

��������	
���
�����
���������������������������
��������������	��
���
���������������	���

�
Robert Eschbach

(Department of Computer Science, University of Kaiserslautern
eschbach@informatik.uni-kl.de)

Uwe Glässer
(Microsoft Research, Redmond1

glaesser@sdl-forum.org)

Reinhard Gotzhein
(Department of Computer Science, University of Kaiserslautern

gotzhein@informatik.uni-kl.de)

Martin von Löwis
(Department of Computer Science, Humboldt-University Berlin

loewis@informatik.hu-berlin.de)

Andreas Prinz
(Department of Computer Science, Humboldt-University Berlin

prinz@dresearch.de)

���
���
�� In November 1999, the current version of SDL (Specification and Description
Language), commonly referred to as SDL-2000, has passed ITU-T, an international
standardization body for telecommunication. The importance and acceptance of SDL in the
telecommunication industry surpasses that of UML, which can be seen as the major competitor.
A crucial difference between SDL and UML is the existence of a formal SDL semantics as part
of the international standard, which has a positive impact on the quality of the entire language
definition. In this paper, we treat fundamental questions concerning practicability, adequacy
and maintainability of the formalization approach, provide insights into the formal semantics
definition and point out several effects on the SDL standard.

�	 !������ SDL, Specification and Description Language, ASM, Abstract State Machines,
FDT, Formal Description Technique, Formal Semantics

��
	��� � D.3.1, F.3.2., F.4.3.

"� #�
�����
����

The development of ���������	
	���	
�����������	��	
����������� [ITU 1999b] dates
back to the early 70ies, when the need for a design language to specify the behavior of
distributed real-time systems in general and telecommunication systems in particular

1 On leave from Heinz Nixdorf Institute, University of Paderborn, Germany

Journal of Universal Computer Science, vol. 7, no. 11 (2001), 1024-1049
submitted: 7/6/01, accepted: 1/10/01, appeared: 28/11/01  Springer Pub. Co.

became apparent. Since 1976, SDL is standardized by ITU2, and in intervals of 4
years, upgrades of this first SDL standard are officially released. Over a period of
more than 20 years, SDL has matured from a simple graphical notation for describing
a set of communicating finite state machines to a sophisticated specification technique
with graphical syntax, data type constructs, structuring mechanisms, object-oriented
features, support for reuse, companion notations, tool environments and a formal
semantics. Thus, SDL satisfies the primary needs of system developers, and is being
broadly applied in industry.

It took more than 10 years of language development until the semantics of SDL
has been defined formally in 1988, upgrading the notation to a formal description
technique. This formal semantics, which was based on a combination of the VDM
meta language Meta-IV and a CSP-like communication mechanism, has been
maintained and extended for subsequent versions of SDL in 1992 and 1996.
Essentially, the formal semantics is given by a set of Meta-IV programs that take an
SDL specification as input, determine its static correctness, perform transformations
to replace certain language constructs, and interpret the specification.

In November 1999, a new version of SDL referred to as SDL-2000 has been
approved by ITU. SDL-2000 incorporates important new features, including object-
oriented data type definitions, a unified agent concept, hierarchical states, and
exception handling. Based on the assessment that the existing Meta-IV programs
would be too difficult to extend and maintain, it was decided to conceive a new
formal semantics for SDL-2000 from scratch. For this purpose, a special task force,
the SDL Semantics Group [ITU 2001], consisting of experts from Germany and China
including the authors of this paper, was formed in 1998. The formal semantics defined
by this group has been officially approved by ITU in November 2000, when it has
become Annex F to Z.100, the SDL standard, and thus part of the SDL language
definition [ITU 2000].

Before defining the SDL semantics formally, several design objectives have been
identified. Among these are intelligibility and conciseness, correctness and
maintainability. Additionally, executability has become a key issue, which calls for an
operational formalism with readily available tool support. For this and other reasons,
��������� ����������	���� ������ introduced by Yuri Gurevich [Gurevich 1993] have
finally been selected as the underlying formalism. To support executability, the
formal semantics defines, for each SDL specification, ��
������� ���� �
��, which
enables SDL-to-ASM compilers. For a substantial subset of SDL, such a compiler has
been developed to show the feasibility of this approach.

The paper treats fundamental questions concerning the practicability, suitability
and robustness of our formalization in detail. Technically, this is achieved by
exemplifying the treatment of an illustrative fragment of the formal semantics,
namely a dynamic process creation embedded in a simple signal-triggered transition.
Going down all the way from the ����	����� ��������� ������� ���� ����� to an
executable behavior description, resulting from the generated SDL abstract machine
model, illustrates steps (3) to (5) of the following main steps, namely: (1) mapping of

2 SDL is defined by ITU-T, the Telecommunication Sector of the International
Telecommunication Union, in Recommendation Z.100.

1025Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

non-basic language constructs to the core language, (2) checking of static semantics
conditions, (3) compilation of the AST to the �����������������	��� ����� model,
(4) definition of the ���� ��
�����, and (5) their execution by the ���� �	������
����	��������. For a survey of related work, the reader is referred to [Eschbach et al.
2000].

Section 2 addresses fundamental questions concerning the practicability,
suitability and robustness of the formalization approach. In Section 3, we illustrate
some basic features of the SDL language by an example, which is used throughout the
paper to provide some deeper insights into the formal SDL semantics. The formal
semantics can be roughly divided into the static semantics dealt with in Section 4, and
the dynamic semantics treated in Section 5. We summarize the impact of this work on
the SDL-2000 standard in Section 6, and give a brief outlook in Section 7.

�� �$���	��	������%		���

This section addresses fundamental questions concerning the practicability, suitability
and robustness of our formalization approach. The emphasis here is on pragmatic
aspects rather than on technical ones. To illuminate the rational behind our choices for
the underlying conceptual framework, we focus on those arguments that we believe
are meaningful beyond the scope of the work outlined in the following sections.

Unlike traditional engineering disciplines that are well established, e.g. like
mechanical and electrical engineering, systems engineering deeply relies on informal
documentation. Indeed, such informal documentation may be informative and
necessary. Still, it is informal and as such it often is as problematic as useful when it
comes to specifying properties of technical systems with mathematical precision. In
fact, informal descriptions may be, and often are, ���	��
��, 	��
������, and even
	��
��	�����. Furthermore, they are not executable and thus provide only very limited
support for experimental validation, which is ultimately needed for checking the
accuracy of a model against our intuitive understanding of the expected system
behavior; indeed, it often is the only way to fully understand the implications of the
specified system behavior.

Consequently, reliable specifications of complex technical systems must go
beyond informal descriptions. Additional information is needed for a clear separation
of concerns, to fix the loose ends and to resolve ambiguities and inconsistencies.
Guided by pragmatic needs, we construct our formal model of SDL starting from the
informal language definition of Z.100. To formalize the static and dynamic properties
of SDL appropriately, we have to take into account the constraints imposed by the
industrial design context in which this work is carried out.

�&"� ���	��	������	��������

Before and during the design of a formal semantics, a number of decisions have to be
made. In order to be intelligible and maintainable, the formal semantics should be
�
��	��, which is of particular importance for “rich” languages. A pragmatic approach
to achieve this objective is “bottom-up”: starting point is a set of core language
constructs for which a formal semantics is directly defined. Subsequently, this core
language is extended by language constructs that are defined “syntactically”, i.e. by

1026 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

transformation to the core language, sometimes called “normalization”. In case of
abbreviations, the distinction between core language and syntactical extensions is
straightforward. In other cases, the decision may be not obvious and may have a
substantial impact on the organization of the language definition. For instance, in an
object-oriented language, inheritance can either be considered an abbreviation and
consequently be defined by transformations, or be given a formal semantics directly.

An important design decision concerns the ��������	�����
��� that underlies the
formal semantics. As a general guideline, the model should fit the language, not vice
versa. If, for instance, the language has structuring mechanisms, it should be possible
to represent system structure in the formal model. If a particular interaction paradigm,
for instance, asynchronous interaction among system components, is used in the
language, this should be reflected in the formal model. If real time is an issue, the
formal model should support a suitable notion of time. If the language addresses
concurrent systems, the model should provide the desired model of concurrency.
Finally, the mathematical formalism should be sufficiently expressive to capture
every language aspect. Any deviation from this guideline will create a gap between
the language and its formal semantics, reducing both intelligibility and
maintainability.

Another design decision is the choice of an appropriate level of atomicity
according to the language description. The SDL standard, for instance, claims the
SDL level of atomicity to be on expression level, i.e. each part of an expression
results in a separate step. However, this is slightly unfortunate as there are two
conditions to set the level of atomicity. The first condition is time, which comes in at
expression level by the �
� expression. It also comes in at transition level by timers.
The second condition is communication, which comes in at transition level as well.
Based on these observations, the SDL semantics has chosen the finest of these two
levels, i.e. expressions. The formal semantics reflects exactly the chosen level of
atomicity.

�&�� '�!�
��(�
�����$�����	�
�	��)�

The problem of turning English into mathematics and mathematical definitions into
executable models raises the question of “�
�� �
� ������	��� ���� �
����������

� ����
������	���

����	 ��	
�!”" Defining semantics by a mapping to a well-defined
semantic basis, for instance, as done by the compilation of SDL actions to SAM code,
is a well-known technique, but is often considered to be as dangerous as helpful. In
particular, this leads us to the question of “��
� #��	������ ���$
�� #��	
	��� ����
�
����������

� ��	�� ����	��� ���� �	��� �������� �
� ��	���
�	�	�!”. Regarding the
standardization process there are actually two answers:

• Considered as a starting point for the development of a comprehensive formal
semantics, the current situation indeed requires validating the correctness of the
formal model against the informal language definition of Z.100 (except for those
parts, where the semantics is exclusively defined by the formal model). Given
that there is no way to prove correctness in a strict mathematical sense, the best
one can do to make the resulting model clear, concise and intelligible is avoiding
formalization overhead as far as possible.

1027Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

• Once the formal semantics is in use and its accuracy has been established with a
sufficient degree of confidence, the formal model should become the basis for
standardization. The informal description then would have the role of providing
additional explanations that may be sufficient as reference whenever the ultimate
degree of detail and precision is not needed. The obvious advantage is that one
avoids the notorious validation problem by relying on an approach that implies
correctness by construction.

(*�	���	�
��� +�����
���& Executability plays a key role in validating the formal
semantics: practitioners of SDL can be given a computer program that represents the
SDL formal semantics. Without detailed knowledge of the internal structure of the
formal semantics, users can still validate whether a given system definition behaves as
they expect. If there is a conflict between the expectation and the behavior observed,
the source of this mismatch needs to be analyzed, potentially with the help of a
language expert. Possible causes of such a mismatch are:

• The user expectations do not match the understanding of SDL in the community.

• The user expectations do match the understanding of SDL, but the standard says
that SDL works in a different way. The language committee will have to decide
whether to change the standard, or whether to educate users.

• The user expectations match the English definition of the language, but not the
formal semantics, and the committee considers the English definition as the
correct one. This means there is an error in the formal semantics, which must be
corrected.

• The user expectation matches the formal semantics, still the executable behaves
differently. That means there is an error in the tool chain producing the
executable (or in the computer system executing it), which must be corrected by
the authors of the tools.

Considering these potential sources of incorrectness, it becomes clear that the

generated computer program should not be normative (i.e. it is not a reference
implementation). Since there are many different sources of error, the standard
currently says that neither the English text nor the formal semantics take precedence
over one another.3 Instead, in case of conflict, the committee must decide what the
intended semantics is, leading to a revision of the standard.

�&,� '�!�
�����	������-����.���	
)�

Regarding the very nature of standardization as an ongoing activity, there is a high
dynamics in the development and maintenance of a standard. In fact, the formal SDL
semantics has been conceived in parallel to the language definition itself. While
developing the formal semantics, the definition of SDL has been revised continuously

3 In all previous versions of Z.100, the informal language definition was considered to
be the more reliable part and as such took precedence over the formal semantics.

1028 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

introducing a number of substantial changes and extensions. Such dynamics demands
for robustness of the formalization approach as a prerequisite for practicability.
Conciseness and flexibility therefore is of primary importance for the choice of the
modeling framework.

,� ���������

In Figure 1, an excerpt of the SDL specification of a simple system ���%��& is shown.
The system is structured into the process sets ����������� and �����
���" Initially
these process sets contain one and zero processes that are instances of the process
types ���������� and ���
���, respectively. Interaction between process instances
and the environment occurs only in the form of asynchronous signal exchange via
typed channels. In the example, bi-directional channels '(and ') are defined and
associated with signal lists that are explicitly declared.

In addition to the system structure, the process type ���������� is specified in
Figure 1. It basically consists of a state machine definition with the following
behavior. A start transition performs some initial actions leading to state �. which
identifies another group of transitions that start in state �. The transition shown in
Figure 1 is triggered by an input signal �	�(, and when fired, will create an instance of
the process set �����
���, send signals �	�) and �	�* and return to state �. The
destination of these signals is determined by the connection structure. Signal �	�(
carries an +������ value, which is passed as a parameter to the creation of �����
���.

 system theBank

Account

Department
 C1
[(Bacc1)] [(Cacc1)]

 C2
[(Bacc2)] [(Cacc2)]

aDepartment:
Department (1)

anAccount:
Account (0)

signal Sig1(Integer),
Sig2, Sig3;
...
signallist Cacc1 = ...;

process type Department

...

 dcl x integer;

Sig2, Sig3

 S

Sig1(x)

 S

. .

anAccount(x+2)

�
,	�����(-�.�������

�������������������	
	���	
��

The complete language definition of SDL is given in ITU-T Recommendation

Z.100 [ITU 1999b]. SDL possesses extensive structuring mechanisms to define
hierarchical system architectures, which can evolve during system execution. It offers

1029Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

advanced control concepts like hierarchical states and exceptions. Reuse aspects can
be expressed by inheritance as well as by defining packages, i.e., libraries of SDL
types. Inheritance is also supported by the new data type definition part of SDL.
Furthermore, SDL supports the specification of real-time behavior to some extend4.

/� �
�
����	���
����

The static semantics covers transformations and checks that can be done before
executing a specification. In the scope of SDL, there are two major parts of the static
semantics:

• Correctness conditions: As usual, the SDL concrete syntax is given in a context-
free way. Additional constraints are imposed using context conditions.

• Transformations: In order to cope with the complexity of the language SDL, the
standard Z.100 identifies certain concepts to be core concepts and defines
transformations of various other concepts into these core concepts.

Starting point for defining the static semantics of SDL is a syntactically correct

SDL specification as determined by the SDL grammar. In Z.100, a concrete textual, a
concrete graphical, and an abstract grammar are defined using Backus-Naur-Form
(BNF) with extensions to capture the graphical language constructs. From such a
syntactically correct SDL specification, an AST is derived by standard compiler
techniques (namely, parser construction for a context-free grammar). The structure of
this AST is defined such that it resembles the concrete textual and the concrete
graphical grammars. The correspondence between the concrete grammars and a first
abstract syntax form, called AS0, is almost one-to-one, and removes irrelevant details
such as separators and lexical rules. A second step translating AS0 to the final abstract
syntax form, called AS1, is formally captured by a set of transformation rules. This
results in the following structure of the formalization (see Figure 2):

• The translation step from AS0 to AS1 is formally captured by a set of
transformation rules. Transformation rules are described in so-called �
����
���������� of Z.100, and are formally expressed as rewrite rules.

• After application of the transformations, the structure of the AS0 tree is almost
the same as an AS1 tree. This means that the mapping from AS0 to AS1 is almost
one-to-one.

• The correctness conditions are split into conditions on AS0 and AS1 (see Figure
2). They are formalized in terms of first-order predicate calculus.

4 Current activities within ITU-T Study Group 10 include the development of further
language constructs for dealing with real-time aspects.

1030 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

Concrete Syntax (AS0)

Abstract Syntax (AS1)

Mapping

Transformations

Conditions AS1

Conditions AS0

�

,	�����)-�����	����������

�����

To make this setup work, a number of auxiliary functions are defined on the
syntax nodes. These functions serve as attributes of the nodes, resulting in an
����	����� abstract syntax tree. Most of the attributes are derived from other properties
of the tree. Some attributes are dynamic and can be assigned.

The transformations are formalized by rewrite rules. These rules can be applied in
any order as long as they are matching. However, this brings the usual problems of
termination and confluence. Both problems are treated by defining a sequence of
disjoint transformation phases. In each phase, the number of applicable rewrite rules
is sufficiently small such that it can be efficiently checked for termination and
confluence. In most cases, this check is simple because the rules apply to disjoint
parts of the tree, and they never restore the conditions for their application.

0� � �������	���
����

The dynamic semantics is formalized starting from the ��������� ���������(of SDL
[see Figure 3]. Basically, there are three different aspects to deal with: ���������,
����#	
� and ����. We restrict to those SDL specifications in AS1 that comply to the
static semantics of SDL. For those specifications, a generic behavior model is derived
using the ASM formalism as underlying mathematical framework for a rigorous
semantic definition of the dynamic properties of SDL. The core of this model is called
the ���� �������������	�� �����. Conceptually, we model the possible behaviors
associated with a given SDL specification in terms of a set of abstract machine ����.
The definition of the SAM splits into three main parts:

(1) basic �	�����
�
� concepts (signals, timers, exceptions, gates, channels),

(2) various types of ASM ������ (modeling corresponding SDL agents), and

(3) behavior ��	�	�	#�� (SAM instructions).

Technically, the definition of the SAM comes as a special �	���	����������/�	���
���, a computation model explained informally at the end of this section.

1031Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

'LVWULEXWHG�5HDO�7 LPH�$60�

3ULP LWLYHV�

6'/�$EVWUDFW�0DFKLQH �6$0�

Interface

'DWD�

$EVWUDFW�6\QWD[$6�

Com pilation

%HKDYLRU�

Initialization

$JHQWV�6LJQDO�)ORZ

6WUXFWXUH�

,	�����*-�0#��#	���

����������	��������	���

Figure 3 outlines the treatment of structural, behavioral and data related aspects in
our definition of the mapping of SDL specifications to the SAM model. We can
identify three fundamental concepts:

• The �
��	���	
� defines two compilation functions over the AST derived from
an SDL specification. It yields a mapping of SDL transitions to sequences of
SAM primitives. More specifically, the result of the compilation is a set of
behavior primitives in combination with the control flow information needed for
modeling the transitions of the SDL agents. Conceptually, the compilation is
based on standard compiler techniques, therefore, it will not be elaborated further
in this paper (see [ITU 2000] for details).

• The 	�	�	��	 ��	
� defines a pre-initial state of an SDL system and several
initialization programs. The initial system state is then reached by creating a
distinguished SDL system agent, and by activating this agent in the pre-initial
state. The initialization recursively unfolds the static structure of the system,
creating further SDL agents as specified. In fact, the same process is initiated in
the subsequent execution phase, whenever new SDL agents are created. From
this point of view, the initialization merely describes the instantiation of the SDL
system agent. This way, the initialization is even interleaved with the execution.

• The definition of the data semantics is encapsulated and separated from the rest
of the semantics by a well-defined 	����
���. The use of an interface allows us to
replace the data model, if for some other application domain another data model
is more appropriate than the built-in model. Moreover, also the built-in model can
be changed the same way without affecting the rest of the semantics.

On top of the “logical hardware”, as defined by the SAM, the ���� �	������

����	��� ����� provides typical operating system functionality (see Figure 4). As
such, it provides suitable abstractions by a set of macros and functions, which

1032 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

determine the structure of an SDL system at runtime, the structure of agents, the
selection of transitions and their firing.

 6'/�9LUWXDO�0DFKLQH (SVM)

'LVWULEXWHG�5HDO�7 LPH�$60�

5XQWLPH�6\VWHP�6HOHFWLRQ�)LULQJ� 3ULPLWLYHV�

6'/�$EVWUDFW�0DFKLQH (SAM)

$JHQWV�6LJQDO�
)ORZ

Concurrency Time Asynchronicity
�

,	�����1-�0#��#	���

����������	��������	���

������� �	���
��� ���	�. The dynamic semantics associates with each SDL
specification a particular �	���	����������/�	������. This computation model is based
on fairly general notions of �
��������� and �	��; furthermore it is �������
�
�� and
directly supports the abstract operational view of the informal language definition.
Indeed, it is a reasonable choice for a straightforward treatment of fundamental SDL
concepts. We explain here the underlying mathematical model in an informal style at
an intuitive level of understanding. For a rigorous mathematical definition of the
theory of Abstract State Machines, see the original literature [Gurevich 1993] and
[Gurevich and Huggins 1996].

Intuitively, the computation model of distributed ASMs consists of a collection of
autonomously operating ASM ������. Starting from a distinguished initial state, the
agents perform concurrent computations interacting with each other by reading and
writing shared locations of global machine states. The underlying semantic model
regulates interaction between agents such that potential conflicts are resolved
according to the definition of ����	�����
����������� [Gurevich 1993].

Formally, agents come as elements of a dynamically growing and shrinking
universe, or domain, �*(17., where we associate with each agent a ��
���� defining
its behavior in terms of some transition rule. Complex transition rules are inductively
defined as compositions of guarded update instructions using simple rule constructors.
We distinguish different types of agents according to different types of programs as
represented by a static domain 252*5$0. Collectively these programs form the
distributed program of a distributed ASM.

By introducing a notion of global system time and imposing additional
constraints on machine runs, one obtains real-time behavior, with agents performing
instantaneous actions in continuous time. In this model, agents fire their rules at the
moment they are enabled, i.e. react immediately (see 5.1.1).

1033Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

0&" �������
���
����$��	�

The SDL Abstract Machine (SAM) consists of the following parts:

• �	�����,�
���
���, which defines a uniform treatment of signal flow related
aspects, in particular, the communication of agents through exchange of
signals via channels connected to gates,

• ����������, which model the SDL concepts ‘SDL agent’, ‘SDL agents set’,
and ‘SDL channel’, and

• %���#	
��2�	�	�	#��, which can be seen as the instructions of the SAM.

We start by introducing the underlying notion of real time.

0&"&"� �	���.��	�

SDL is promoted for the specification and design of distributed real-time systems.
However, its actual support for dealing with real-time behavior is essentially limited
to delaying mechanisms and timeout mechanisms. Such instruments are descriptive
rather than prescriptive or regulating; in particular, there is no way of enforcing a
desired timing behavior. Based on the underlying notion of global system time, signal
communication over channels as well as operations of process instances by default are
subject to arbitrary but finite delays. SDL provides a simple timer concept for
handling timeout events.5

We introduce a discrete notion of time for the abstract representation of global
system time as represented by the SDL expression now.

Z.100, Section 12.3.4.1 Now Expression

The now expression is an expression which accesses the system clock variable to
determine the absolute system time.

Our notion of time reflects the view that one can only observe, but not control,

how physical time evolves. Time values are represented as real numbers by the
elements of a linearly ordered domain �,0(. We can assume that �,0(⊆ 3($/�and
define the relation “≥” on time values through the corresponding relation on real
numbers. A domain �85$7,21 represents finite time intervals as differences between
time values.

������ �,0(
������ �85$7,21

The global system time, as measured by some discrete clock, is represented by a
so-called �
�	�
���, nullary function �
� taking values in �	��. A monitored

5 Current activities within ITU aim at extensions of SDL that allow for more
sophisticated specification and analysis of timing behavior [ITU 1999a]. Conceptually,
our model of real time underlying the formal definition of SDL takes such extensions
already into account.

1034 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

function represents an interface to the external world and, as such, may have different
values in different states depending on actions and events in the system environment.
We can assume here (as an integrity constraint on valid runs) that the values of �
�
change monotonically over machine runs.

����
��	� �
� : �,0(�

Similar to the real-time ASM model introduced in [Gurevich and Huggins 1996],
ASM agents in our model react instantaneously, i.e. they fire their rules as soon as
they reach a state in which the rules are enabled. Strictly speaking, one must assume
here some non-zero delay to preserve the causal ordering of actions and events;
though, such minimal delay is immaterial from a practical perspective of view.
Computation steps of agents are ��
�	� but, nevertheless, they are considered as time-
consuming actions such that the following condition holds:

Z.100, Section 11.12.1 Transition Body

An undefined amount of time may pass while an action is interpreted. It is valid
for the time taken to vary each time the action is interpreted. It is also valid for the
time taken to be the same at each interpretation or for it to be zero (that is, the
result of now is not changed).

From an SDL point of view, a purely monitored time is not sufficient. In the

current SDL standard, there are non-delaying channels that are supposed to transfer
their signals without time delay. In the extensions discussed for a timed version of
SDL, specific restrictions on the time consumption can be placed on all kinds of
actions. Conceptually, this is solved by defining integrity constraints on the time
progress, thus restricting the set of possible runs.

0&"&�� ����������!����	��

The signal flow model defines communication primitives for signal-based
communication between SDL agents. In particular, it defines the transportation of
�	����� through delaying and non-delaying �������� connecting agents via their �����.
Furthermore, this model defines �	���� and ������	
�� as special kinds of signals.
Thus, the signal flow model forms the core of SDL’s asynchronous communication
model.

There is a derived domain �,*1$/ representing the set of signal types as declared
by an SDL specification. �,*1$/ also includes timers and exceptions, which are
modeled as signals, too. Dynamically created signal instances are elements of a
derived domain �,*1$/+167. Functions on signals are �	����������, �
���, and #	����
yielding the sender process, the destination, and optional constraints on admissible
communication paths, respectively. Signals received at an input gate of an agent set
are appended to the input port of an agent according to the value of �
���.
Simultaneously arriving signals matching the same agent instance are appended, one
at a time, in an arbitrary order. Signals are discarded if no matching receiver instance
exists.

1035Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

#���
�1�
	������2�
��
�1�
	�& Exchange of signals between SDL agents (such as
processes, blocks or a system) and the environment is modeled by means of �����
from a controlled domain 4$7(.� A gate forms an interface for ���	��� and
��	�	����	
��� communication between two or more agents. Accordingly, gates are
either classified as 	���������� or
�����������"

Signals need not reach their destination instantaneously, but may be subject to
delays. Therefore, it must be possible to send signals to arrive in future. Although
those signals are not available at their destination before their arrival, they are already
associated with their destination gates. That is, a gate must be capable of holding
signals that are in transit (have not yet arrived). Hence, to each gate a possibly empty
�	�����5���� is assigned [see Figure 5]. One can now represent the relation between
signals and gates in a given SAM state by means of a dynamic function ��������
defined on gates: �������� specifies, for each gate � in 4$7(, the corresponding �	�����
���	#��� at �"�

��L ∈ �,0(

��	������	�������	� �"5����

���������������������������
�

�

�6�7�	��	���	�����M�7��L

� ∈ 4$7(

�"��������

,	�����8-��	�����	�������������������

�$���	��3	$�-���&�SDL channels consist of either one or two unidirectional ��������
�����"�In the SAM model, each channel path is identified with an object of a derived
domain �,1.. The elements of �,1. are SAM agents. Their behavior is defined
through LINKPROGRAM consisting of a single rule FORWARDSIGNAL as defined
below. Think of �,1. elements as point-to-point connection primitives for the
transport of signals.

A link agent � performs a single operation: signals received at gate �.
�
� are
forwarded to gate �.�
" That means, � permanently watches �.
�
� waiting for the next
deliverable signal in �.
�
�"5����. Whenever � is applicable to a waiting signal �	 (as
identified by the �.
�
�"5����"����), it attempts to remove �	 from �.
�
�"5���� in
order to insert it into �.�
"��������. This attempt needs not necessarily be successful
as, in general, there may be several link agents competing for the same signal �	.

But, how does a link agent � know whether it is applicable to a signal �	? Now,
this decision does of course depend on the values of �	.�
���, �	.#	����, �	.�	��������
and �.�	��. In other words, � is a legal choice for the transportation of �	 only, if the
following two conditions hold: (1) �	.�	�������� ∈ �"�	��� and (2) there exists an
applicable path connecting �.�
 to some final destination matching with the address
information and the path constraints of �	. Abstractly, this decision can be expressed
using a predicate ����	�����9 where we refer to [ITU 2000] for the definition of further
details.

1036 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

FORWARDSIGNAL ≡
 �
 ���
"
�
�"5���� ≠ �����
$	�
 �	
 �	 = ���
"
�
�"5����"��������
 �
�����	�������	"�	��������9�	"�
���9�	"#	����9���
"
�
�9���
��
$	��
 DELETE(�	9���
"
�
�)
 INSERT(�	9�
�:���
"�����9���
"�
)
 �	"#	�����:= �	"#	���� \ {����
"
�
�"�
����("�
��"��(�
+�9�
 ���
.�
����("�
��"��(�
+�}
 	���
�
 	���	
�
 	���
�

.��	��� ���� (*�	�
����& A particular concise way of modeling timers is by
identifying timer objects with timer signals. More precisely, each ���	#� timer is
represented by a corresponding timer signal in the schedule associated with the input
port of the related process instance. Like timers, exceptions are identified with
exception signals. Below we present the solution for the timer model.

A static domain �,0(5�represents the set of all timer types as identified by
the AST of a given SDL specification. Another dynamic domain �,0(5+167
holds the respective timer instances created at run time.

�,0(5 =def {�	� ∈ +����	
	���: �	�"	��
;
����(∈ �	���/��
	�	�	
�} ⊂ �,*1$/�

�,0(5+167 =def 2+' × �,0(5 × �$/8(* ⊂ �,*1$/+167�

The information associated with timer signals is accessed using the functions
defined on �,*1$/.

��
�-	�.��	���

SDL defines a timer to be ���	#� if the timer has expired but the resulting timer signal
has not yet been consumed by the related process. Each ���	#� timer is represented by
a corresponding timer signal in the schedule associated with the input port of the
related process instance. To indicate whether a timer instance ��	� is active or not,
there is a corresponding derived predicate ���	#�:

���	#����	-�,0(5+167�: %22/($1�=def����	�∈����
"	��
��"��������

.��	��2�	��
�����

There are two operations on timers as specified below. The process agent to which the
timer belongs executes these operations one at a time. A static function �����	
� is
used to represent default duration values as defined by an SDL specification under
consideration. A default duration value is used to calculate the expiration time if not
specified otherwise.

�
�
�� �����	
�: TIMER → DURATION

1037Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

SETTIMER(��: �,0(5, #��5�:��$/8(*, �:��,0() ≡
 �	
 ��	 = �4��,0(5+167(���
"���
, ��, #��5�) ���
 �
 � = ����
	���
$	�
 ���
"	��
��"�������� := 	�����(��	, �
�+ ��.�����	
�,
 ������(��	9����
"	��
��"��������))
 �	"���	#�� := �
� + ��.�����	
�
 	��	
 ���
"	��
��"��������:=	�����(��	,�,������(��	9 ���
"	��
��"��������))
 �	.���	#�� := �
 	���

 	���	
�

RESETTIMER(��: �,0(5, #��5�:��$/8(*) ≡
 �	
 ��	 = �4��,0(5+167(���
"���
, ��, #��5�) ��
 �
 ���	��(��)
$	�
 DELETE(��	9����
"	��
��)
 	���

 	���	
�

0&"&,� ������	�
��

SAM agents define the SDL concepts ‘SDL channel’, ‘SDL agent’, and ‘SDL agent
set’ (see Figure 6). The state information of an SDL agent is collected in an ������
�
���
����
�&. The agent control block is partially initialized when an SDL agent (set)
is created, and completed/modified during its initialization and execution. Since part
of the state information is valid only during certain activity phases, the agent control
block is structured accordingly.

system theBank

Account

Department
 C1 [(Cacc1)]
[(Bacc1)]

aDepartment:
Department (1)

 C2 [(Cacc2)]
[(Bacc2)]

anAccount:
Account (0)

signal Sig1(Integer),
Sig2, Sig3;
...
signallist Cacc1 = ...;

AGENT

 LINK

 SDLAGENTSET

 SDLAGENT

,	�����<-������������

1038 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

The structure of the agent’s ����������	�� is directly modeled, and built up during
agent initialization. The state machine structure is exploited in the execution phase,
when transitions are selected, and states are entered or left.

0&"&/� 3	$�-����5����
�-	��

Primitives are modelled as actions with attached labels. An action is an element of a
derived domain �&7,21, which is defined as the disjoint union of basic action
domains such as '5($7(or 087387" An element of a basic action domain provides
the required information in order to fire and evaluate the action.

25,0,7,9(=def �$%(/ × �&7,21
�&7,21 =def '5($7(∪ 087387 ∪...

The ������ primitive specifies the dynamic creation of an SDL agent. An action
of type '5($7(is defined as a tuple consisting of an agent definition, a sequence of
value labels, and a continue label. An
����� primitive is defined as a tuple consisting
of a signal, a sequence of value labels, a value label, a set of identifier which
determines the receiver of the message, and a continue label.

'5($7(=def �����/��
	�	�	
� × �$/8(�$%(/* × '217,18(�$%(/
087387 =def �,*1$/ × �$/8(�$%(/* × �$/8(�$%(/ × �,$�5*×'217,178(�$%(/�

Firing of actions is defined by the selection and evaluation of the corresponding
SAM primitives, resulting from the compilation. The function ������������ uniquely
identifies a behavior primitive; therefore, the choose in the rule below does not
introduce non-determinism. The evaluation of the macro FIREACTION finally leads to
an update set that is executed in a single state transition of the distributed real-time
ASM.

FIREACTION ≡
� � �$���	 �: � ∈ %(+$9,25 ∧ �.���$%(/ = ���
.������������
 EVALUATE�6�.��25,0,7,9(7

The evaluation of an action is defined by the macro EVALUATE. Depending on the
action, a specific macro, such as EVALCREATE or EVALOUTPUT, is selected.

EVALUATE�(�: �&7,21) ≡
� � �
 ��∈�'5($7(�
$	� EVALCREATE (�)�
� � �
 ��∈�087387�
$	� EVALOUTPUT (�)�
 ...

The macro EVALCREATE defines the evaluation of the ������ primitive. As part of
this evaluation, the SDL agent set ��� where an additional agent is to be added is
determined (first line of macro EVALCREATE). For this agent set, it is checked
whether there is a maximum number of SDL agents, and whether this maximum
number has not yet been reached. In the latter case or if there is no maximum number,

1039Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

a new SDL agent of the type defined in the action is created (macro CREATEAGENT,
see below). In addition, ������������ is set to the next action.

EVALCREATE (�: '�����) ≡
� � �	
 ��� = ��&�({��� ∈ �'/�*(17�(7: ���.�
����(=
� � � �.�������/��
	�	�	
�}) ��
 �
 ���.�
����(.��;�����/

/	���.�����/�������≠����
	���
$	�
 �	
 � = |{�� ∈ �'/�*(17: ��.
���� = ���}| ��
 �
 � < ���.�
����(.��;�����/

/	���.�����/������
$	�
 CREATEAGENT (���,���
.���
,
� � � � � � � ���.�
����(.�������/����/��
	�	�	
�)
 	��	�
 ���
.

���	�� := ����
 	��	�
 CREATEAGENT (���,���
.���
, ���.�
����(.�������/����/��
	�	�	
�)
 ���
.������������ := �.��'217,18(�$%(/�
�

To create an agent, the controlled domain �*(17 is extended. The control block
(see Section 5.2) of this new agent is initialised. An input port for receiving signals
from other agents is created and attached to the new agent. Setting of agent modes
and assignment of the SAM program AGENT-PROGRAM (see Section 5.2) complete
the creation of the agent.

CREATEAGENT (
�: �'/�*(17�(7,��: 2+',���: �����/����/��
	�	�	
�) ≡
� � 	*
	�� �*(17 !�
$ ���
 INITAGENTCONTROLBLOCK (��,�
�,���,����)
 CREATEINPUTPORT (��)
 ��.������
��(:= 	�	�	��	���	
��
 ��.������
��) := 	�	�	��	�	��(�
 ��.��
���� := AGENT-PROGRAM�
� � 	��	*
	���

The output primitive specifies the sending of a signal. A signal output operation

causes the creation of a new signal instance, and is defined by the macro
SIGNALOUTPUT.

EVALOUTPUT (�: 087387) ≡
 SIGNALOUTPUT(�.���,*1$/, #�����(�.���$/8(�$%(/��	8, ���
),
 #����(�.���$/8(�$%(/, ���
), �.���,$�5*)
� � � � ���
.������������ := �.��'217,18(�$%(/

1040 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

Name(Sig3)

Output

Name(Sig2)

Output

Name(S)

Nextstate

TerminatorActions

State-node

Transition

Input-node

Name(Sig1)

Name(S)

Name(anAccount)

Create

SAM Primitives

Sig2, Sig3

 S

anAccount

 S

Sig1

,	�����=-����������
��	���	
��

�������	�	�	#���

An excerpt of the Abstract Syntax Tree for the example in Figure 1 with some of
the involved SAM primitives is shown in Figure 7.

0&�� ����+��
�������$��	�

The �����	����������	�� (���) provides typical operating system functionality on
top of the logical hardware as defined by the SAM. Under the control of the SVM, the
programs LINK-PROGRAM, AGENT-PROGRAM and AGENT-SET-PROGRAM, which are
associated with link agents, SDL agents and SDL agent sets, respectively, are
executed. The SVM defines suitable abstractions by a set of macros and functions,
which determine the structure of an SDL system at runtime, the structure of agents,
the selection of transitions and their firing, finally leading to update sets. We will now
sketch some aspects of the SVM, focussing on SDL agents and AGENT-PROGRAM.
The complete definition of the SVM, comprising approximately 1200 lines of ASM
definitions, is given in [ITU 2000].

SDL agents are the most complex active components of an SDL system at
runtime. Therefore, we distinguish several activity phases, which in turn have several
levels of sub phases. Phases and sub phases are identified by corresponding control
states, as shown in the control state graphs of Figure 9, Figure 10, and Figure 11. On

1041Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

the top level, the phases 	�	�	��	 ��	
� and ������	
� are distinguished (see Figure 8).
After an SDL agent has been created – either at system initialization time or
dynamically –, it enters the initialization phase. During this phase, the structure of the
agent, which may consist of a hierarchical inheritance state graph, connection
structure and further agents, is created in consecutive sub phases. Then, the agent
enters the execution phase, where it remains until its termination.

H[HFXWLRQLQLWLDOLVDWLRQ
initialised

terminated

created

�

,	�����>-�'
���
��������������

���������������#���(��

With each SDL agent, an ������ �
���
�� ��
�&, which keeps all information
necessary to determine the current activity state of that agent, is associated. Formally,
the agent control block is represented as a group of controlled functions, including:

• ������
��(: top level control state of an SDL agent; depending on the
activity phase, there can be up to 4 additional levels of control states,
represented by further functions; identifying the control states of agents is
good practice in operating systems design;

• ������������: during the firing of a transition or the evaluation of an
expression, this function identifies the currently executed action, thus taking
the role of the agent’s program counter;

• 	��
��: input queue of the agent containing the sequence of signals that have
been sent to this agent and are waiting for consumption;

• �	����'���&��: the signal of the input queue that is currently examined
during the transition selection process;

• �����	�	
�'���&��: transition that is currently examined during the transition
selection process;

• ���
: agent id, a unique identification of this agent as defined in SDL; this
agent id represents an SDL function and therefore should be distinguished
from the ASM function ���
;

• ������: agent id of the sender of the last consumed signal.

The behavior of SDL agents is defined by the program AGENT-PROGRAM (see

below). Depending on the current top level control state represented by the controlled
function ������
��(, a macro defining the corresponding activities is selected.
Macros are hierarchically structured and thus provide useful abstractions. By using
the ASM function ���
, the agent control block of the SDL agent that is running this

1042 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

program is accessed. In certain situations of the execution phase, SDL requires the
sequentialization of a group of SDL agents. This is formalized by defining an
execution right that can be owned by at most one agent of a group.

AGENT-PROGRAM
�
 ���
.������
��(= 	�	�	��	 ��	
�
$	�
 INITAGENT
�
 ���
.������
��(= ������	
�
$	�
 �
 ���
..���3	���2������
$	�
 EXECAGENT
 	��	�
 GETEXECRIGHT

Execution of agents is modeled by alternating phases, namely transition selection

and transition firing, preceded by a start phase. To distinguish between these phases,
corresponding control states are defined (see Figure 9). When an agent is in sub phase
������	�������	�	
� (������
��)), it attempts to select a transition, obeying a number
of constraints. In sub phase
	�	�������	�	
�, a previously selected transition is fired.
Formally, this is defined by the macro EXECAGENT:

EXECAGENT ≡
� � �
 ���
.������
��) = �����2����
$	��
 EXECUTIONSTARTPHASE
� � �
 ���
.������
��) = ������	�������	�	
�
$	��
 SELECTTRANSITION
� � �
 ���
.������
��) =
	�	�������	�	
�
$	��
 FIRETRANSITION
� � �
 ���
.������
��) = ��
��	��
$	��
 STOPPHASE

H[HFXWLRQ

VHOHFWLQJ

7UDQVLWLRQ

ILULQJ

7UDQVLWLRQVWDUW3KDVH

VWRSSLQJ

,	�����?-�'
���
��������������

�����������-�������	
�����#���)��

In previous versions of SDL, selection of a transition consisted of checking a
single major state of an SDL agent, as defined informally in Z.100 (Z.100, Section

1043Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

11.2). With the incorporation of inheritance in SDL-92, this became slightly more
complicated (Z.100, Section 8.3.3), but was resolved by a transformation step to keep
the dynamic semantics stable. With the addition of composite states in SDL-2000,
transformations are no longer feasible (Z.100, Section 11.11). Also, the complexity of
the selection process can be substantial, as the formal semantics has to cover the most
general cases with all possible combinations of transition triggers, composite states,
and inheritance. Figure 10 gives a flavour of this complexity, as the refinement of the
control state ������	�������	�	
� is shown. This is not the end, as the refinement may
go 2 levels further.

VHOHFWLQJ7UDQVLWLRQ

VWDUW
6HOHFWLRQ

VHOHFW
3ULRULW\
,QSXW

VHOHFW
,QSXW

VHOHFW
&RQWLQXRXV

VHOHFW
([FHSWLRQ

VHOHFW
)UHH$FWLRQ

VHOHFW
([LW

7UDQVLWLRQ

VHOHFW
6WDUW

7UDQVLWLRQ

,	�����(@-�'
���
��������������

�����������-������	�	
��������	
�����#���*��

In control state ������	�������	�	
� (see Figure 10), an SDL agent searches for a

fireable transition. Z.100 imposes certain rules on the search order. For instance,
priority input signals have to be checked before ordinary input signals, and these have
in turn to be checked before continuous signals can be consumed. Furthermore, a
transition emanating from a substate has higher priority than a conflicting transition
emanating from any of the containing states. Finally, redefined transitions take
precedence over conflicting inherited transitions. These and further constraints have
to be observed when formalising the transition selection.

1044 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

ILULQJ7UDQVLWLRQ

HQWHULQJ
6WDWH
1RGH

ILULQJ
$FWLRQ

OHDYLQJ
6WDWH
1RGH

LQLWLDOLVLQJ
3URFHGXUH

H[LWLQJ
&RPSRVLWH

6WDWH

,	�����((-�'
���
��������������

�����������-������	�	
��
	�	������#���*��

Firing of a transition is decomposed into the firing of individual actions, which

may in turn consist of a sequence of steps. At the beginning of a transition, the current
state node is left, which may entail the leaving of inner state nodes and the execution
of exit procedures and exit transitions. At the end, either a state node is entered, or a
termination takes place.

FIRETRANSITION ≡
� � �
 ���
.������
��* =
	�	�����	
�
$	��
 FIREACTION
� � �
 ���
.������
��* = ���#	�������;
��
$	��
 LEAVESTATENODES
� � �
 ���
.������
��* = �����	�������;
��
$	��
 ENTERSTATENODES
 ...

Firing of actions including the execution of behaviour primitives has been

addressed in Section 5.1.4. This ends the sketch of the Java Virtual Machine.

0&,� ��
��

Integration of the semantics of data into the dynamic semantics is done by means of a
functional interface. With such an interface, evaluations in the data part will have no
side effects. This allows to express the data semantics with any formalism suitable for
expressing functions, and therefore, it potentially allows to replace the data semantics
with a different model.

The data semantics of SDL consists of the following components:

• Association of variables with values,

• Evaluation of expressions,

• Definition of predefined data, and

1045Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

• Definition of user-defined data.

To provide the notion of variables that are bound to expressions, the data
semantics provides a domain �7$7(, whose elements represent associations of
variables and values. Values, in turn, are elements of a domain �$/8(.

In SDL, two different kinds of values are defined: those based on an object type
have reference semantics; those based on a value type have value semantics. Since
objects can be shared across SDL process agents, all agents within a process agent
share the same �7$7(. Whenever a new agent or procedure is created, the state of the
creator is extended with the variable bindings of the new agent. Since each multiple
processes or procedures may use the same variable names within a state, they need to
identify their portion of the state using a �7$7(+�. To access and modify variables, the
following functions are provided:

���	��: ���	����/	����	
	�� × �$/8(× �7$7(× �7$7(+' → �7$7(05.;&(37,21

�#��: ���	����/	����	
	�� × �7$7(�× �7$7(+' →��$/8(�

When assigning a value to a variable, the variable name, the value, the current
state and the state id of the process or procedure must be provided. The function
���	�� produces a new state, which is then assigned to a controlled function. In some
cases, assignment may produce an exception instead of a state. To access a variable,
the variable identifier, the state, and the state id are required.

Evaluation of expressions normally involves application of an operator. The
operator can be either predefined or user-defined. If the operator is predefined, the
function

�
�����: 252&('85(× �$/8(* → �$/8(05.;&(37,21

can be used to evaluate the operator application. This function is defined in terms of a
number of auxiliary functions which provide the operator definitions for the
predefined types.

If the operator is user-defined, a procedure definition must be located for the
operator call. Since SDL supports polymorphism and late binding, the selection of the
procedure occurs dynamically. This selection is provided with the function

�	������: 252&('85(× �$/8(* → +����	
	���

The actual execution of the procedure being called is controlled by the SVM.
Using a functional interface for the data semantics is feasible for most aspects,

with one notable exception: Using object types involves operations that cannot be
fully described by means of functions alone. In particular, creation of an object
creates a new identity for the object, which is different from any other object identity.
This identity is modeled by the domain 0%-(&7+�. ASMs support domains that can be
extended dynamically. However, extending a domain is an operation with side effects.
Therefore, the data semantics requires a function �&0�6���+�, which returns a
different value in each state of system execution.

1046 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

9� #����
����
$	����������#�
�������	
���
����

The formal SDL semantics has been conceived in parallel to the language definition
itself. While developing the formal semantics definition, there have been numerous
discussions with the SDL experts in order to reach a common understanding of the
Z.100 document, to resolve ambiguities, and to remove inconsistencies. As it turned
out, this provided valuable feedback, as problems with formalizing certain language
aspects often led to discussions that revealed problems with the language definition
itself. Also, the feasibility to treat certain aspects directly in the formal semantics
made a number of complex transformations obsolete and thus helped to make the
documents more concise. Different from the past, it is now official policy that if there
is an inconsistency between the main body of Z.100 and Annex F, then neither the
main body of Z.100 nor Annex F take precedence when this is corrected.

The following aspects of SDL have been directly influenced by the formalization:

• Formalization of inheritance and object-orientation

In 1992, object-orientation was introduced into SDL. However, the first attempt
to describe object-orientation was to give transformations how to map the new
type-based concepts onto the old concepts. This is of course a lot of
transformations and therefore the essence of the SDL types is not easily
understood. For the SDL-2000 formalization, we insisted on giving a direct
semantics for object-orientation in order to have those concepts readily available
for description. This was a major change in the language description and also
revealed several design flaws of the whole object-orientation that could not have
been discovered in the transformation approach. We even inserted new
transformations making the non-typebased concepts derived concepts, where an
implicit type was introduced.

• Implicit transitions

In SDL, there is the understanding that signals that are not explicitly handled are
implicitly discarded. This situation was covered in SDL-92 using a
transformation, which inserted an implicit transition to discard the signal.
However, this approach cannot be used in SDL-2000, because of the introduction
of composite states. This led to a direct formal semantics for signal discarding.

• Identifier resolution

SDL has a very complex identifier resolution scheme, because sometimes
identifiers are resolved with regard to the context. It is possible in SDL to have
the same name for different entities of different kinds, e.g. a signal can have the
same name as a data type. Moreover, operators can have the same names and
differ only in their signatures, e.g. different versions of the operator "+". When
formalizing the Z.100 text about resolution, some problems occurred, finally
leading to the resolution rules being redrafted and stated more clearly.

1047Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

• Input triggers

In SDL, it is possible to not only have inputs of signals but also to have
conditions for the reception of signals, to have prioritized inputs and to have
conditions to trigger a transition. The semantics of these concepts has been
defined by transformations in previous versions of SDL: these inputs were
transformed into the usual signal inputs using several implicitly defined local
signals. However, it was never clear what it meant to have all of these concepts
within one specification. So we decided to have a direct semantics for these
concepts as well. This reduced the informal description and made the formal
description very concise.

• Evaluation of decisions

When evaluating a decision, user-defined operators and methods can be invoked
to select the matching decision answer. Since such methods may have side-
effects, or may raise an exception, the evaluation order of those operator
applications may matter for the outcome of the decision. Originally, the informal
language definition was silent on the issue of evaluation order. When this
underspecification was detected during definition of the formal semantics, an
explicit description of the evaluation procedure for decisions was added to the
informal definition.

:� (*�	��	��	�����2�
���4��

Regarding the very nature of standardization as an ongoing activity, even the most
recent version of SDL can only be a snapshot of an evolving language definition. To
meet the needs of system design experts in a rapidly developing segment of systems
technology, the language has been improved over the past 25 years, evolving from a
primitive graphical notation to a sophisticated formal description technique.
Typically, every 4 years a new version of SDL is released (e.g., SDL-88, SDL-92,
SDL-96, SDL-2000). Such dynamics in the definition of a rich language like SDL
clearly demands for robustness of the formalization approach as a prerequisite for
practicability. Conciseness and flexibility therefore were of primary importance for
the choice of the formal modeling framework.

Despite of the richness of SDL, the formal model is intelligible and maintainable.
This is essentially achieved through three properties, namely: the compiler-based
approach, the organization of the abstract machine model, and the consequent use of
parameterized ASM rule macros.

Comparing the two parts of the SDL semantics (static and dynamic), the static
semantics is twice as large (in pages) as the dynamic semantics. This is already the
result of an improved balancing between these two parts, as concepts that previously
had been defined by means of in-language transformations now are part of the
dynamic semantics.

The notations and concepts used in the formal definition of SDL were chosen to
allow automatic processing by means of computer programs. For a subset of SDL,
whose definition also uses a subset of the notations, tools have been created that allow

1048 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

the execution of an SDL system in the ASM workbench. Work is still in progress on
applying these tools to the complete definition of SDL.

Finally, it should be stressed that the definition of the formal semantics has not
just been an academic exercise, but took place in a real-life industrial setting. In our
opinion, it is this kind of work academic efforts should eventually lead to. The
successful application of mathematical formalisms to real-world problems and their
approval by industry is a strong selling point for having formalisms at all. In this
sense, the work reported here is an important step in this direction.

��4��!�	��	�	�
�

We thank Egon Börger and Yuri Gurevich for inspiring and valuable discussions on
fundamental aspects of our ASM model of SDL, Joachim Fischer and Franz Rammig
for their continuous support throughout the entire project, and Rick Reed and Thomas
Weigert as responsible SDL Rapporteurs of ITU-T Study Group 10/Q6. Furthermore,
we thank the anonymous referees for their especially valuable comments. Finally, we
thank Telelogic, Ericsson, and Motorola for their financial support of part of this
work.

�	
	�	��	��

[Eschbach et al. 2000] R. Eschbach, U. Glässer, R. Gotzhein and A. Prinz. “On the formal
semantics of SDL-2000: a compilation approach based on an Abstract SDL Machine”. In
Abstract State Machines - Theory and Applications. Y. Gurevich, P.W. Kutter, M. Odersky
and L. Thiele (Eds.), Lecture Notes in Computer Science, Vol. 1912, Springer-Verlag, 2000

[Glässer et al. 1999] U. Glässer, R. Gotzhein, A. Prinz: “Towards a New Formal SDL
Semantics Based on Abstract State Machines”, in: R. Dssouli, G.v. Bochmann, Y. Lahav
(Eds.), SDL’99 – The Next Millennium, Proc. Of the 9th SDL Forum, Elsevier Sciences B.V.,
July 1999

[Gurevich 1993] Y. Gurevich. “Evolving Algebras 1993: Lipari Guide”. In E. Börger, editor,
Specification and Validation Methods, pages 9-36, Oxford University Press, 1995

[Gurevich and Huggins 1996] Y. Gurevich and J. Huggins: “The Railroad Crossing Problem:
An Experiment with Instantaneous Actions and Immediate Reactions“. In 2�
�"�

� '��A?8,
volume 1092 of LNCS, pages 266-290, 1996

[ITU 1999a] ITU-T Rapporteur, “Question 6/10. Introduction of Time Semantics in SDL“.
Temporary Document 41, Geneva, November 1999

[ITU 2000] ITU-T Recommendation Z.100 Annex F: SDL Formal Semantics Definition,
International Telecommunication Union, Geneva, 2000

[ITU 1999b] ITU-T Recommendation Z.100: Languages for Telecommunications Applications
- Specification and Description Language (SDL), International Telecommunication Union,
Geneva, 1999

[ITU 2001] SDL Formal Semantics Project. ITU-T Study Group 10: SDL Semantics Group.
URL: http://rn.informatik.uni-kl.de/projects/sdl/

1049Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...

