1 � pos) j r;

state := state � 1;

end

end

return r;

end

nat local-predict-EF(bitvec c, g)

begin

nat n := 0;

if c = 0 ^ g = 0 then n := 1;

else if c[0] = 1 then n := 1;

else

begin

nat pos = 0;

while n = 0 do

begin

if c[pos] = 1 then n := pos;

else if g[pos] = 1 then

n := pos + 1;

pos := pos + 1;

end

end

return n;

end

Figure 7: Implementation of time-jumps and time-prediction functions

4.4 Veri�cation

To prove correctness of both implementations, the KIV concept of program re-
�nements was used. The basic idea of this concept is to prove that an axiomatic
de�nition (like the one of local-EF ) may be replaced by a program, which has
the same functionality. In our case, all set operations as well as the functions
local-EF and local-predict-EF have to be implemented using bitvectors and nat-
ural numbers only.

KIV automatically generates the appropriate proof obligations: We have to
show termination of all programs, that the restriction is kept invariant and that
the implementations satisfy the axiomatic de�nitions of the functions local-EF
and local-predict-EF. A general theorem [Rei92] assures that correctness of these
proof obligations implies:

Theorem2. For the temporal operator EF, the algorithms given in Fig. 7 are a
correct bitvector implementation of the operations local-EF and local-predict-EF
as de�ned in (4) and (2). The implementations for the other temporal operators
given in [Vol00] are correct too.
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The two proof obligations generated for the time-jump function local-EF are:

r(c) ^ r(g) ! hres := local-EF(c,g,m)i r(res) (5)

r(c) ^ r(g) ! hres := local-EF(c,g,m)i ' (6)

where

' � res[n] = 1

$ (9 n0. c[n0] = 1 ^ n � n0 ^ n0 � n + m)

_ m = 0 ^ (9 n0. g[n0] = 1 ^ n � n0 ^ n0 � n + m � 1)

The formula hres :=local-EF (c; g;m)ir(res) is of Dynamic Logic [Har79] and
states that the function local-EF (c; g;m) terminates and the restriction r holds
on the results. The second proof obligation corresponds to de�nition (4) of local-
EF where all functions working on sets are replaced by bitvector operations
(n 2 s becomes res [n] = 1 for the bitvector res implementing set s).

4.4.1 Proof of Correctness

Both, proof obligations for time jumps and time-prediction are proved by induc-
tion over the number of remaining iterations of the while-loop contained in the
algorithms. We will now concentrate on the basic ideas, since sometimes rather
large formulae of over 100 lines occur in the proofs. To keep proofs feasible,
eÆcient handling of several hundred rewriting rules is essential.

A �rst attempt to prove obligation (6) is to unfold the function local-EF and
to apply structural induction on the formula (' as above)

pos = max(#(c),#(g)) ^ state = 0

! hwhile pos 6= 0 do . . . ; state := . . . ; pos := pos � 1; endi '

afterwards. Since the bitvector is traversed downwards, variable pos can be used
for induction. But obviously, the induction hypotheses is never applicable, since
pos and state change during the computation. Therefore, it is necessary to gen-
eralize the preconditions in order to ensure applicability of the induction hy-
potheses.

For pos, it suÆces to generalize the formula pos = max (#(c);#(g)) to pos
� max (#(c);#(g)). The precondition state = 0 cannot be treated analogously,
since it represents the \memory" of the algorithm and captures information
about earlier in- and outputs. Therefore, an invariant capturing the current
state of computation is required.

For the time-jump algorithm depicted in the left part of Fig. 7, the proper
invariant is shown in Fig. 8.

The invariant consists of two parts. The �rst, INV 1, states that the inter-
mediate result after the next iteration satis�es the proof obligation. The second
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INVEF � INV1 ^ INV2

INV1 � 8 n1. pos � n1
! ( r[n1] = 1

$ (9 i. c[i] = 1 ^ : i < n1 ^ : n1 + n < i)

_ (9 i. g[i] = 1 ^ : i < n1^ : n1 + n �1 < i)

^ n 6= 0)

INV2 � r(r) ^ state � n

^ ( state = 0 _ c[pos + n � state] = 1

_ state < n ^ g[pos + n � state + 1] = 1)

^ (8 i. i < n � state ! c[pos + i] = 0)

^ (state < n ! (8 i. i < n � state + 1 ! g[pos + i] = 0))

Figure 8: Invariant for while-loop of local-EF -procedure

part INV 2 describes the structure of previous inputs depending on the \mem-
ory" variable state. Finding this formula was the major creative step in the
veri�cation of the bitvector implementation.

In contrast to the time jumps, the correctness proof of time prediction is much
simpler, since only the trivial part of the invariant, pos � max (#(c);#(g)) is
required.

4.5 Results and Statistics

Proving the above proof obligations for all operators implemented in RAVEN
took about one month of work. Together, all proofs sum up to about 4000 proof
steps. Over three quarter of these steps were performed automatically by the
KIV system. In addition, a theory of bitvectors containing a large number of
simpli�cation rules was constructed.

For each of the operators, four proof obligations (two for local-EF and two
for local-predict-EF ) had to be proven. Since no large invariant is needed, the
correctness proof for the time-prediction program local-predict-EF and proof
obligation (5) required only a few hours of work.

The proof of (6) is more diÆcult due to several reasons. First, formulas are
much larger due to the invariant INVEF . Second, the �rst-order part of the proof
which shows that INVEF is indeed invariant, requires a lot of case distinctions.
These have to be done manually to avoid unnecessary duplications of parts of the
proof. Third, several proof attempts are necessary to �nd the correct invariant,
and a lot of e�ort goes into the analysis why a certain invariant is not suÆcient
for the proof to carry through. Here, the counter examples generated by the
algorithm implemented in KIV [RST00] gave valuable hints how to improve the
invariant.
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Proving correctness of local-EF required about 450 proof steps and two days.
During the veri�cation of the other four operators we made the following obser-
vations:

{ Operator EF has one subformula. Some other operators (like until) have two
subformulas, which almost doubles both the invariants and the proofs. The
largest invariant consists of 25 lines of formula, the associated proof has more
than 700 proof steps.

{ Operators having several \memory" variables (like state) also require larger
invariants. The size of INV 2 increases proportionally with the number of
\memory" variables, the size of the proofs almost scales equally.

Summarizing, the veri�cation of the bitvector implementation showed some
ineÆciencies in the RAVEN code. Fixing these led to both, shorter and faster
code. For example, the RAVEN implementation of the until operator could be
shortened from 73 to 18 lines of code.

4.6 Comparison with the RAVEN source code

Although the implementations discussed so far were directly taken from the
RAVEN C++ source code, some aspects were suppressed during this process.
In this section, these omissions are illustrated taking the implementation of the
time prediction function local-predict-EF depicted in Fig. 9 as example.
The most important di�erence is due to the fact, that RAVEN uses the following,
more detailed data structure to represent bitvectors:

class BVEC f

CONTAINER *bv;

ULONG length;

g

The �rst component holds a �eld of machine words which together consti-
tute the bitvector, the second component holds the number of machine words
stored in bv. Due to this partitioned representation of bitvectors some adminis-
trative e�ort has to be taken in the implementations. The corresponding code
section is marked by a vertical bar in Fig. 9. Therein, the next input data words
are retrieved each time all bits of the previous word of both inputs have been
inspected. If one of the bitvectors is shorter than the other, it is padded with
zero words. This code section is uniformly contained in all implementations of
time-jump and time-prediction functions.

The KIV implementation is somewhat simpler, since it used unpartitioned
bitvectors. To verify an implementation with partitioning, the restriction would
have to require that the bitvector has no leading zero words. This would add
some technical complexity, but the proofs would remain essentially the same.
The veri�ed code in KIV shown in Fig. 7 can be viewed as the special case,
where all machine words just contain one bit.

Also, the KIV implementation performs padding of bitvectors and memory
allocation implicitly by the selection function and variable declarations respec-
tively.

207Reif W., Schellhorn G., Vollmer T., Ruf J.: Correctness of Efficient ...



ULONG BVEC::local-predict-EF(BVEC &c bv, BVEC &g bv) f

ULONG res,i,j,len;

CONTAINER *c, *g, mask, c wrd, g wrd;

if((c bv.length == 0) && (g bv.length == 0)) return in�nity;

c = ptr(c bv!bv);

g = ptr(g bv!bv);

len = i = mask = 0;

if(c[0] & 1) return in�nity;

else f // �nd �rst one-bit in c or g

while(1) f
if(! mask) f

mask = 1;

if(i < c bv.length) c wrd = c[i];

else c wrd = 0;

if(i < g bv.length) g wrd = g[i];

else g wrd = 0;

i++; g
if(c wrd & mask) return len;

else if(g wrd & mask) return len+1;

len++;

mask = (mask � 1); ggg

Figure 9: C++ implementation of time-prediction function local-predict-EF

A technical di�erence is that our Pascal-like programs use a result variable
n in the while loop (and an exit condition n = 0), while the C++ code directly
returns the result from within the loop.

5 Conclusion

In this paper we investigated the correctness of bitvector based eÆcient real-time
model checking algorithms used in RAVEN.

The implementation consists of 5 pairs of programs on bitvectors for the dif-
ferent temporal operators (similar to local-EF and local-predict-EF for the EF
operator). The algorithms were taken directly from the actual C++ implemen-
tation in RAVEN, omitting only the technical issues of bitvector partitioning
and memory allocation. All programs could be successfully veri�ed with the
interactive theorem prover KIV within one month.

Veri�cation revealed several possibilities to improve the code, both in size and
in eÆciency. We found that the additional veri�cation e�ort was low compared
to the development time of the full C++ code, so we propose to develop new
model checking algorithms hand in hand with veri�cation. We hope that our
results encourage further research in the correctness of model checkers.
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