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1 Introduction

Abstract state machine (ASM) refinements have been used in many case studies
based on Gurevich’s [Gur95] definition, e.g. in [BR95] [BM96], [BS98], [BS00b].

ASM refinements are usually verified using an informal notion of commuting
diagrams to structure correctness proofs. Commuting diagrams are also used
in approaches to the refinement of data structures (such as data refinement
[dRE98]) as well as in simulation approaches for I/O automata [LV95], which
focus on the refinement of control structure. Since refining one ASM by another
may modify the data as well as the control structure, a generic proof technique
for the verification of ASM refinements must necessarily combine the proof tech-
niques used in both domains.

This paper gives a generic approach, that formalizes the idea of correctness
proofs using commuting diagrams. The motivation for this work is a case study
on compiler verification, where commuting diagrams have been regularly used
too (e.g. in the very large case study [Moo88]). Our case study consists in the for-
mal specification and verification of a Prolog compiler ([SA97], [SA98], [Sch99]).
It is based on [BR95], where a Prolog interpreter (specified as an ASM) is trans-
formed in several refinement steps to an interpreter of assembler code of the
Warren Abstract Machine (WAM). Commuting diagrams of various types are
used informally in [BR95] to justify correctness of the refinements: one time, 2
rule applications of the first ASM are refined by 3 applications in the next (2:3
diagram), other refinements use 0:1 as well as 1:0 diagrams, which implies, that
the correspondence between the states of the ASMs can not be functional. The
most complex refinements use m:n diagrams, where m and n depend on the sizes
of the data structures stored in the states of the two ASMs involved.
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Figure 1: Verification of a refinement using commuting diagrams

The theory developed here justifies the use of arbitrary m:n diagrams, and
gives precise verification conditions. It was used successfully in [Sch99] to for-
malize the proofs of 9 refinements. Although first intended specifically for deter-
ministic ASMs, we found it not too difficult to generalize it to indeterministic
transition systems. Transition systems, execution traces, runs and a number of
temporal properties are defined in Sect. 2.

Section 3 gives four definitions of refinement correctness: Preservation of par-
tial and total correctness are already known from compiler verification, and tar-
geted to a pre/postcondition semantics, where only the results of computations
are of interest. Partial and total preservation of traces should be used for re-
active systems which should have comparable intermediate states. A common
requirement for ASMs in this case is that both should modify the value of some
dynamic functions (output functions) in the same way.

Section 4 is the core of our theory: we define a generic proof method for the
verification. The idea is to allow two runs of the involved transition systems to
be split into arbitrary diagrams using a coupling invariant ≈ as shown in Fig. 1.

Verification of refinement correctness is reduced to the verification of a proof
obligation, which expresses the commutativity of a single diagram. We will call
the proof method generalized forward simulation since it generalizes forward
simulations from I/O automata by including data refinement and by allowing
arbitrary diagrams instead of m:1 diagrams. We will show, that with minor
adaptations the proof method implies each of the four correctness notions.

The proof obligation to verify refinement correctness defined in Sect. 4 is very
generic. Section 5 shows how to apply the theory to ASMs by expressing the proof
obligation in Dynamic Logic (DL). Thereby the need to encode the semantics of
ASM rules as an explicit transition relation is avoided. A higher order-variant
of DL is implemented in the interactive specification and verification system
KIV ([RSSB98]), which was used to formally check all the proofs of this paper.
Instantiating the DL theorems, the KIV system can be directly used to specify
and verify ASM refinements. This was done for the 9 refinements which were
verified in the Prolog-WAM case study mentioned earlier. Since examples, which

953Schellhorn G.: Verification of ASM Refinements ...



require m:n diagrams with m,n = 0 or both m,n > 1 are either too complex,
to be presented in this paper or are easily reduced to the standard 1:n (or m:1)
case (see Theorem 12 for an explanation), we refer for numerous examples of
such refinements to [Sch99].

Section 6 compares our work to data refinement, work from compiler verifica-
tion and to the refinement of I/O-automata. In particular we will show, that our
proof technique generalizes forward simulation, and allows in some case to avoid
proofs using backward simulation. Generalized backward simulation is defined,
and some of its properties are sketched. Finally, Sect. 7 concludes and gives some
topics of further research.

2 Transition Systems and Abstract State Machines

In this section we will define a generic framework for the refinement of transition
systems. Although we have refinement of ASMs in mind, we will not be specific
about the set of states nor about the way transitions are specified. Our definition
is simply:

Definition 1. [Transition System]
A transition system M = (S,I,ρ) consists of a set of states, a subset I ⊆ S of
initial states and a transition relation ρ ⊆ S × S

For the usual definition of an ASM as given in [Gur95], which the reader is
assumed to be familiar with, the set of states is some set of algebras over a given
untyped first-order signature, and the transition relation is computed as the set
of updates of the ASM rules. We have refrained from being so specific, since we
want our approach to be applicable for any set of states, e.g.:

– typed ASMs with a many-sorted (or higher-order) signature.
– ASMs with recursive rules, where a rule application may fail to terminate. In
this case we include a “⊥” Algebra in our set of states to express divergence.

– ordinary valuations of (first-order or higher-order) variables.
– state sets of I/O automata (this instance will be discussed in Sect. 6).

We have also not been specific about the transition relation or the syntax of
rules. Here, we just want to fix the following “standard case”, to be used later
in specializations of the main theorem:

Definition 2. [standard ASM]
A standard ASM has the form if ε1 then RULE1

if ε2 then RULE2

. . .
if εn then RULEn

where ε1 . . . εn are disjoint predicates over states, i.e. ¬ (εi ∧ εj) holds for i �= j.
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Typical standard ASMs used in compiler verification (e.g. [BR95] for Prolog
and [SSB01] for Java) specify an interpreter, where the tests εi distinguish be-
tween the instructions of the interpreted language. Often, each RULEi is just a
number of parallel function updates.

To reason over a transition systems M we make use of some typical relational
operators: ρ; ξ is the composition of relations ρ ⊆ S × S′ and ξ ⊆ S′ × S′′. ρ−1

is the inverse relation of ρ. ρn is the n-fold composition of ρ (ρ0 is the identity
relation). ρ∗ is the union of all ρn for n ≥ 0.

Definition 3. [final states, traces, runs and I/O behavior]

– A state s of M is final, if it has no successor state with respect to ρ. The set
of final states is denoted with O (output states). In a standard ASM, the
predicate final(s) is the conjunction of all negated rule tests.

– A trace (or execution) σ : nat→ S of M is a sequence of states, such that for
each i either σ(i) is not final and ρ(σ(i),σ(i+1)) holds, or otherwise σ(i+1)
= σ(i). We write trace(σ) in this case.

– A run of M is a trace σ that starts with an initial state σ(0) ∈ I.
– The partial input/output behaviour PIO(M) ⊆ S × S of M is the set of pairs
(s,s0) of states such that s ∈ I, s0 ∈ O and ρ∗(s,s0).

– The total input/output behavior TIO(M) ⊆ S × (S ∪ {⊥}) extends the
partial one by adding pairs (s,⊥) for those initial states s with an infinite
(i.e. nonterminating) run.

Our formal definition of traces extends a finite trace, which ends in a final
state, to an infinite one by repeating the final state. This uniform treatment
simplifies the axioms and theorems which will be given later on. Nevertheless
we will call a trace finite, when it does repeat a final state. Note that a trace
which becomes constant by repeating a state s with (s,s) ∈ ρ is possible, but
not called finite.

To reason over executions of transition systems we define two temporal op-
erators AF(s,p) (“for all executions starting with s predicate p will eventually
hold”) and EF(s,p) (“for some execution starting from s predicate p will even-
tually hold”):

AF(s,p) :↔ ∀ σ. σ(0) = s ∧ trace(σ) → ∃ n. p(σ(n))
EF(s,p) :↔ ∃ σ. σ(0) = s ∧ trace(σ) ∧ ∃ n. p(σ(n)) (1)

It is easy to verify that these operators could also be defined as fixpoints of the
following recursions (as was done in PVS [RSS95]):

AF(s,p) ↔ p(s) ∨ ¬ final(s) ∧ ∀ s0. ρ(s,s0) → AF(s0,p)
EF(s,p) ↔ p(s) ∨ ¬ final(s) ∧ ∃ s0. ρ(s,s0) ∧ EF(s0,p) (2)
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For finite nondeterminism, i.e. when {s0 : ρ(s,s0)} is finite for all states s, AF(s,p)
and EF(s,p) can also be defined by iteration1:

AF(s,p) ↔ ∃ n. ∀ s0. ρn
p(s,s0) ∧ p(s0)

EF(s,p) ↔ ∃ n. ∃ s0. ρn
p(s,s0) ∧ p(s0) (3)

where ρp := {(s,s0) : if ¬ p(s) ∧ ¬ final(s) then ρ(s,s0) else s = s0}. Finally, we
define abbreviations AF+(s,p) and EF+(s,p) which require p to hold in a state
reachable from s with a positive number of rule applications:

AF+(s,p) :↔ ¬ final(s) ∧ (∀ s0. ρ(s,s0) → AF(s0,p))
EF+(s,p) :↔ ¬ final(s) ∧ (∃ s0. ρ(s,s0) ∧ EF(s0,p)) (4)

3 Refinement of Transition Systems

In this section we will discuss refinement (also called implementation) of a tran-
sition system M = (S,I,ρ) by another M′ = (S′,I′,ρ′). M is often called the
“abstract” system, M′ the “refined” or “concrete” system. We will use primed
versions of all notions defined in the previous sections, when we apply them to
M′, so we will use s′ for a state of M′, O′ for its final states, σ′, final′, AF′, etc.

We will now give four definitions of refinement correctness. The first two
notions do not consider intermediate states of M and M′, but input/output
behavior only. They are typically used in compiler verification, where M is an
interpreter for a source code program and M′ is an interpreter (or a processor)
that executes compiled machine code. Both definitions assume that we have
given two relations ∼I ⊆ I × I′ and ∼O ⊆ O × O′ which determine, when initial
resp. final states are considered to be equivalent. In compiler verification, ∼I

often is defined as a function that maps an initial state of the interpreter M
which stores a program p and its input to an initial state of M′ which stores the
compiled program compile(p). But if we just give some properties of function
compile (“compiler assumptions”) that allow various implementations then ∼I

may also be non-functional. Similarly, the usual requirement for ∼O in compiler
verification is, that M′ stores some representation of the output value computed
by M.

Definition 4. [preservation of partial correctness]
Given two relations ∼I ⊆ I × I′ and ∼O ⊆ O × O′, M′ is a correct refinement
of M that preserves partial correctness (with respect to the two relations) iff for
any finite run σ′ of M′ with final state σ′(n) there exists a run σ of M, such that
σ(0) ∼I σ′(0), and for some m, σ(m) is final with σ(m) ∼O σ′(n).
1 the restriction to finite nondeterminism is necessary only for the AF operator
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M : s0 �� s1 �� s2 M′ : s′0 ��



��
�� s′1 �� s′2

s′3 �� s′4 �� s′5 �� . . .

Figure 2: Refinement that preserves partial, but not total correctness

Informally, the definition says, that terminating runs of M′ can not yield other
results, than could be obtained by running M. Terminating refined runs simulate
terminating abstract runs via the input/output correspondence. Preservation of
partial correctness can also be specified using partial input/output behavior as
PIO(M′) ⊆ ∼I

−1;PIO(M);∼O. To justify the terminology, note that in the case,
where S = S′ and ∼I, ∼O are both the identity relation, a correct refinement
implies that every partial correctness assertion (as definable in Hoare’s calculus
[Hoa69]) that holds for M also holds for M′. Preservation of partial correctness
is a weak form of correctness, since it allows to implement an ASM with one
terminating (i.e. finite) run by one, which always diverges. Nevertheless this
notion has interesting applications in compiler verification (see [GDG+96]).

To rule out the implementation of terminating computations with nonter-
minating ones, a first idea would be to require that not only M′ is a correct
refinement of M, but also that M is a correct refinement of M′ (we say that
the refinement is “complete” in this case). This approach works for determinis-
tic ASMs, but not for nondeterministic ones: Fig. 2 shows an example, where a
deterministic ASM M with exactly one terminating run is refined with a nonde-
terministic M′, that has the same terminating run, but an additional nontermi-
nating one (assuming that the two initial states as well as the two final states
are equivalent).

In the example every terminating run of M′ simulates a terminating run of M
(and vice versa). But still M′ may fail to terminate. Also, completeness prevents
implementation of a nondeterministic ASM with several terminating runs by
a deterministic one which has only one of them, which is often convenient. A
refinement notion, which allows to restrict nondeterminism, but rules out the
situation of Fig. 2 is the following:

Definition 5. [preservation of total correctness]
A refinement from M to M′ preserves total correctness iff it preserves partial
correctness, and if for any infinite run σ′ of M′ there exists an infinite run σ of
M such that σ(0) ∼I σ′(0).

The stronger definition implies, that terminating as well as non-terminating
refined runs simulate an abstract run via the input/output correspondence. The
inclusion TIO(M′) ⊆ ∼I

−1;TIO(M);(∼O ∪ {(⊥,⊥)}) is implied by the preserva-
tion of of total correctness. In the special case, where S = S′ and ∼I, ∼O are
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both the identity relation, this means, that the refinement preserves all total
correctness assertions.

Our third and fourth definition of refinement correctness are targeted to-
wards ASMs, where not only the input/output behaviour matters, but where
the ASMs are required to pass through “similar” states. We will give a very
generic definition using an arbitrary similarity relation ∼. A typical instance of
∼ is, that both ASMs give the same outputs (or additionally, have accepted the
same inputs). We will discuss this instance in detail when we show that I/O
automata refinement is a special case in Sect. 6. The generic definition is:

Definition 6. [partial and total preservation of traces]
Given a relation ∼ ⊆ S × S′ a refinement from M to M′ totally preserves traces
iff it preserves total correctness for ∼I defined to be ∼ ∩ (I × I′) and for ∼O

:= ∼ ∩ (O × O′), and if for any infinite run σ′ of M′ there is an infinite run
σ of M and two strictly monotone sequences i0 < i1 < . . . and j0 < j1 < . . . of
natural numbers, such that for every k σ(ik) ∼ σ′(jk) holds. For a refinement to
partially preserve traces, the refinement must preserve partial correctness and
the sequence i0 ≤ i1 ≤ . . . is only required to be monotone.

As for preservation of total correctness, we require that each refined run sim-
ulates an abstract run via the input/output correspondence. But additionally we
require that an infinite refined run must simulate the corresponding abstract one
by passing through infinitely many corresponding states. Just like preservation
of partial correctness, partial preservation of traces allows to refine a finite run
with an infinite run, while total preservation of traces does not. While we pre-
fer total preservation of traces as the more intuitive notion, it should be noted,
that refinement of I/O automata views termination as an invisible property, and
prefers the weaker notion of partial preservation of traces (see Sect. 6).

In practical applications, we will often have diagrams of minimal size, i.e. the
sequences (i1, i2, . . . ) and (j1, j2, . . . ) will additionally satisfy, that there are no
i and j with ik < i < ik+1 and jk < j < jk+1, such that si ∼ sj holds. We did not
add this minimality requirement to the definition, since it can be easily shown,
that the existence of suitable sequences (i1, i2, . . . ) and (j1, j2, . . . ) implies the
existence of sequences that additionally satisfy the minimality requirement.

4 Generalized Forward Simulation

In this section we consider verification of ASM refinements by using commuting
diagrams. The idea already suggested by Fig. 1 is to split similar computations
into (finitely or infinitely) many subcomputations (of finite length), and to verify
that each pair of subcomputations preserves a coupling invariant ≈, i.e. a formula
that describes some similarity relation. If we want to verify preservation of traces,
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s′ �� s′1 �� . . . �� s′n

Figure 3: m:n diagram

the coupling invariant may be equal to the similarity relation ∼, but often a
generalization is needed.

Our proof method will propagate the invariant forward through traces, so it
is a form of forward simulation (we will consider backward simulation in Sect. 6).
The main problem we have to solve, is that we want to be able to use arbitrary
diagrams to cover two similar runs of both ASMs, not just 1:1 or 1:n diagrams
which are often found in the literature.

Given a similarity relation ≈ between two ASMs M and M′, a first attempt
to define a “most general” commuting diagram is to require that for two similar
states s ≈ s′, not both final, there must be m,n, not both zero, such that M
reaches a state sm with m rule applications (i.e. ρm(s,sm)) and M′ reaches a
similar state in n steps (i.e. ρ′n(s′,s′n) and sm ≈ s′n) as shown in Fig. 3.

To make sure, that every trace of M′ is a refinement of an M trace, we must
require a suitable state sm to exist for every choice of s′n. Unfortunately this
approach is still not general enough: if M′ is nondeterministic, we may have to
choose the size n of the diagram depending on the actual trace that M′ takes. In
the worst case, when M′ simulates one step of M with a randomly chosen number
of steps, there is no fixed upper bound to n. Therefore we allow the number of
rule applications of M′ to depend on the actual trace chosen, and require only,
that M′ eventually reaches a state s′n which is again similar to some state sm of
M. Using the AF and EF operators of Sect. 1 we can express the commutativity
requirement for a diagram as follows:

s ≈ s′ ∧ ¬ (final(s) ∧ final′(s′))
→ EF+(s,λ s0. s0 ≈ s′)

∨ AF′+(s′,λ s′0. EF(s,λ s0. s0 ≈ s′0))
(5)

The first disjunct considers (triangular) m:0 diagrams where after a positive
number of rule applications of M a state s0 with s0 ≈ s′ is reached. The second
disjunct considers m:n diagrams where n > 0: Then s′ is not final and on every
trace of M′ starting from s′ a state s′0 must be reached after some positive number
of rule applications, that allows to complete the diagram with a state s0, that
can be reached by M with some (possibly zero) rule applications.
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Figure 4: infinite chain of m:0 diagrams

Condition (5) is too general to establish refinement correctness: the reason
are m:0 diagrams, that allow to refine an infinite trace of M with a trace of M′

that does no steps at all as shown in Fig. 4. This violates preservation of partial
correctness.

To avoid this situation, we use a wellfounded order <m0 that must decrease
during an m:0 diagram. Dually, to avoid infinite chains of 0:n diagrams, that
would violate preservation of total correctness (but are acceptable, when only
preservation of partial correctness is required), we use an order <0n. In the
Prolog-WAM case study we found, that it is usually easy, to find a suitable or-
dering, when successive 0:n (or m:0) diagrams are possible: either M′ decreases
the size of some data structure stored in its state, or it builds up a data struc-
ture already present in the similar state of M. Then the order is defined as the
difference of these sizes. To be suitable for the latter case we define both orders
to be predicates on two pairs of states: <m0, <0n ⊆ (S × S′) × (S × S′).

With these predicates our generic proof obligation for generalized forward
simulation becomes:

s ≈ s′ ∧ ¬ (final(s) ∧ final′(s′))
→ EF+(s,λ s0. s0 ≈ s′ ∧ (s0,s′) <m0(s,s′) )

∨ AF′+(s′,λ s′0. EF+(s,λ s0. s0 ≈ s′0) ∨ s ≈ s′0 ∧ (s,s′0) <0n(s,s′))
(VC)

The first disjunct requires <m0 to decrease for m:0 diagrams, the second
requires <0n to decrease, if the state s′0 reached by M

′ is immediately equivalent
to the s (i.e. when we have a 0:n diagram). With this generic proof obligation,
we can now prove the main result of this paper:

Theorem 7. [soundness of generalized forward simulation]
A refinement from M to M′ totally preserves traces, if

1. for each initial state s′ ∈ I′ there is s ∈ I with s ≈ s′

2. verification condition (VC) holds
3. the coupling invariant ≈ is stronger than ∼ (i.e. s ≈ s′ → s ∼ s′ holds)

For partial preservation of traces, the condition that <0n decreases for 0:n dia-
grams may be dropped in (VC).

Since preservation of traces is stronger than preservation of correctness the
theorem immediately implies

960 Schellhorn G.: Verification of ASM Refinements ...



Corollary 8. If

1. for each initial state s′ ∈ I′ there is s ∈ I with both s ≈ s′ and s ∼I s′

2. verification condition (VC) holds

3. for final states s and s′, s ≈ s′ implies s ∼O s′

then the refinement preserves partial and total correctness. For preservation of
partial correctness, the condition that <0n decreases for 0:n diagrams may be
dropped in (VC).

The proof of the theorem is based on the idea of composing diagrams. We
will give the main lemmas here, full details are given in the appendix.

The proof starts by showing that the situation of Fig. 4 is now impossible.
Wellfounded induction proves

Lemma9. s ≈ s′ → AF′(s′, λ s′0. EF+(s, λ s0. s0 ≈ s′0) ∨ final′(s′0) ∧ s ≈ s′0)

i.e. that M′ must progress to a state s′0, that either allows to complete a diagram
with a positive number of steps of M, or is final and similar to s.

Similarly, using wellfounded induction on <0n it can be proved that, if no
m:n diagram with n > 0 is possible for s ≈ s′, then, by adding m:0 diagrams, M
will reach a state s0, for which s0 ≈ s′ still holds, but which does not allow to
add any more m:0 diagrams:

Lemma10.

s ≈ s′ ∧ ¬ AF′+(s′,λ s′0. EF(s, λ s0. s0 ≈ s′0))
→ EF(s,λ s0. s0 ≈ s′ ∧ ¬ EF+(s0,λ s1. s1 ≈ s′))

Combining both lemmas, we get that by adding diagrams, both M and M′

will actually make progress in non-final states:

Lemma11.

s ≈ s′ ∧ ¬ final(s) ∧ ¬ final′(s′)
→ AF′+(s′,λ s′0. EF+(s, λ s0. s0 ≈ s′0))

Starting from s ≈ s′ both systems will reach similar states s0 and s′0 with a
positive number of steps. Intuitively, composing diagrams will result in an m:n
diagram with both m,n > 0. If the condition, that <0n decreases is missing in
(VC), (11) can be proved with AF′ replacing AF′+.

To complete the proof we now choose an arbitrary run σ′ of M′. Then the first
precondition of our theorem guarantees that initially s ≈ σ′(0) for some suitable
initial state s of M. Iterated application of Lemma 11 guarantees that we can
construct a trace σ and an infinite, strictly increasing sequence of state pairs on
the traces σ and σ′, which are similar with respect to ≈. Although the proof is
intuitively simple — infinitely many m:n- diagrams with m,n > 0 are composed
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— the technical details are actually quite complicated, since constructing a full
trace σ of M with the required property from finite pieces must use the axiom
of choice. Since adding a m:n diagram with m > 0 (n > 0) is not possible for a
final state — EF+(. . . ) resp. AF′+(. . . ) are false for a final state — the trace
σ′ of M′ is finite iff σ is finite. This implies that the refinement totally preserves
traces with respect to ≈. Since we have required ≈ to imply ∼ this completes
the proof of the main theorem.

The main theorem implies, that our refinement technique results in an in-
variant of M′:

Theorem 12. If the proof obligations of Theorem 7 hold, the formula

INV(s′) :↔ ∃ s. s ∈ I ∧ AF′(s′,λ s′0. EF(s,λ s0. s0 ≈ s′0)) (6)

is an invariant of M′ (i.e. each reachable state s′ of M′ satisfies INV).

Informally, the invariant says that from any reachable state s′ of M′ a state
s′0 can be reached that is similar to some reachable state s0 of M. Intuitively,
Theorem 12 follows from the main theorem just by stepping forward from s′

in the trace of M′ until a state is found, that completes a commuting diagram.
The formal proof uses the same basic lemmas as the one of Theorem 7 in the
appendix. It can be found in [Sch99]. Theorem 12 allows to use invariants in
stepwise refinements: assume we have two refinements from M to M′ and from
M′ to M′′. Then after verification of the first refinement, we can use the invariant
(6) (or any formula implied by it) as an additional precondition in the proof of
the verification condition for the second refinement. In the Prolog-WAM case
study, where 9 successive ASM refinements were verified, typically the size of
the coupling invariant could be halved by using an invariant from the previous
refinement. An immediate corollary of Theorem 12 is the following:

Corollary 13. If ≈ is a coupling invariant, that allows to verify the proof obli-
gations of the main theorem, then relation �, defined as

s � s′ :↔ AF′(s′,λ s′0. EF(s,λ s0. s0 ≈ s′0))

is a coupling invariant too, that allows to verify preservation of traces using m:1
diagrams (m ≥ 0) only.

The corollary shows, that in theory, we can avoid m:n diagrams with n > 1,
but that this restriction may have the price of a more complex coupling invariant,
that must talk about all intermediate states present in the next commuting
diagram (these are the future states about which operators AF′ and EF make
an assertion). Also using � instead of ≈ will result in a correctness proof that
partly reiterates the generic proof of the main theorem. Our experience with the
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refinements of the Prolog-WAM case study shows, that when [BR95] proposed
the use of m:n diagrams with m,n > 1, using m:1 diagrams instead, as was done
in [Pus96], indeed complicates proofs.

5 ASM Refinements and Dynamic Logic

Verification condition (VC) talks (via AF and EF) about the transition relation
ρ. This is inconvenient for the verification of ASM refinement, since it requires to
encode the semantic transition relation of ASM rules explicitly into the syntax of
the logic used for the verification. This is possible, and has been done in Isabelle
[Pus96] and PVS [Dol98] using a tuple of (function) variables to represent a
state (i.e. an algebra). But the encoding can be avoided by using Dynamic Logic
(DL). Either the original definition of DL ([Har79]) can be used (using a data
type of dynamic functions or using higher-order function variables), or variants
of DL that directly deal with function updates (see e.g. [GR95],[Sch95],[SN01]).

DL extends predicate logic (first-order or higher-order does not matter) with
two operators [α]φ (read: “box α φ”) and 〈α〉φ (read: “diamond α φ”) where α

may be an imperative program or an ASM rule and φmay be a DL formula again.
The informal meaning of the two formulas is “for all terminating executions
of α the final state satisfies φ” and “α has a terminating execution such that
φ holds afterwards”. We will use an extended version, which also defines an
operator 〈|α|〉φ (read: “strong diamond α φ”) that formalizes “all executions of
α terminate in a state satisfying φ”. This operator is not present in ordinary
DL (but defined in the KIV system), since it requires to define the relational
semantics of α with an explicit “bottom-state” ⊥ to express non-termination.
For imperative programs such a semantics is defined e.g. in [dRE98], ASM rules
which may diverge (e.g. recursive rules as in [GS97], [BS00a] or [SN01]) can be
given a similar semantics. For a first-order formula φ, 〈|α|〉φ and [α]φ) are just
another way to denote the weakest resp. weakest liberal precondition of α with
respect to φ.

In the following we will consider (ordinary) ASM rules first, which always
terminate. In this case the AF and EF operator are equivalent to the termination
of a while-loop which checks after each rule application, whether p is true:

EF(s,p) ↔ 〈while ¬ p(s) ∧ ¬ final(s) do RULE〉p(s)
AF(s,p) ↔ 〈|while ¬ p(s) ∧ ¬ final(s) do RULE|〉p(s)

Note that while the abbreviation EF(s,p) mentions the full state s, there is no
need for the DL formula to do so: predicates p and final as well as the ASM rule
RULE can just access the relevant dynamic functions of the algebra s.

An important special case is finite nondetermism. Distributed ASMs as de-
fined in [Gur95] ony have finite nondeterminism, since the agent to apply a rule
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is always chosen from a finite set of active ones. In this case, EF and AF become
repeated rule application:

EF(s,p) ↔ ∃ n. 〈(if ¬ p(s) then RULE)n〉p(s)
AF(s,p) ↔ ∃ n. [(if ¬ p(s) then RULE)n]p(s)

(7)

To avoid an additional check, we have assumed that calling RULE in a final
state does nothing. The strong diamond operator is no longer needed, since
termination of the whole loop is no longer an issue. Iteration of rules becomes a
kind of “for” loop. Such loops are already used in DL to axiomatize while loops.
If the ASM is deterministic, or if the number of steps necessary to complete a
commuting diagram is independent of the trace chosen, the check for “¬ p(s)”
in (7) may be dropped.

In practical applications, verification of (VC) will usually split into several
cases, one for each type of diagram. In this case the coupling invariant ≈ is
equivalent to a disjunction. Each disjunct ≈k describes one situation, where it is
possible to add a specific next diagram. For two standard ASMs, a typical situ-
ation has the form ≈ ∧ εi ∧ ε′j (k ranges over all possible pairs i,j) which means
that it fixes RULEi and RULE′

j as the first rules of the commuting diagram.
If the diagram for case k (i.e. s ≈k s′ holds for states s,s′, not both final) has

a fixed size of mk rule applications of M and nk rule applications of M′, then the
quantifiers in (7) can be instantiated and it is sufficient to prove one the three
conditions:

[RULE’]. . . [RULE’]
︸ ︷︷ ︸

nk times

〈RULE〉. . . 〈RULE〉
︸ ︷︷ ︸

mk times

s ≈ s′

s′ = s′0 → [RULE’]. . . [RULE’]
︸ ︷︷ ︸

nk times

(s ≈ s′ ∧ (s,s′) <0n (s,s′0))

s = s0 → 〈RULE〉. . . 〈RULE〉
︸ ︷︷ ︸

mk times

(s ≈ s′ ∧ (s,s′) <m0 (s0,s′))

(8)

Proof obligations become more complex, if we consider ASM rules which may fail
to terminate, since equivalence (7) does no longer hold, and strong diamonds can
no longer be replaced with boxes. To deal with this case, we have to use a state
space, which includes a ⊥ element for nontermination. The transition relation ρ

and (VC) then explicitly mention nontermination, e.g. ρ(s,⊥) will hold for states
s, where the system may diverge. To use Dynamic Logic in this case we have to
transform formula (VC) equivalently into a formula, which talks about nonter-
mination only implicitly via the diamond-operator. For deterministic ASMs the
resulting condition is
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s ≈ s′ ∧ s = s0 ∧ s′ = s′0 ∧ ¬ (final(s) ∧ final′(s′))
→ ∃ m, n. 〈(RULE)m〉〈(RULE′)n〉s ≈ s′

∨ ∃ m. 〈(RULE′)n〉(s ≈ s′ ∧ (s0,s′) <m0 (s,s′))
∨ ∃ n. 〈(RULE)n〉(s ≈ s′ ∧ (s,s′0) <0n (s,s′))
∨ ∃ m, n. 〈(RULE)m〉diverges(s) ∧ 〈(RULE′)n〉diverges(s′)

(9)

The states s,s′ etc. mentioned in (9) can not be ⊥, divergence of rules is en-
coded only in the abbreviation diverges(s), which expands to “¬ 〈RULE〉true”.
Compared to always terminating rules we now have an extra case: alternatively
to showing that an m:n diagram follows (with the appropriate checks for m,n =
0), both ASMs may diverge. Note that the condition for the deterministic case is
fully symmetric in ASM and ASM′, corresponding to the fact, that preservation
of total correctness and total preservation of traces are symmetric too in this
case: a correct refinement of deterministic ASMs is always complete.

The most problematic case are rules which may nondeterministically diverge.
If the application of such a rule is allowed only as the first rule of a diagram we
proved that the condition

s ≈ s′ ∧ ¬ (final(s) ∧ final′(s′))
→ EF+(s,λ s0. s0 ≈ s′ ∧ (s0,s′) <m0 (s,s′)))

∨ ¬ final′(s′)
∧ (maydiv(s′) → EF(s,λ s0. ¬ final′(s0) ∧ maydiv(s0)))
∧ [RULE′(s′)]

AF(s′, λ s′1. EF+(s,λ s0. s0 ≈ s′1)
∨ inv(s,s′1) ∧ (s,s′1) <0n (s,s′0)
∨ diverges(s′1) ∧ ¬ final′(s′1)
∧ EF(s,λ s0. ¬ final(s0) ∧ maydiv(s0)))

(10)

is equivalent to the original condition (VC). The proof obligation now uses (7)
to define AF and EF as abbreviations. maydiv(s) abbreviates the potential for
divergence, formalized as “¬ 〈|RULE|〉true”. The second disjunct, which considers
m:n diagrams with n > 0 (so s′ is not final) now handles diverging rules: If the
first rule application of M′ may diverge, then M must be able to reach a nonfinal
state s0, where it may diverge too. If the first rule application of M′ terminates,
it must be possible to reach a state s′1 which satisfies one of the following two
conditions: either s′1 allows to complete an m:n diagram (with <0n decreasing,
when m = 0) or the next rule of M′ applied on s′1 surely diverges, and M has a
nonterminating trace from s.

Note that condition (10) is needed only for those cases, where the diagram
under consideration executes nondeterministic, potentially diverging rules. If no
such rules are involved, the condition simplifies back to the simpler conditions
mentioned before.
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6 Related Work

6.1 Data Refinement

Data refinement considers refinement of a set of (abstract) operations by another
set of (concrete) operations. A refinement is correct, if for every program it
is possible to replace the abstract operations with the concrete ones, without
changing its “meaning”. The meaning of a program is usually described using
initialization and finalization operations, or using equivalence relations ∼I and
∼O as we have done. Correctness is proved by defining an equivalence relation
≈ (often a functional relation, called an “abstraction function” is used) and
verification of a 1:1 diagram for each pair of corresponding operations. The actual
commutativity proofs may either show, that if ≈ holds before the operations,
then it will hold afterwards (forward simulation) or they may show, that if ≈
holds after the operations, then it will hold before them (backward simulation).
A good introduction to data refinement is [dRE98], which also discusses the
instances used in the specification languages VDM [Jon90] and Z [Spi88].

It is possible to view ASM refinement as an instance of data refinement,
using the two ASMs as monolithic operations. In this case, our definitions of
preservation of partial and total correctness coincide with the ones in [dRE98].

On the other hand, it is more interesting to view data refinement as a special
case of ASM refinement. This is possible when operations have a relational se-
mantics and are therefore expressible as ASM rules (we do not consider predicate
transformer semantics, as defined e.g. in [GM91]).

To simulate the behaviour of every possible program over a data type D, we
define an abstract state machine ASM(D), which randomly executes in each state
one of the available operations or terminates. Given two data types D and D′, the
proof obligations for data refinement then coincide with the special case of 1:1
diagrams for ASM(D) and ASM(D′). Therefore data refinement preserves total
resp. partial correctness if forward resp. backward simulation can be shown. Data
refinement is more restrictive than ASM refinement: Since a concrete run should
simulate an abstract run which calls the same operations, it must also preserve
the 1:1 correspondence between operations. ASM refinement does not have such
a requirement, although for standard ASMs some correspondence according to
the form of the diagrams used often can be found.

Recently, a number of definitions of data refinement have been given, that
weaken the 1:1 conditions for rule correspondence. An extensive overview is
given in [DB01], which also discusses applications to Z and Object-Z specifi-
cations: “Non-atomic refinement” allows to refine one abstract operation by a
fixed sequence of n > 0 concrete operations and requires verification of an 1:n
diagram. “Alphabet translation” allows to implement different cases of one ab-
stract operation by different concrete operations. Other generalizations classify
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operations as external and internal operations, and require a 1:1 correspondence
for external operations only. Programs are constrained to execute a finite num-
ber of internal operations (assumed to be invisible) between any two external
ones. This constraint is assumed for the abstract data type and must be enforced
for the concrete one using a well-founded order, that decreases for internal op-
erations. Two approaches for verification are defined: the first uses “stuttering
steps” and proves in addition to the commutation of 1:1 diagrams for external
operations that 1:0 and 0:1 diagrams commute for internal operations. The sec-
ond, more liberal approach, called “weak refinement”, requires to verify all m:n
diagrams, where each data type executes one external operation in between two
arbitrary sequences of internal operations.

For each of these generalizations we have shown, that the verification condi-
tions are instances of our generic verification condition (VC): Alphabet transla-
tion and stuttering steps are already accommodated by our theory. Non-atomic
refinement requires to group the implementing sequence of concrete operations
into one ASM rule. Weak refinement requires a small modification to Theorem
7: The first condition has to be weakened to

s ∈ I ∧ s′ ∈ I′ → AF′(s′, λ s′0. EF(s, λ s0. s0 ≈ s′0)) (11)

This allows the first commuting diagram not to start in two initial states, but
only after some steps (which are internal steps in the case of weak refinement).

6.2 Refinement of I/O Automata

Even more similar to ASM refinement than data refinement is the refinement of
I/O automata [LT89],[LV95]. I/O automata are state transition systems similar
to ASMs, but their state transitions are labelled with actions. Formally an I/O
automaton modifies Definition 1 by requiring: ρ ⊆ S × A × S, where A is a
set of actions. Actions are classified as input and output actions. Input actions
should be possible in any state, since they are assumed to be under the control
of the environment. The set of actions always contains an “empty” (also called
“stuttering” or “internal”) action τ , which signifies no in- or output. Runs of
an automaton consist of finite or infinite sequences (s0, a0, s1, a1, s2, . . . ), such
that s0 ∈ I and (si, ai, si+1) ∈ ρ for every i. A trace of an automaton extracts
the nonempty actions from a run: (a0, a1, a2, . . . ) \ τ . Refinement is defined as
the inclusion relation between the sets of traces of two automata.

The refinement notion between I/O automata can be viewed as an instance
of our preservation of traces as follows: define the state of the transition system
to be a pair of an automaton state and a list al of actions done so far (i.e. we
record the actions in a history variable). The ASM starts with an empty action
list, and has a transition from (s,al) to (s0,a:al), when the automaton had one

967Schellhorn G.: Verification of ASM Refinements ...



s1a �� s2a s′2a
ASM : s0

��





������� ASM′ : s′0 �� s′1

�������
��






s1b �� s2b s′2b

Figure 5: refinement that can be verified with generalized forward simulation,
but not with forward simulation

from s to s0 labelled with the nonempty action a. For the empty action τ , the
action list remains unchanged. We have proved that refinement of I/O automata
(≤T in [LV95]) corresponds to the partial preservation of traces, with a similarity
relation that requires equality of action lists. Refinement of I/O automata allows
the refinement of a finite run with an infinite run, when both runs have no
output (i.e. only τ actions), so it does not preserve total correctness. Note, that
preservation of partial correctness (with∼O defined again to be equality of action
lists), corresponds to the subset relation on finite traces (≤∗T in [LV95]).

Actions of I/O automata correspond closely to the modification of input and
output functions in ASMs. To prove, that two ASMs modify an output function
in the same way also requires a history variable, which records the modifications
of the output function, before commuting diagrams can be verified using (VC).

A forward simulation on I/O automata is defined as a relation ≈, that al-
lows to verify m:1 diagrams. If the action of the concrete automaton M′ is the
nonempty action a, then exactly one of the m > 0 actions of the abstract au-
tomaton M must be nonempty and equal to a. Otherwise, m may be zero and
all actions of M must be empty.

Our proof technique for ASM refinement generalizes forward simulation of
I/O automata refinement in two ways:

1. It allows to verify m:n diagrams, which execute more than one nonempty
action. As a consequence, backward simulation can be avoided in many cases: the
standard example of Fig. 5, which can not be verified using forward simulation
only (assuming s0 ∼I s′0, s2a ∼O s′2a and s2b ∼O s′2b) can be verified using a
2:2 diagram and generalized forward simulation. Many other examples (e.g. the
ones in [DB01]) are similar. Nevertheless, there are still examples which require
backward simulation: one is given in Fig. 6, assuming s1a ∼I s′1, s1b ∼I s′1, s2 ∼O

s′2a and s2b ∼O s′2b. Whether such examples are relevant in practice is a topic
for further research.

2. Preservation of traces may be used to verify refinements which implement
the actions themselves: If the abstract level gives each output as a 16-bit word,
but the concrete level does two actions, each giving one byte, this is easy to
accommodate in our framework (just use a slightly modified similarity relation),
while it is not possible in a framework, where the abstract and concrete level are
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s1a �� s2a s′2a
ASM : ASM′ : s′1

�������
��






s1b �� s2b s′2b

Figure 6: refinement that cannot be verified with generalized forward simula-
tion, but with backward simulation

s0,0

s1,0 �� s1,1

ASM : s2,0
...

�� s2,1
...

�� s2,2
. . .

ASM′ : s′0 �� s′1 �� s′2 �� . . .

Figure 7: refinement, which only preserves partial correctness

required to have the same set of actions.
Note that our generalization of forward simulation is nontrivial, since the

reduction to m:1 diagrams given in Corollary 13 uses a relation �, which may
hold between states which have done different actions, so � is not a forward
simulation in this case.

Our refinement notion also generalizes the approach of normed simulations
[GV98] for I/O automata, which uses 0:1, 1:1, and 1:0 diagrams. The “norm”
is equivalent to our wellfounded order <m0. As an interesting aside, [GV98]
wants diagrams to be as small as possible to enable the use of automatic model
checkers (which cannot compute the m and n of arbitrary diagrams), while we
found, that interactive proofs usually become simpler when diagrams are chosen
to be as large as possible.

6.3 (Generalized) Backward Simulation

Just like data refinement, simulation theory for I/O automata considers in ad-
dition to forward simulations also backward simulations, which propagate the
coupling invariant backward through traces. Backward simulation without re-
strictions only preserves partial correctness. Fig. 7 shows, that nothing more
can be achieved in general, since ≈ := {(si,j,s′j) : j ≥ i} is a backward simulation
(assuming, that each transition has the same, nonempty action).

Under the restriction that the relation≈ is total and image-finite, i.e. that the
set {s: s ≈ s′} is nonempty and finite for each state s′ of M′ (the finitary relations
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in [dRE98] capture the same requirement), backward simulation implies partial
preservation of traces for I/O automata and preservation of total correctness for
data refinement. Backward simulation is mainly of theoretical interest: combined
with forward simulation completeness results can be proved.

Some of these results are also applicable in our setting: generalized backward
simulation can be defined, simply by reverting the direction of the transition
relation, exchanging the role of initial and final states and using dual past tense
operators instead of AF and EF. We have defined this dualization schematically
in KIV. We found, that some care has to be taken, when final and initial states
are exchanged: since we have defined final states to have no successor states, we
must now require that initial states have no predecessor states. This is not always
true, but it is simple, to modify an ASM such that this condition is satisfied.
Then using the dualized theorems of generalized forward simulation, the proof
that generalized backward simulation implies preservation of partial correctness
is simple. Unfortunately, the condition of image-finiteness is not sufficient for
generalized backward simulation to imply the three stronger notions of refine-
ment correctness: again, Fig. 7 provides an example using ≈ := {(si,0,s′0) : i ≥ 0}
∪ {(sj,j,s′j) : j > 0}. A sufficient additional requirement seems to be the existence
of a uniform upper bound to the size n of m:n diagrams, but an exact criterion
and a formal proof are yet to be done.

Whether there are cases which satisfy these additional restrictions also re-
mains an open question. Compiler verification does not seem to be a suitable
candidate: Fig. 7 suggests, that image-finiteness of ∼I is a necessary criterion
for (generalized) backward simulation to imply preservation of total correctness,
but typically infinitely many programs will be compiled to the same target code.

6.4 Compiler verification

For general work on compiler verification and on verification of Prolog compilers,
we like to refer to [Sch99], since this could easily fill several more pages. 1:n
diagrams with n > 0 often occur in compiler verification, when one source code
instruction is replaced with several target instructions. They are discussed in
many variants, e.g. in [BHMY89] and in [Cyr93]. The second paper also describes
a proof technique called “slowing down the specification machine”, which splits
1:n diagrams in one 1:1 diagram and n−1 0:1 diagrams. While the “termination
condition” is equivalent to decreasing the <0n predicate, the approach requires
to add explicit time to the ASMs.

m:n diagrams with positive m,n were already sketched for a special case of
coupling invariants in [McG72]. A formal treatment of this case for deterministic
ASMs and an abstraction function in PVS is described in [Dol98].

The refinement theory described in this paper generalizes the theory devel-
oped in [Sch99] to rules, which may diverge and simplifies some of the nota-
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tion. For the verification condition, it avoids the use of a function, that predicts
whether a 0:m, a m:0 or a m:n diagram will follow.

[Sch99] describes formal application of the theory to 9 refinements specifying
a Prolog compiler. Two refinements involve diagrams with a size that depends
on the size of datastructures stored in the state (here: the number of Prolog
clauses reachable in a code fragment). Two other examples of ASM refinements
which make informal use of our theory are [BS00b] and [SSB01]. Both address
correct compilation of Java to the JVM. [BS00b] uses an m:n diagram for the
case, when an exception is thrown. The size m of the diagram is (roughly) the
number of Java statements, that must be jumped over, until the next exception
handler is found. Properties of the final states of the diagram are established
using an auxiliary lemma, which is typical for proofs using m:n diagrams where
m and n are dependent on data structures ([Sch99] also uses such lemmas).

[SSB01] gives another refinement proof for a revised version of the Java ASM.
Each case of the proof corresponds to the verification of one 1:n diagram with n
= 0,1,2 or 3. The size n of the diagrams is computed as n := σ(m+1) − σ(m),
where σ(m) counts the number of steps of the JVM, that are necessary to reach
a state equivalent to the mth state of the Java ASM. The cases of 1:0 diagrams
correspond to navigation steps which are present in the Java ASM, but avoided
in the JVM: either the Java ASM propagates a result (or an exception) upwards
or the Java ASM descends into an expression. Infinite repetition of such steps
(i.e. of 0:1 diagrams) is impossible, because both kinds of steps reduce the (finite)
size of the remaining program to be executed.

7 Conclusion

We have defined a generic framework to verify the refinement of ASMs. Four
notions of refinement were defined, and a generic proof technique given, that
reduces the correctness proof to the verification of m:n diagrams with m, n ≥
0. Our proof technique combines and generalizes proof techniques in use in the
areas of data refinement, I/O automata refinement, and in compiler verification.

The proof technique has been successfully used in [Sch99], a large case study
on compiler verification. Verification of some of the refinements would not have
been practically possible without the theory we have developed. Using 0:n, m:0,
and m:n diagrams with m,n > 1 (instead of using 1:n or m:1 diagrams only)
simplified many proofs considerably.

Currently, we have used generalized forward simulation mainly in applica-
tions, which use deterministic ASMs. An interesting topic for further research is
to apply the theory to case studies which involve nondeterministic ASMs. These
pose new questions, such as how to add fairness (and other) constraints to the
choices made by the systems. Since such constraints are not directly expressible
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in Dynamic Logic, we will have to decide between two approaches: Either we can
encode the indeterministic choices of ASMs as input streams, i.e. use a static
function f, such that f(n) gives the nth choice, and place explicit constraints on
f. This construction is also known as “adding prophecy variables” and strongly
related to the “construction of the canonical automaton” (see [LV95]). It is pro-
posed in [SN01] for ASMs and allows to stay within Dynamic Logic. With this
approach implicit quantification over all runs of an ASM becomes explicit quan-
tification over all possible input streams present in the initial state. Alternatively,
we can use temporal logic, e.g. extend the operators AF, EF to a full temporal
logic similar to CTL. Refinement of TLA specifications [AL91] is related work
that should be considered then.

Acknowledgements

I would like to thank Prof. Börger and 3 anonymous referees for pointing out
several errors and for making many helpful suggestions on drafts of this paper.

References

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. The-
oretical Computer Science, 2:253–284, May 1991. Also appeared as SRC
Research Report 29.

[BHMY89] W. R. Bevier, W. A. Jr. Hunt, J S. Moore, and W. D. Young. An approach
to systems verification. Journal of Automated Reasoning, 5(4):411–428,
December 1989.

[BM96] E. Börger and S. Mazzanti. A Practical Method for Rigorously Control-
lable Hardware Design. In J.P. Bowen, M.B. Hinchey, and D. Till, editors,
ZUM’97: The Z Formal Specification Notation, volume 1212 of LNCS, pages
151–187. Springer, 1996.

[BR95] E. Börger and D. Rosenzweig. The WAM—definition and compiler correct-
ness. In Christoph Beierle and Lutz Plümer, editors, Logic Programming:
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A Appendix: Proof of the Main Theorem

This appendix gives the formal proof for Theorem 7 of Sect. 4, which consists
of five steps described in the following subsections. The first three steps prove
lemmas 9, 10 and 11. The fourth step defines an auxiliary lemma that makes
the axiom of choice applicable, and the final step proves the main theorem. All
proofs use recursions (2) to unfold the definitions of EF and AF, (4) to eliminate
AF′+ and EF+ in favor of AF′ and EF, and the basic lemmas

EF(s,p) ↔ EF(s,λ s1. s1 = s0) ∧ p(s0) (12)

(∀ s0. EF(s,λ s1. s1 = s0) ∧ p0(s0) → EF(s0,p1))
→ (EF(s,p0) → EF(s,p1))

(EF-step)

(∀ s0. EF(s,λ s1. s1 = s0) ∧ p0(s0) → AF(s0,p1))
→ (AF(s,p0) → AF(s,p1))

(AF-step)

The definitions (1) of AF and EF are not used in the first three steps, except
in the simple proofs of the three lemmas above. Lemma (12) says, that if a
state is reachable from s, where p holds, we can give it a name s0. Lemma (EF-
step) says, that if we have to prove the implication “EF(s,p0)→ EF(s,p1)” then
assuming the state s0 where p0 holds, is not reached later than the one, in which
p1 holds, it is sufficient to show “EF(s,λ s1. s1 = s0) ∧ p0(s0) → EF(s0,p1)”.
The first precondition (“s0 reachable from s”) is usually dropped. This means,
that by applying the lemma to reduce a goal we ,,step forward” from state s
to state s0 in the trace. Stepping from s to s0 also works for AF instead of EF
(now assuming, that all states, where p0 holds are before those, where p1 holds).
Since we use AF′ and EF to express commutativity of diagrams, application of
(EF-step) for M and (AF-step) for M′ will step forward in the traces and thereby
reduce the size of the diagrams. Special cases of (EF-step) and (AF-step), which
will often use are
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(∀ s0. EF(s,λ s1. s1 = s0) ∧ p0(s0) → p1(s0))
→ (EF(s,p0) → EF(s,p1))

(EF-imp)

(∀ s0. EF(s,λ s1. s1 = s0) ∧ p0(s0) → p1(s0))
→ (AF(s,p0) → AF(s,p1))

(AF-imp)

i.e. we have s0 = s1 and p0 must immediately imply p1.

A.1 Proof of Lemma 9

The lemma is proved by induction over (s,s′), using <0n as the wellfounded order.
Application of (VC) reduces the goal to three subgoals. The first subgoal deals
with the case, where the precondition of (VC) does not hold, i.e. when we have
two final states s and s′. The second and third case deal with the two disjuncts
of the conclusion of (VC). The first two cases are trivially proven by unfolding
the definition of AF′ with (2). In the third case, after eliminating AF′+ with (4)
we have to show

s ≈ s′ ∧ ¬ final′(s′) ∧ Ind-Hyp
∧ ∀ s′0. ρ′(s′, s′0) → AF′(s′0, λ s′1. s ≈ s′1 ∧ (s, s′1) <0n (s, s′)

∨ EF+(s,λ s0. s0 ≈ s′0))
→ AF′(s′, λ s′0. s ≈ s′0 ∧ final′(s′0) ∨ EF+(s, λ s0. inv(s0, s′0)))

where Ind-Hyp is the induction hypothesis. By unfolding AF′ in the conclu-
sion we get a state s′0 with ρ′(s′, s′0). This state can be used to instantiate the
quantifier in the precondition to give

s ≈ s′ ∧ ¬ final′(s′) ∧ ρ′(s′, s′0) ∧ Ind-Hyp
∧ AF′(s′0, λ s′1. s ≈ s′1 ∧ (s, s′1) <0n (s, s′)

∨ EF+(s,λ s0. s0 ≈ s′1))
→ AF′(s′0, λ s′1. s ≈ s′1 ∧ final(s′1) ∨ EF+(s, λ s0. inv(s0, s′1)))

Now we apply Lemma (AF-step) on the the two AF-formulae, stepping from
s′0 to the state s

′
1 at the end of the 0:n-diagram. After removing now irrelevant

formulae the remaining goal is:

Ind-Hyp ∧ (EF+(s, λ s0. s0 ≈ s′1) ∨ s ≈ s′1 ∧ (s, s′1) <0n (s, s′))
→ AF′(s′1, λ s′2. s ≈ s′2 ∧ final(s′2) ∨ EF+(s, λ s0. s0 ≈ s′2)),

The disjunct in the precondition gives two cases to prove. The first is proved
by unfolding AF, the second directly follows from the induction hypothesis.
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A.2 Proof of Lemma 10

This lemma is also proved by wellfounded induction using <m0. Applying (VC)
results in three cases as before. The case of final states is trivial again. The third
case is simple too, although technically more involved, since we have to unfold
AF′+ and EF+ before (AF-imp) and (EF-imp) are applicable. In the second
case, after unfolding EF+

s ≈ s′ ∧ ρ(s, s0) ∧ ¬ final(s) ∧ Ind-Hyp
∧ EF(s0, λ s2. s2 ≈ s′ ∧ (s2, s′) <m0 (s, s′))
∧ ¬ AF′+(s′, λ s′0. EF(s, λ s0. s0 ≈ s′0))

→ EF(s, λ s0. s0 ≈ s′ ∧ ¬ EF+(s0, λ s1. s1 ≈ s′))

has to be shown. The proof proceeds by unfolding EF in the conclusion and
by instantiating the resulting quantifier with s0. Using lemma (EF-step) to step
from s0 to s2 (exceptionally keeping the reachability precondition) leads to

s ≈ s′ ∧ ρ(s, s0) ∧ ¬ final(s) ∧ Ind-Hyp
∧ EF(s0, λ s1. s1 = s2) ∧ s2 ≈ s′ ∧ (s2, s′) <m0 (s, s′)
∧ ¬ AF′+(s′, λ s′0. EF(s, λ s0. s0 ≈ s′0))

→ EF(s2, λ s0. s0 ≈ s′ ∧ ¬ EF+(s0, λ s1. s1 ≈ s′))

Since (s2, s′) <m0 (s, s′) we can now apply the induction hypothesis. Its con-
clusion (i.e. the postcondition of Lemma 10 with s2 instead of s) is equal to the
conclusion of our goal, so we just have to establish the precondition:

s ≈ s′ ∧ ρ(s, s0) ∧ ¬ final(s) ∧ EF(s0, λ s1. s1 = s2) ∧ s2 ≈ s′

∧ (s2, s′) <m0 (s, s′) ∧ ¬ AF′+(s′, λ s′0. EF(s, λ s0. s0 ≈ s′0))
→ ¬ AF′+(s′, λ s′0. EF(s2, λ s0. s0 ≈ s′0))

By expanding both AF′+-formulas with the same state s′0, such that ρ′(s′,s′0)
holds, using contraposition and finally applying (AF-imp) to cancel the AF-
operators it remains to prove

s ≈ s′ ∧ ρ(s, s0) ∧ ¬ final(s) ∧ ρ′(s′,s′0) ∧ EF(s0, λ s1. s1 = s2)
∧ s2 ≈ s′ ∧ (s2, s′) <m0 (s, s′) ∧ EF(s2, λ s0. s0 ≈ s′1)

→ EF(s, λ s0. s0 ≈ s′1)

This is done by unfolding EF in the conclusion, using s0 to instantiate the
resulting quantifier. Finally, (AF-step) steps from s0 to s2 and closes the goal.

A.3 Proof of Lemma 11

We start with the proof of the weaker lemma

s ≈ s′ ∧ ¬final(s) ∧ ¬final′(s′) → AF′+(s′,λ s′0. EF(s, λ s0. s0≈ s′0)) (13)

976 Schellhorn G.: Verification of ASM Refinements ...



which is need for partial preservation of traces. Its proof starts by applying
Lemma 10, adding a precondition, which is by (12) equivalent to

EF(s,λ s1. s1 = s0) ∧ s0 ≈ s′ ∧ ¬ EF+(s0,λ s1. s1 ≈ s′)

In this way, we introduce a state s0, where no more m:0-diagram can be added.
Applying (VC) to s0 and s′, we add

AF′+(s′,λ s′0. EF+(s0,λ s1. s1 ≈ s′0) ∨ s0 ≈ s′0 ∧ (s0,s′0) <0n(s0,s′))

i.e. that the following diagram is an m:n-diagram with n > 0 as a precondition.
Eliminating both AF′+ with the same successor state, we can use (AF-imp) to
cancel the two resulting AF-Operators away. Expanding EF+ we get

s0 ≈ s′ ∧ EF(s, λ s1. s1 = s0)
∧ (ρ(s0,s1) ∧ EF(s1,λ s2. s2 ≈ s′0) ∨ s0 ≈ s′0 ∧ (s0,s′0) <0n(s0,s′))

→ EF(s, λ s0. s0 ≈ s′0)

The proof can now be completed by using (EF-step) to step from s to s0 and
unfolding the resulting EF(s0,. . . )-formula.

To prove Lemma 11, we apply (13), eliminate both AF′+ using the same
successor state, and use (AF-step) to step from this successor state to s′0. This
leaves the subgoal

EF(s, λ s0. s0 ≈ s′0) → AF′(s′0,λ s
′
1. EF+(s, λ s0. s0 ≈ s′1))

Unfolding EF gives the trivial case, where at least one step is taken to reach a
state s0 with s0 ≈ s′0 (intuitively this is the case where the m:n diagram under
consideration already has m > 0) and the case where we have s ≈ s′0 immediately.
In this case we apply Lemma 9 with s and s′0 to add the maximal number of
0:n-diagrams. This adds the precondition

AF′(s′0, λ s′1. EF+(s, λ s0. s0 ≈ s′1) ∨ final′(s′1) ∧ s ≈ s′1)

to our previous goal. Using (AF-imp) to cancel the two AF-operators, we step
to the state s′1 at the end of the 0:n-diagrams. We get two cases: The first, where
EF+(. . . ) holds is trivial already, the other is

final′(s′1) ∧ s ≈ s′1 → AF′(s′1,λ s
′
2. EF+(s, λ s0. s0 ≈ s′2))

which is an instance of (VC).

A.4 Formalizing the Addition of a Commuting Diagram

Lemma 11 shows, that given two non-final similar states s ≈ s′, and a trace σ′

starting with s′, we can find a trace σ starting with s and two states s0, s′0 on the
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two traces, which are both reached with a positive numbers of steps and which
are similar again. With other words, we can add an m:n-diagram with m,n > 0.
Now intuitively, given a trace σ′ and a state s ≈ σ′(0), adding diagrams can be
repeated infinitely to give the trace σ and the sequences of natural numbers (i0,
i1, . . . ) and (j0, j1, . . . ) as required by Theorem 7. Unfortunately, the concept
of “repeating a construction infinitely” is somewhat hard to formalize. In the
following two sections we will give the idea of the formalization and the main
lemmas needed. Once the lemmas “fit together”, their proofs are simple, so we
will skip them (although they are often rather lengthy).

The idea of the formalization is to define a function Σ: T→ T over a suitable
set T, which encodes the “construction”. Finite repetition then means iterated
application of the function. Infinite repetition will require a diagonalization ar-
gument. We will consider repetition in the following section, when we prove
Theorem 7. In this section we will only prove the existence of a “construction”,
which adds another m:n-diagram with m,n > 0. The existence proof defines a
lemma that is an instance of the precondition of the axiom of choice (φ is a
formula with free variables x,y ∈ T):

(∀ x. ∃ y. φ(x,y)) → (∃ Σ. ∀ x. φ(x,Σ(x)))

Applying the axiom of choice on the lemma allows to deduce the existence of
a choice function Σ, which encodes adding a diagram. To define the lemma, we
define the type T to be the triples consisting of a function σ: Nat→ S (intended
to be a trace of M) and two natural numbers i and j. The idea is: if σ(i) ≈ σ′(j)
holds, then applying Σ will add another diagram, i.e. it will construct σ0, i0, j0,
such that i0 > i, j0 > j, and σ0(i0) ≈ σ′(j0). The construction also must preserve
all commuting diagrams earlier on the trace, i.e. it is necessary to guarantee
σ(m) = σ0(m) for all positions m ≤ i. Formally we define the lemma:

∀ σ,i,j. ∃ σ0,i0,j0. trace′(σ′) ∧ trace(σ) ∧ σ(i) ≈ σ′(j)
→ trace(σ0) ∧ i< i0 ∧ j< j0 ∧ σ0(i0)≈σ′(j0)

∧ ∀ m. m ≤ i → σ(m) = σ0(m)
(14)

Its proof has four cases: If both σ(i) and σ′(j) are final, then we can choose
(σ0,i0,j0) := (σ,i +1,j +1), since final states are repeated. If only one of σ′(j) and
σ(i) is final we can apply (VC), which will add a m:0 or 0:n-diagram respectively.
(i0, j0) are set to be (i + m,j +1) and (i +1,j + n) in these two cases. σ0 can
be set to be σ for a 0:n-diagram. Otherwise a new trace must be constructed
combining the first i steps of σ and the trace σ1 starting with the m steps of the
m:0 diagram. σ1 is the result of expanding EF with its definition (1). Finally, we
use Lemma 11 for the case of two non-final states to add an m:n-diagram with
m,n > 0. σ0 is defined similarly to the case of a m:0-diagram. (i0, j0) are set to
be (i + m,j + n). Like in the 0:n-case, n is determined by expanding AF′ with
(1) and instantiating the quantifier with σ′.
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A.5 Proof of the Main Theorem

As mentioned above, the idea for the proof of the main theorem is to “infinitely
repeat adding diagrams”. The previous step has defined an operator Σ, which
adds one diagram. Given this operator, we can easily define finite repetition as
repeated application of the operator Σ: we start with some arbitrary trace σ of
M, that satisfies σ(0) ≈ σ′(0). The existence of such a trace is guaranteed by
the first condition2 of Theorem 7. Adding k diagram now means applying Σ k
times, so we set

(σ(k),ik,jk) := Σk(σ,0,0) (15)

Now the kth trace σ(k) has been constructed to contain k commuting diagrams:
σ(k)(im) ≈ σ′(jm) for each m ≤ k. All diagrams have positive size, and for m <

k traces σ(m) and σ(k) agree at all positions ≤ im. An inductive proof for these
facts (over k) requires some generalization, which leads to the following lemma

trace(σ) ∧ trace(σ′) ∧ σ(0) ≈ σ′(0)
→ ∀ m ≤ k. trace(σ(m)) ∧ σ(m)(im) ≈ σ′(jm)

∧ im ≥ m ∧ im ≥ m ∧ (m < k → im < ik ∧ jm < jk)
∧ (∀ m0 ≤ im. σ(m)(m0) = σ(k)(m0))

(16)

The lemma assumes Σ to be defined as described above and uses (15) to abbre-
viate. Its proof is easy (although lengthy again), the main problem is to find a
generalization that is both inductively provable and sufficient to prove the main
theorem, which we can now state formally:

σ′(0) ∈ I′ ∧ trace(σ′)
→ ∃ σ, (i0, i1, . . . ), (j0, j1, . . . ).

σ(0) ∼I σ′(0) ∧ trace(σ) ∧ (∀ k. σ(ik) ∼ σ′(jk))
∧ (∀ m < n. im < in ∧ jm < jn)
∧ ((∃ m. final(σ(m))) ↔ (∃ n. final(σ′(n))))

(17)

The central idea needed to prove the theorem is, that the sequence of σ(k)(k)
for each k (the “diagonal trace”) is a trace of M, which contains an infinite
number of commuting diagrams. This is indeed the case, since it agrees for every
k with σ(k) until at least the positions ik, where the kth diagram ends. The third
verification condition of Theorem 7 is used to deduce σ(ik) ∼ σ′(jk) from σ(ik) ≈
σ′(jk) for each k. Otherwise the proof is completed by mapping the facts stated in
(16) to the ones stated in the theorem by instantiating quantifiers suitably. The
only exception is the proof of the final line of the main theorem, which ensures
that a finite trace σ′ is the refinement of a finite trace σ (and vice versa), which
requires Lemmas 9 and 10 to find a corresponding final state.
2 For the weaker condition (11) of Sect. 6.1 start with (σ,i0,j0) such that σ(i0) ≈ σ′(j0)
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