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���
�� In November 1999, the current version of SDL (Specification and Description 
Language), commonly referred to as SDL-2000, has passed ITU-T, an international 
standardization body for telecommunication. The importance and acceptance of SDL in the 
telecommunication industry surpasses that of UML, which can be seen as the major competitor. 
A crucial difference between SDL and UML is the existence of a formal SDL semantics as part 
of the international standard, which has a positive impact on the quality of the entire language 
definition. In this paper, we treat fundamental questions concerning practicability, adequacy 
and maintainability of the formalization approach, provide insights into the formal semantics 
definition and point out several effects on the SDL standard. 

�	 !������ SDL, Specification and Description Language, ASM, Abstract State Machines, 
FDT, Formal Description Technique, Formal Semantics 

��
	��� � D.3.1, F.3.2., F.4.3. 
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�����
����

The development of ���������	
	���	
�����������	��	
����������� [ITU 1999b] dates 
back to the early 70ies, when the need for a design language to specify the behavior of 
distributed real-time systems in general and telecommunication systems in particular 
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became apparent. Since 1976, SDL is standardized by ITU2, and in intervals of 4 
years, upgrades of this first SDL standard are officially released. Over a period of 
more than 20 years, SDL has matured from a simple graphical notation for describing 
a set of communicating finite state machines to a sophisticated specification technique 
with graphical syntax, data type constructs, structuring mechanisms, object-oriented 
features, support for reuse, companion notations, tool environments and a formal 
semantics. Thus, SDL satisfies the primary needs of system developers, and is being 
broadly applied in industry. 

It took more than 10 years of language development until the semantics of SDL 
has been defined formally in 1988, upgrading the notation to a formal description 
technique. This formal semantics, which was based on a combination of the VDM 
meta language Meta-IV and a CSP-like communication mechanism, has been 
maintained and extended for subsequent versions of SDL in 1992 and 1996. 
Essentially, the formal semantics is given by a set of Meta-IV programs that take an 
SDL specification as input, determine its static correctness, perform transformations 
to replace certain language constructs, and interpret the specification. 

In November 1999, a new version of SDL referred to as SDL-2000 has been 
approved by ITU. SDL-2000 incorporates important new features, including object-
oriented data type definitions, a unified agent concept, hierarchical states, and 
exception handling. Based on the assessment that the existing Meta-IV programs 
would be too difficult to extend and maintain, it was decided to conceive a new 
formal semantics for SDL-2000 from scratch. For this purpose, a special task force, 
the SDL Semantics Group [ITU 2001], consisting of experts from Germany and China 
including the authors of this paper, was formed in 1998. The formal semantics defined 
by this group has been officially approved by ITU in November 2000, when it has 
become Annex F to Z.100, the SDL standard, and thus part of the SDL language 
definition [ITU 2000]. 

Before defining the SDL semantics formally, several design objectives have been 
identified. Among these are intelligibility and conciseness, correctness and 
maintainability. Additionally, executability has become a key issue, which calls for an 
operational formalism with readily available tool support. For this and other reasons, 
��������� ����������	���� ������ introduced by Yuri Gurevich [Gurevich 1993] have 
finally been selected as the underlying formalism. To support executability, the 
formal semantics defines, for each SDL specification, ��
������� ���� �
��, which 
enables SDL-to-ASM compilers. For a substantial subset of SDL, such a compiler has 
been developed to show the feasibility of this approach. 

The paper treats fundamental questions concerning the practicability, suitability 
and robustness of our formalization in detail. Technically, this is achieved by 
exemplifying the treatment of an illustrative fragment of the formal semantics, 
namely a dynamic process creation embedded in a simple signal-triggered transition. 
Going down all the way from the ����	����� ��������� ������� ���� ����� to an 
executable behavior description, resulting from the generated SDL abstract machine 
model, illustrates steps (3) to (5) of the following main steps, namely: (1) mapping of 

                                                 
2 SDL is defined by ITU-T, the Telecommunication Sector of the International 
Telecommunication Union, in Recommendation Z.100. 
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non-basic language constructs to the core language, (2) checking of static semantics 
conditions, (3) compilation of the AST to the �����������������	��� ����� model, 
(4) definition of the ���� ��
�����, and (5) their execution by the ���� �	������
����	��������. For a survey of related work, the reader is referred to [Eschbach et al. 
2000]. 

Section 2 addresses fundamental questions concerning the practicability, 
suitability and robustness of the formalization approach. In Section 3, we illustrate 
some basic features of the SDL language by an example, which is used throughout the 
paper to provide some deeper insights into the formal SDL semantics. The formal 
semantics can be roughly divided into the static semantics dealt with in Section 4, and 
the dynamic semantics treated in Section 5. We summarize the impact of this work on 
the SDL-2000 standard in Section 6, and give a brief outlook in Section 7. 

�� �$���	��	������%		���

This section addresses fundamental questions concerning the practicability, suitability 
and robustness of our formalization approach. The emphasis here is on pragmatic 
aspects rather than on technical ones. To illuminate the rational behind our choices for 
the underlying conceptual framework, we focus on those arguments that we believe 
are meaningful beyond the scope of the work outlined in the following sections. 

Unlike traditional engineering disciplines that are well established, e.g. like 
mechanical and electrical engineering, systems engineering deeply relies on informal 
documentation. Indeed, such informal documentation may be informative and 
necessary. Still, it is informal and as such it often is as problematic as useful when it 
comes to specifying properties of technical systems with mathematical precision. In 
fact, informal descriptions may be, and often are, ���	��
��, 	��
������, and even 
	��
��	�����. Furthermore, they are not executable and thus provide only very limited 
support for experimental validation, which is ultimately needed for checking the 
accuracy of a model against our intuitive understanding of the expected system 
behavior; indeed, it often is the only way to fully understand the implications of the 
specified system behavior. 

Consequently, reliable specifications of complex technical systems must go 
beyond informal descriptions. Additional information is needed for a clear separation 
of concerns, to fix the loose ends and to resolve ambiguities and inconsistencies. 
Guided by pragmatic needs, we construct our formal model of SDL starting from the 
informal language definition of Z.100. To formalize the static and dynamic properties 
of SDL appropriately, we have to take into account the constraints imposed by the 
industrial design context in which this work is carried out. 

�&"� ���	��	������	��������

Before and during the design of a formal semantics, a number of decisions have to be 
made. In order to be intelligible and maintainable, the formal semantics should be 
�
��	��, which is of particular importance for “rich” languages. A pragmatic approach 
to achieve this objective is “bottom-up”: starting point is a set of core language 
constructs for which a formal semantics is directly defined. Subsequently, this core 
language is extended by language constructs that are defined “syntactically”, i.e. by 
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transformation to the core language, sometimes called “normalization”. In case of 
abbreviations, the distinction between core language and syntactical extensions is 
straightforward. In other cases, the decision may be not obvious and may have a 
substantial impact on the organization of the language definition. For instance, in an 
object-oriented language, inheritance can either be considered an abbreviation and 
consequently be defined by transformations, or be given a formal semantics directly. 

An important design decision concerns the ��������	�����
��� that underlies the 
formal semantics. As a general guideline, the model should fit the language, not vice 
versa. If, for instance, the language has structuring mechanisms, it should be possible 
to represent system structure in the formal model. If a particular interaction paradigm, 
for instance, asynchronous interaction among system components, is used in the 
language, this should be reflected in the formal model. If real time is an issue, the 
formal model should support a suitable notion of time. If the language addresses 
concurrent systems, the model should provide the desired model of concurrency. 
Finally, the mathematical formalism should be sufficiently expressive to capture 
every language aspect. Any deviation from this guideline will create a gap between 
the language and its formal semantics, reducing both intelligibility and 
maintainability. 

Another design decision is the choice of an appropriate level of atomicity 
according to the language description. The SDL standard, for instance, claims the 
SDL level of atomicity to be on expression level, i.e. each part of an expression 
results in a separate step. However, this is slightly unfortunate as there are two 
conditions to set the level of atomicity. The first condition is time, which comes in at 
expression level by the �
� expression. It also comes in at transition level by timers. 
The second condition is communication, which comes in at transition level as well. 
Based on these observations, the SDL semantics has chosen the finest of these two 
levels, i.e. expressions. The formal semantics reflects exactly the chosen level of 
atomicity. 

�&�� '�!�
��(�
�����$�����	�
�	��)�

The problem of turning English into mathematics and mathematical definitions into 
executable models raises the question of “�
�� �
� ������	��� ���� �
���������� 

� ����
������	��� 

����	 ��	
�!”" Defining semantics by a mapping to a well-defined 
semantic basis, for instance, as done by the compilation of SDL actions to SAM code, 
is a well-known technique, but is often considered to be as dangerous as helpful. In 
particular, this leads us to the question of “��
� #��	������ ���$
�� #��	
	��� ����
�
���������� 

� ��	�� ����	��� ���� �	��� �������� �
� ��	��� 
�	�	�!”. Regarding the 
standardization process there are actually two answers: 

• Considered as a starting point for the development of a comprehensive formal 
semantics, the current situation indeed requires validating the correctness of the 
formal model against the informal language definition of Z.100 (except for those 
parts, where the semantics is exclusively defined by the formal model). Given 
that there is no way to prove correctness in a strict mathematical sense, the best 
one can do to make the resulting model clear, concise and intelligible is avoiding 
formalization overhead as far as possible. 
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• Once the formal semantics is in use and its accuracy has been established with a 
sufficient degree of confidence, the formal model should become the basis for 
standardization. The informal description then would have the role of providing 
additional explanations that may be sufficient as reference whenever the ultimate 
degree of detail and precision is not needed. The obvious advantage is that one 
avoids the notorious validation problem by relying on an approach that implies 
correctness by construction. 

(*�	���	�
��� +�����
���& Executability plays a key role in validating the formal 
semantics: practitioners of SDL can be given a computer program that represents the 
SDL formal semantics. Without detailed knowledge of the internal structure of the 
formal semantics, users can still validate whether a given system definition behaves as 
they expect. If there is a conflict between the expectation and the behavior observed, 
the source of this mismatch needs to be analyzed, potentially with the help of a 
language expert. Possible causes of such a mismatch are: 

• The user expectations do not match the understanding of SDL in the community. 

• The user expectations do match the understanding of SDL, but the standard says 
that SDL works in a different way. The language committee will have to decide 
whether to change the standard, or whether to educate users. 

• The user expectations match the English definition of the language, but not the 
formal semantics, and the committee considers the English definition as the 
correct one. This means there is an error in the formal semantics, which must be 
corrected. 

• The user expectation matches the formal semantics, still the executable behaves 
differently. That means there is an error in the tool chain producing the 
executable (or in the computer system executing it), which must be corrected by 
the authors of the tools. 

 
Considering these potential sources of incorrectness, it becomes clear that the 

generated computer program should not be normative (i.e. it is not a reference 
implementation). Since there are many different sources of error, the standard 
currently says that neither the English text nor the formal semantics take precedence 
over one another.3 Instead, in case of conflict, the committee must decide what the 
intended semantics is, leading to a revision of the standard. 

�&,� '�!�
�����	������-����.���	
)�

Regarding the very nature of standardization as an ongoing activity, there is a high 
dynamics in the development and maintenance of a standard. In fact, the formal SDL 
semantics has been conceived in parallel to the language definition itself. While 
developing the formal semantics, the definition of SDL has been revised continuously 

                                                 
3 In all previous versions of Z.100, the informal language definition was considered to 
be the more reliable part and as such took precedence over the formal semantics. 
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introducing a number of substantial changes and extensions. Such dynamics demands 
for robustness of the formalization approach as a prerequisite for practicability. 
Conciseness and flexibility therefore is of primary importance for the choice of the 
modeling framework. 

,� ���������

In Figure 1, an excerpt of the SDL specification of a simple system ���%��& is shown. 
The system is structured into the process sets ����������� and �����
���" Initially 
these process sets contain one and zero processes that are instances of the process 
types ���������� and ���
���, respectively. Interaction between process instances 
and the environment occurs only in the form of asynchronous signal exchange via 
typed channels. In the example, bi-directional channels '( and ') are defined and 
associated with signal lists that are explicitly declared. 

In addition to the system structure, the process type ���������� is specified in 
Figure 1. It basically consists of a state machine definition with the following 
behavior. A start transition performs some initial actions leading to state �. which 
identifies another group of transitions that start in state �. The transition shown in 
Figure 1 is triggered by an input signal �	�(, and when fired, will create an instance of 
the process set �����
���, send signals �	�) and �	�* and return to state �. The 
destination of these signals is determined by the connection structure. Signal �	�( 
carries an +������ value, which is passed as a parameter to the creation of �����
���. 

 
 system theBank 

Account 

Department 
              C1 
[(Bacc1)]  [(Cacc1)] 

             C2 
[(Bacc2)]  [(Cacc2)] 

aDepartment: 
Department (1) 

anAccount: 
Account (0) 

signal Sig1(Integer), 
Sig2, Sig3; 
... 
signallist Cacc1 = ...; 

process type Department 

... 

 dcl x integer; 

Sig2, Sig3 

 S 

Sig1(x) 

 S 

. .

anAccount(x+2) 

 

�
,	�����(-�.�������

�������������������	
	���	
��

 
The complete language definition of SDL is given in ITU-T Recommendation 

Z.100 [ITU 1999b]. SDL possesses extensive structuring mechanisms to define 
hierarchical system architectures, which can evolve during system execution. It offers 
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advanced control concepts like hierarchical states and exceptions. Reuse aspects can 
be expressed by inheritance as well as by defining packages, i.e., libraries of SDL 
types. Inheritance is also supported by the new data type definition part of SDL. 
Furthermore, SDL supports the specification of real-time behavior to some extend4. 

/� �
�
����	���
����

The static semantics covers transformations and checks that can be done before 
executing a specification. In the scope of SDL, there are two major parts of the static 
semantics: 

• Correctness conditions: As usual, the SDL concrete syntax is given in a context-
free way. Additional constraints are imposed using context conditions. 

• Transformations: In order to cope with the complexity of the language SDL, the 
standard Z.100 identifies certain concepts to be core concepts and defines 
transformations of various other concepts into these core concepts. 

 
Starting point for defining the static semantics of SDL is a syntactically correct 

SDL specification as determined by the SDL grammar. In Z.100, a concrete textual, a 
concrete graphical, and an abstract grammar are defined using Backus-Naur-Form 
(BNF) with extensions to capture the graphical language constructs. From such a 
syntactically correct SDL specification, an AST is derived by standard compiler 
techniques (namely, parser construction for a context-free grammar). The structure of 
this AST is defined such that it resembles the concrete textual and the concrete 
graphical grammars. The correspondence between the concrete grammars and a first 
abstract syntax form, called AS0, is almost one-to-one, and removes irrelevant details 
such as separators and lexical rules. A second step translating AS0 to the final abstract 
syntax form, called AS1, is formally captured by a set of transformation rules. This 
results in the following structure of the formalization (see Figure 2): 

• The translation step from AS0 to AS1 is formally captured by a set of 
transformation rules. Transformation rules are described in so-called �
����
���������� of Z.100, and are formally expressed as rewrite rules.  

• After application of the transformations, the structure of the AS0 tree is almost 
the same as an AS1 tree. This means that the mapping from AS0 to AS1 is almost 
one-to-one. 

• The correctness conditions are split into conditions on AS0 and AS1 (see Figure 
2). They are formalized in terms of first-order predicate calculus. 

 

                                                 
4 Current activities within ITU-T Study Group 10 include the development of further 
language constructs for dealing with real-time aspects. 
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Concrete Syntax (AS0)

Abstract Syntax (AS1)

Mapping

Transformations

Conditions AS1

Conditions AS0

 
�

,	�����)-�����	����������

�����
 

To make this setup work, a number of auxiliary functions are defined on the 
syntax nodes. These functions serve as attributes of the nodes, resulting in an 
����	����� abstract syntax tree. Most of the attributes are derived from other properties 
of the tree. Some attributes are dynamic and can be assigned. 

The transformations are formalized by rewrite rules. These rules can be applied in 
any order as long as they are matching. However, this brings the usual problems of 
termination and confluence. Both problems are treated by defining a sequence of 
disjoint transformation phases. In each phase, the number of applicable rewrite rules 
is sufficiently small such that it can be efficiently checked for termination and 
confluence. In most cases, this check is simple because the rules apply to disjoint 
parts of the tree, and they never restore the conditions for their application.  

0� � �������	���
����

The dynamic semantics is formalized starting from the ��������� ���������( of SDL 
[see Figure 3]. Basically, there are three different aspects to deal with: ���������, 
����#	
� and ����. We restrict to those SDL specifications in AS1 that comply to the 
static semantics of SDL. For those specifications, a generic behavior model is derived 
using the ASM formalism as underlying mathematical framework for a rigorous 
semantic definition of the dynamic properties of SDL. The core of this model is called 
the ���� �������������	�� �����. Conceptually, we model the possible behaviors 
associated with a given SDL specification in terms of a set of abstract machine ����. 
The definition of the SAM splits into three main parts: 

(1) basic �	�����
�
� concepts (signals, timers, exceptions, gates, channels), 

(2) various types of ASM ������ (modeling corresponding SDL agents), and 

(3) behavior ��	�	�	#�� (SAM instructions). 
 

Technically, the definition of the SAM comes as a special �	���	����������/�	���
���, a computation model explained informally at the end of this section. 
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'LVWULEXWHG�5HDO�7 LPH�$60�

3ULP LWLYHV�

6'/�$EVWUDFW�0DFKLQH �6$0� 

Interface 

'DWD�

$EVWUDFW�6\QWD[ $6� 

Com pilation

%HKDYLRU�

Initialization

$JHQWV�6LJQDO�)ORZ

6WUXFWXUH�

 

,	�����*-�0#��#	���

����������	��������	���
 

Figure 3 outlines the treatment of structural, behavioral and data related aspects in 
our definition of the mapping of SDL specifications to the SAM model. We can 
identify three fundamental concepts: 

• The �
��	���	
� defines two compilation functions over  the AST derived from 
an SDL specification. It yields a mapping of SDL transitions to sequences of 
SAM primitives. More specifically, the result of the compilation is a set of 
behavior primitives in combination with the control flow information needed for 
modeling the transitions of the SDL agents. Conceptually, the compilation is 
based on standard compiler techniques, therefore, it will not be elaborated further 
in this paper (see [ITU 2000] for details). 

• The 	�	�	��	 ��	
� defines a pre-initial state of an SDL system and several 
initialization programs. The initial system state is then reached by creating a 
distinguished SDL system agent, and by activating this agent in the pre-initial 
state. The initialization recursively unfolds the static structure of the system, 
creating further SDL agents as specified. In fact, the same process is initiated in 
the subsequent execution phase, whenever new SDL agents are created. From 
this point of view, the initialization merely describes the instantiation of the SDL 
system agent. This way, the initialization is even interleaved with the execution. 

• The definition of the data semantics is encapsulated and separated from the rest 
of the semantics by a well-defined 	����
���. The use of an interface allows us to 
replace the data model, if for some other application domain another data model 
is more appropriate than the built-in model. Moreover, also the built-in model can 
be changed the same way without affecting the rest of the semantics. 

 
On top of the “logical hardware”, as defined by the SAM, the ���� �	������

����	��� ����� provides typical operating system functionality (see Figure 4). As 
such, it provides suitable abstractions by a set of macros and functions, which 
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determine the structure of an SDL system at runtime, the structure of agents, the 
selection of transitions and their firing. 

 

 6'/�9LUWXDO�0DFKLQH (SVM) 

'LVWULEXWHG�5HDO�7 LPH�$60�

5XQWLPH�6\VWHP�6HOHFWLRQ� )LULQJ� 3ULPLWLYHV�

6'/�$EVWUDFW�0DFKLQH (SAM) 

$JHQWV�6LJQDO�
)ORZ

Concurrency Time Asynchronicity  
�

,	�����1-�0#��#	���

����������	��������	���
 
������� �	���
��� ���	�. The dynamic semantics associates with each SDL 
specification a particular �	���	����������/�	������. This computation model is based 
on fairly general notions of �
��������� and �	��; furthermore it is �������
�
�� and 
directly supports the abstract operational view of the informal language definition. 
Indeed, it is a reasonable choice for a straightforward treatment of fundamental SDL 
concepts. We explain here the underlying mathematical model in an informal style at 
an intuitive level of understanding. For a rigorous mathematical definition of the 
theory of Abstract State Machines, see the original literature [Gurevich 1993] and 
[Gurevich and Huggins 1996]. 

Intuitively, the computation model of distributed ASMs consists of a collection of 
autonomously operating ASM ������. Starting from a distinguished initial state, the 
agents perform concurrent computations interacting with each other by reading and 
writing shared locations of global machine states. The underlying semantic model 
regulates interaction between agents such that potential conflicts are resolved 
according to the definition of ����	�����
����������� [Gurevich 1993]. 

Formally, agents come as elements of a dynamically growing and shrinking 
universe, or domain, �*(17., where we associate with each agent a ��
���� defining 
its behavior in terms of some transition rule. Complex transition rules are inductively 
defined as compositions of guarded update instructions using simple rule constructors. 
We distinguish different types of agents according to different types of programs as 
represented by a static domain 252*5$0. Collectively these programs form the 
distributed program of a distributed ASM. 

By introducing a notion of global system time and imposing additional 
constraints on machine runs, one obtains real-time behavior, with agents performing 
instantaneous actions in continuous time. In this model, agents fire their rules at the 
moment they are enabled, i.e. react immediately (see 5.1.1). 
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0&" �������
���
����$��	�

The SDL Abstract Machine (SAM) consists of the following parts: 

• �	�����,�
���
���, which defines a uniform treatment of signal flow related 
aspects, in particular, the communication of agents through exchange of 
signals via channels connected to gates, 

• ����������, which model the SDL concepts ‘SDL agent’, ‘SDL agents set’, 
and ‘SDL channel’, and 

• %���#	
��2�	�	�	#��, which can be seen as the instructions of the SAM. 

We start by introducing the underlying notion of real time. 

0&"&"� �	���.��	�

SDL is promoted for the specification and design of distributed real-time systems. 
However, its actual support for dealing with real-time behavior is essentially limited 
to delaying mechanisms and timeout mechanisms. Such instruments are descriptive 
rather than prescriptive or regulating; in particular, there is no way of enforcing a 
desired timing behavior. Based on the underlying notion of global system time, signal 
communication over channels as well as operations of process instances by default are 
subject to arbitrary but finite delays. SDL provides a simple timer concept for 
handling timeout events.5  

We introduce a discrete notion of time for the abstract representation of global 
system time as represented by the SDL expression now. 

Z.100, Section 12.3.4.1 Now Expression 

The now expression is an expression which accesses the system clock variable to 
determine the absolute system time. 

 
Our notion of time reflects the view that one can only observe, but not control, 

how physical time evolves. Time values are represented as real numbers by the 
elements of a linearly ordered domain �,0(. We can assume that �,0( ⊆ 3($/�and 
define the relation “≥” on time values through the corresponding relation on real 
numbers. A domain �85$7,21 represents finite time intervals as differences between 
time values. 

������ �,0( 
������ �85$7,21 

The global system time, as measured by some discrete clock, is represented by a 
so-called �
�	�
���, nullary function �
� taking values in �	��. A monitored 

                                                 
5 Current activities within ITU aim at extensions of SDL that allow for more 
sophisticated specification and analysis of timing behavior [ITU 1999a]. Conceptually, 
our model of real time underlying the formal definition of SDL takes such extensions 
already into account. 
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function represents an interface to the external world and, as such, may have different 
values in different states depending on actions and events in the system environment. 
We can assume here (as an integrity constraint on valid runs) that the values of �
� 
change monotonically over machine runs. 

����
��	� �
� : �,0(�
 

Similar to the real-time ASM model introduced in [Gurevich and Huggins 1996], 
ASM agents in our model react instantaneously, i.e. they fire their rules as soon as 
they reach a state in which the rules are enabled. Strictly speaking, one must assume 
here some non-zero delay to preserve the causal ordering of actions and events; 
though, such minimal delay is immaterial from a practical perspective of view. 
Computation steps of agents are ��
�	� but, nevertheless, they are considered as time-
consuming actions such that the following condition holds: 

Z.100, Section 11.12.1 Transition Body 

An undefined amount of time may pass while an action is interpreted. It is valid 
for the time taken to vary each time the action is interpreted. It is also valid for the 
time taken to be the same at each interpretation or for it to be zero (that is, the 
result of now is not changed). 

 
From an SDL point of view, a purely monitored time is not sufficient. In the 

current SDL standard, there are non-delaying channels that are supposed to transfer 
their signals without time delay. In the extensions discussed for a timed version of 
SDL, specific restrictions on the time consumption can be placed on all kinds of 
actions. Conceptually, this is solved by defining integrity constraints on the time 
progress, thus restricting the set of possible runs. 

0&"&�� ����������!����	��

The signal flow model defines communication primitives for signal-based 
communication between SDL agents. In particular, it defines the transportation of 
�	����� through delaying and non-delaying �������� connecting agents via their �����. 
Furthermore, this model defines �	���� and ������	
�� as special kinds of signals. 
Thus, the signal flow model forms the core of SDL’s asynchronous communication 
model. 

There is a derived domain �,*1$/ representing the set of signal types as declared 
by an SDL specification. �,*1$/ also includes timers and exceptions, which are 
modeled as signals, too. Dynamically created signal instances are elements of a 
derived domain �,*1$/+167. Functions on signals are �	����������, �
���, and #	���� 
yielding the sender process, the destination, and optional constraints on admissible 
communication paths, respectively. Signals received at an input gate of an agent set 
are appended to the input port of an agent according to the value of �
���. 
Simultaneously arriving signals matching the same agent instance are appended, one 
at a time, in an arbitrary order. Signals are discarded if no matching receiver instance 
exists. 
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#���
�1�
	������2�
��
�1�
	�& Exchange of signals between SDL agents (such as 
processes, blocks or a system) and the environment is modeled by means of ����� 
from a controlled domain 4$7(.� A gate forms an interface for ���	��� and 
��	�	����	
��� communication between two or more agents. Accordingly, gates are 
either classified as 	���������� or 
�����������" 

Signals need not reach their destination instantaneously, but may be subject to 
delays. Therefore, it must be possible to send signals to arrive in future. Although 
those signals are not available at their destination before their arrival, they are already 
associated with their destination gates. That is, a gate must be capable of holding 
signals that are in transit (have not yet arrived). Hence, to each gate a possibly empty 
�	�����5���� is assigned [see Figure 5]. One can now represent the relation between 
signals and gates in a given SAM state by means of a dynamic function �������� 
defined on gates: �������� specifies, for each gate � in 4$7(, the corresponding �	�����
���	#��� at �"�

����������������������������������������������������������L ∈ �,0(

��	������	�������	�       �"5����

���������������������������
�

�

�6�7�	��	���	�����M�7��L

� ∈ 4$7(

�"��������

 

,	�����8-��	�����	�������������������

�$���	��3	$�-���&�SDL channels consist of either one or two unidirectional ��������
�����"�In the SAM model, each channel path is identified with an object of a derived 
domain �,1.. The elements of �,1. are SAM agents. Their behavior is defined 
through LINKPROGRAM consisting of a single rule FORWARDSIGNAL as defined 
below. Think of �,1. elements as point-to-point connection primitives for the 
transport of signals. 

A link agent � performs a single operation: signals received at gate �.
�
� are 
forwarded to gate �.�
" That means, � permanently watches �.
�
� waiting for the next 
deliverable signal in �.
�
�"5����. Whenever � is applicable to a waiting signal �	 (as 
identified by the �.
�
�"5����"����), it attempts to remove �	 from �.
�
�"5���� in 
order to insert it into �.�
"��������. This attempt needs not necessarily be successful 
as, in general, there may be several link agents competing for the same signal �	. 

But, how does a link agent � know whether it is applicable to a signal �	? Now, 
this decision does of course depend on the values of �	.�
���, �	.#	����, �	.�	�������� 
and �.�	��. In other words, � is a legal choice for the transportation of �	 only, if the 
following two conditions hold: (1) �	.�	�������� ∈ �"�	��� and (2) there exists an 
applicable path connecting �.�
 to some final destination matching with the address 
information and the path constraints of �	. Abstractly, this decision can be expressed 
using a predicate ����	�����9 where we refer to [ITU 2000] for the definition of further 
details. 

1036 Eschbach R., Glaesser U., Gotzhein R., von Loewis M., Prinz A.: Formal Definition ...



  

FORWARDSIGNAL ≡ 
  �
 ���
"
�
�"5���� ≠ ����� 
$	� 
   �	
 �	 = ���
"
�
�"5����"��������
    �
�����	�������	"�	��������9�	"�
���9�	"#	����9���
"
�
�9���
��
$	��
     DELETE(�	9���
"
�
�) 
     INSERT(�	9�
�:���
"�����9���
"�
) 
     �	"#	�����:= �	"#	���� \ {����
"
�
�"�
����("�
��"��(�
+�9�
        ���
.�
����("�
��"��(�
+�} 
    	���
�
   	���	
�
  	���
�
 

.��	��� ���� (*�	�
����& A particular concise way of modeling timers is by 
identifying timer objects with timer signals. More precisely, each ���	#� timer is 
represented by a corresponding timer signal in the schedule associated with the input 
port of the related process instance. Like timers, exceptions are identified with 
exception signals. Below we present the solution for the timer model. 

A static domain �,0(5�represents the set of all timer types as identified by 
the AST of a given SDL specification. Another dynamic domain �,0(5+167 
holds the respective timer instances created at run time. 

�,0(5 =def {�	� ∈ +����	
	���:  �	�"	��
;
����( ∈ �	���/��
	�	�	
�} ⊂  �,*1$/�

�,0(5+167 =def 2+' × �,0(5 × �$/8(* ⊂  �,*1$/+167�
 

The information associated with timer signals is accessed using the functions 
defined on �,*1$/. 

��
�-	�.��	���

SDL defines a timer to be ���	#� if the timer has expired but the resulting timer signal 
has not yet been consumed by the related process. Each ���	#� timer is represented by 
a corresponding timer signal in the schedule associated with the input port of the 
related process instance. To indicate whether a timer instance ��	� is active or not, 
there is a corresponding derived predicate ���	#�: 

���	#����	-�,0(5+167�: %22/($1�=def����	�∈����
"	��
��"�������� 

.��	��2�	��
�����

There are two operations on timers as specified below. The process agent to which the 
timer belongs executes these operations one at a time. A static function �����	
� is 
used to represent default duration values as defined by an SDL specification under 
consideration. A default duration value is used to calculate the expiration time if not 
specified otherwise. 

�
�
�� �����	
�: TIMER → DURATION 
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SETTIMER(��: �,0(5, #��5�:��$/8(*, �:��,0() ≡ 
  �	
 ��	 = �4��,0(5+167(���
"���
, ��, #��5�) ���
   �
 � = ����
	��� 
$	� 
    ���
"	��
��"�������� := 	�����(��	, �
�+ ��.�����	
�, 
         ������(��	9����
"	��
��"��������)) 
    �	"���	#�� := �
� + ��.�����	
� 
   	��	 
    ���
"	��
��"��������:=	�����(��	,�,������(��	9 ���
"	��
��"��������)) 
    �	.���	#�� := � 
   	���
 
  	���	
�

RESETTIMER(��: �,0(5, #��5�:��$/8(*) ≡ 
  �	
 ��	 = �4��,0(5+167(���
"���
, ��, #��5�) �� 
   �
 ���	��(��	) 
$	� 
    DELETE(��	9����
"	��
��) 
   	���
 
  	���	
�

0&"&,� ������	�
��

SAM agents define the SDL concepts ‘SDL channel’, ‘SDL agent’, and ‘SDL agent 
set’ (see Figure 6). The state information of an SDL agent is collected in an ������
�
���
����
�&. The agent control block is partially initialized when an SDL agent (set) 
is created, and completed/modified during its initialization and execution. Since part 
of the state information is valid only during certain activity phases, the agent control 
block is structured accordingly. 

 

system theBank

Account

Department
  C1        [(Cacc1)]
[(Bacc1)]

aDepartment:
Department (1)

  C2         [(Cacc2)]
[(Bacc2)]

anAccount:
Account (0)

signal Sig1(Integer),
Sig2, Sig3;
...
signallist Cacc1 = ...;

AGENT

         LINK

  SDLAGENTSET

    SDLAGENT

 

,	�����<-������������
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The structure of the agent’s ����������	�� is directly modeled, and built up during 
agent initialization. The state machine structure is exploited in the execution phase, 
when transitions are selected, and states are entered or left. 

0&"&/� 3	$�-����5����
�-	��

Primitives are modelled as actions with attached labels. An action is an element of a 
derived domain �&7,21, which is defined as the disjoint union of basic action 
domains such as '5($7( or 087387" An element of a basic action domain provides 
the required information in order to fire and evaluate the action. 

25,0,7,9( =def �$%(/ × �&7,21 
�&7,21 =def '5($7( ∪ 087387 ∪... 
 

The ������ primitive specifies the dynamic creation of an SDL agent. An action 
of type '5($7( is defined as a tuple consisting of an agent definition, a sequence of 
value labels, and a continue label. An 
����� primitive is defined as a tuple consisting 
of a signal, a sequence of value labels, a value label, a set of identifier which 
determines the receiver of the message, and a continue label. 

'5($7( =def �����/��
	�	�	
� × �$/8(�$%(/* × '217,18(�$%(/ 
087387 =def �,*1$/ × �$/8(�$%(/* × �$/8(�$%(/ × �,$�5*×'217,178(�$%(/�
 

Firing of actions is defined by the selection and evaluation of the corresponding 
SAM primitives, resulting from the compilation. The function ������������ uniquely 
identifies a behavior primitive; therefore, the choose in the rule below does not 
introduce non-determinism. The evaluation of the macro FIREACTION finally leads to 
an update set that is executed in a single state transition of the distributed real-time 
ASM. 

 
FIREACTION ≡ 
� � �$���	 �: � ∈ %(+$9,25 ∧ �.���$%(/ = ���
.������������ 
   EVALUATE�6�.��25,0,7,9(7 

The evaluation of an action is defined by the macro EVALUATE. Depending on the 
action, a specific macro, such as EVALCREATE or EVALOUTPUT, is selected. 
 

EVALUATE�(�: �&7,21) ≡ 
� � �
 ��∈�'5($7(�
$	� EVALCREATE (�)�
� � �
 ��∈�087387�
$	� EVALOUTPUT (�)�
  ... 

The macro EVALCREATE defines the evaluation of the ������ primitive. As part of 
this evaluation, the SDL agent set ��� where an additional agent is to be added is 
determined (first line of macro EVALCREATE). For this agent set, it is checked 
whether there is a maximum number of SDL agents, and whether this maximum 
number has not yet been reached. In the latter case or if there is no maximum number, 
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a new SDL agent of the type defined in the action is created (macro CREATEAGENT, 
see below). In addition, ������������ is set to the next action. 

EVALCREATE (�: '�����) ≡ 
� � �	
 ��� = ��&�({��� ∈ �'/�*(17�(7: ���.�
����( = 
� � � �.�������/��
	�	�	
�}) �� 
   �
 ���.�
����(.��;�����/

/	���.�����/�������≠����
	��� 
$	� 
    �	
 � = |{�� ∈ �'/�*(17: ��.
���� = ���}| �� 
     �
 � < ���.�
����(.��;�����/

/	���.�����/������ 
$	� 
      CREATEAGENT (���,���
.���
, 
� � � � � � � ���.�
����(.�������/����/��
	�	�	
�) 
     	��	�
      ���
.


���	�� := ���� 
   	��	�
    CREATEAGENT (���,���
.���
, ���.�
����(.�������/����/��
	�	�	
�) 
  ���
.������������ := �.��'217,18(�$%(/�
�

To create an agent, the controlled domain �*(17 is extended. The control block 
(see Section 5.2) of this new agent is initialised. An input port for receiving signals 
from other agents is created and attached to the new agent. Setting of agent modes 
and assignment of the SAM program AGENT-PROGRAM (see Section 5.2) complete 
the creation of the agent. 

CREATEAGENT (
�: �'/�*(17�(7,��: 2+',���: �����/����/��
	�	�	
�) ≡ 
� � 	*
	�� �*(17 !�
$ ���
   INITAGENTCONTROLBLOCK (��,�
�,���,����) 
   CREATEINPUTPORT (��) 
   ��.������
��( := 	�	�	��	���	
��
   ��.������
��) := 	�	�	��	�	��(�
   ��.��
���� := AGENT-PROGRAM�
� � 	��	*
	���

 
The output primitive specifies the sending of a signal. A signal output operation 

causes the creation of a new signal instance, and is defined by the macro 
SIGNALOUTPUT. 

EVALOUTPUT (�: 087387) ≡ 
  SIGNALOUTPUT(�.���,*1$/, #�����(�.���$/8(�$%(/��	8, ���
), 
    #����(�.���$/8(�$%(/, ���
), �.���,$�5*) 
� � � � ���
.������������ := �.��'217,18(�$%(/ 
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Name(Sig3)

Output

Name(Sig2)

Output

Name(S)

Nextstate

TerminatorActions

State-node

Transition

Input-node

Name(Sig1)

Name(S)

Name(anAccount)

Create

SAM Primitives

Sig2, Sig3

 S

anAccount

 S

Sig1

,	�����=-����������
��	���	
��

�������	�	�	#���
 

An excerpt of the Abstract Syntax Tree for the example in Figure 1 with some of 
the involved SAM primitives is shown in Figure 7. 

 
0&�� ����+��
�������$��	�

The �����	����������	�� (���) provides typical operating system functionality on 
top of the logical hardware as defined by the SAM. Under the control of the SVM, the 
programs LINK-PROGRAM, AGENT-PROGRAM and AGENT-SET-PROGRAM, which are 
associated with link agents, SDL agents and SDL agent sets, respectively, are 
executed. The SVM defines suitable abstractions by a set of macros and functions, 
which determine the structure of an SDL system at runtime, the structure of agents, 
the selection of transitions and their firing, finally leading to update sets. We will now 
sketch some aspects of the SVM, focussing on SDL agents and AGENT-PROGRAM. 
The complete definition of the SVM, comprising approximately 1200 lines of ASM 
definitions, is given in [ITU 2000]. 

SDL agents are the most complex active components of an SDL system at 
runtime. Therefore, we distinguish several activity phases, which in turn have several 
levels of sub phases. Phases and sub phases are identified by corresponding control 
states, as shown in the control state graphs of Figure 9, Figure 10, and Figure 11. On 
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the top level, the phases 	�	�	��	 ��	
� and ������	
� are distinguished (see Figure 8). 
After an SDL agent has been created – either at system initialization time or 
dynamically –, it enters the initialization phase. During this phase, the structure of the 
agent, which may consist of a hierarchical inheritance state graph, connection 
structure and further agents, is created in consecutive sub phases. Then, the agent 
enters the execution phase, where it remains until its termination. 

H[HFXWLRQLQLWLDOLVDWLRQ
initialised

terminated

created

 
�

,	�����>-�'
���
��������������

���������������#���(��
 

With each SDL agent, an ������ �
���
�� ��
�&, which keeps all information 
necessary to determine the current activity state of that agent, is associated. Formally, 
the agent control block is represented as a group of controlled functions, including: 

• ������
��(: top level control state of an SDL agent; depending on the 
activity phase, there can be up to 4 additional levels of control states, 
represented by further functions; identifying the control states of agents is 
good practice in operating systems design; 

• ������������: during the firing of a transition or the evaluation of an 
expression, this function identifies the currently executed action, thus taking 
the role of the agent’s program counter; 

• 	��
��: input queue of the agent containing the sequence of signals that have 
been sent to this agent and are waiting for consumption; 

• �	����'���&��: the signal of the input queue that is currently examined 
during the transition selection process; 

• �����	�	
�'���&��: transition that is currently examined during the transition 
selection process; 

• ���
: agent id, a unique identification of this agent as defined in SDL; this 
agent id represents an SDL function and therefore should be distinguished 
from the ASM function ���
; 

• ������: agent id of the sender of the last consumed signal. 
 
The behavior of SDL agents is defined by the program AGENT-PROGRAM (see 

below). Depending on the current top level control state represented by the controlled 
function ������
��(, a macro defining the corresponding activities is selected. 
Macros are hierarchically structured and thus provide useful abstractions. By using 
the ASM function ���
, the agent control block of the SDL agent that is running this 
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program is accessed. In certain situations of the execution phase, SDL requires the 
sequentialization of a group of SDL agents. This is formalized by defining an 
execution right that can be owned by at most one agent of a group. 

 
AGENT-PROGRAM 
�
 ���
.������
��( = 	�	�	��	 ��	
� 
$	� 
 INITAGENT 
�
 ���
.������
��( = ������	
� 
$	� 
 �
 ���
..���3	���2������ 
$	� 
  EXECAGENT 
 	��	�
  GETEXECRIGHT 

 
Execution of agents is modeled by alternating phases, namely transition selection 

and transition firing, preceded by a start phase. To distinguish between these phases, 
corresponding control states are defined (see Figure 9). When an agent is in sub phase 
������	�������	�	
� (������
��)), it attempts to select a transition, obeying a number 
of constraints. In sub phase 
	�	�������	�	
�, a previously selected transition is fired. 
Formally, this is defined by the macro EXECAGENT: 

 
EXECAGENT ≡ 
� � �
 ���
.������
��) = �����2���� 
$	��
   EXECUTIONSTARTPHASE 
� � �
 ���
.������
��) = ������	�������	�	
� 
$	��
   SELECTTRANSITION 
� � �
 ���
.������
��) = 
	�	�������	�	
� 
$	��
   FIRETRANSITION 
� � �
 ���
.������
��) = ��
��	�� 
$	��
   STOPPHASE 
 
 

H[HFXWLRQ

VHOHFWLQJ

7UDQVLWLRQ

ILULQJ

7UDQVLWLRQVWDUW3KDVH

VWRSSLQJ

 

,	�����?-�'
���
��������������

�����������-�������	
�����#���)��
 

In previous versions of SDL, selection of a transition consisted of checking a 
single major state of an SDL agent, as defined informally in Z.100 (Z.100, Section 
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11.2). With the incorporation of inheritance in SDL-92, this became slightly more 
complicated (Z.100, Section 8.3.3), but was resolved by a transformation step to keep 
the dynamic semantics stable. With the addition of composite states in SDL-2000, 
transformations are no longer feasible (Z.100, Section 11.11). Also, the complexity of 
the selection process can be substantial, as the formal semantics has to cover the most 
general cases with all possible combinations of transition triggers, composite states, 
and inheritance. Figure 10 gives a flavour of this complexity, as the refinement of the 
control state ������	�������	�	
� is shown. This is not the end, as the refinement may 
go 2 levels further. 

 

VHOHFWLQJ7UDQVLWLRQ

VWDUW
6HOHFWLRQ

VHOHFW
3ULRULW\
,QSXW

VHOHFW
,QSXW

VHOHFW
&RQWLQXRXV

VHOHFW
([FHSWLRQ

VHOHFW
)UHH$FWLRQ

VHOHFW
([LW

7UDQVLWLRQ

VHOHFW
6WDUW

7UDQVLWLRQ

 
,	�����(@-�'
���
��������������

�����������-������	�	
��������	
�����#���*��

 
In control state ������	�������	�	
� (see Figure 10), an SDL agent searches for a 

fireable transition. Z.100 imposes certain rules on the search order. For instance, 
priority input signals have to be checked before ordinary input signals, and these have 
in turn to be checked before continuous signals can be consumed. Furthermore, a 
transition emanating from a substate has higher priority than a conflicting transition 
emanating from any of the containing states. Finally, redefined transitions take 
precedence over conflicting inherited transitions. These and further constraints have 
to be observed when formalising the transition selection. 
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ILULQJ7UDQVLWLRQ

HQWHULQJ
6WDWH
1RGH

ILULQJ
$FWLRQ

OHDYLQJ
6WDWH
1RGH

LQLWLDOLVLQJ
3URFHGXUH

H[LWLQJ
&RPSRVLWH

6WDWH

 
,	�����((-�'
���
��������������

�����������-������	�	
��
	�	������#���*��

 
Firing of a transition is decomposed into the firing of individual actions, which 

may in turn consist of a sequence of steps. At the beginning of a transition, the current 
state node is left, which may entail the leaving of inner state nodes and the execution 
of exit procedures and exit transitions. At the end, either a state node is entered, or a 
termination takes place. 

FIRETRANSITION ≡ 
� � �
 ���
.������
��* = 
	�	�����	
� 
$	��
   FIREACTION 
� � �
 ���
.������
��* = ���#	�������;
�� 
$	��
   LEAVESTATENODES 
� � �
 ���
.������
��* = �����	�������;
�� 
$	��
   ENTERSTATENODES 
  ... 

 
Firing of actions including the execution of behaviour primitives has been 

addressed in Section 5.1.4. This ends the sketch of the Java Virtual Machine. 

0&,� ��
��

Integration of the semantics of data into the dynamic semantics is done by means of a 
functional interface. With such an interface, evaluations in the data part will have no 
side effects. This allows to express the data semantics with any formalism suitable for 
expressing functions, and therefore, it potentially allows to replace the data semantics 
with a different model. 

The data semantics of SDL consists of the following components: 

• Association of variables with values, 

• Evaluation of expressions, 

• Definition of predefined data, and 
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• Definition of user-defined data. 
 

To provide the notion of variables that are bound to expressions, the data 
semantics provides a domain �7$7(, whose elements represent associations of 
variables and values. Values, in turn, are elements of a domain �$/8(. 

In SDL, two different kinds of values are defined: those based on an object type 
have reference semantics; those based on a value type have value semantics. Since 
objects can be shared across SDL process agents, all agents within a process agent 
share the same �7$7(. Whenever a new agent or procedure is created, the state of the 
creator is extended with the variable bindings of the new agent. Since each multiple 
processes or procedures may use the same variable names within a state, they need to 
identify their portion of the state using a �7$7(+�. To access and modify variables, the 
following functions are provided: 

���	��: ���	����/	����	
	�� × �$/8( × �7$7(  × �7$7(+' → �7$7(05.;&(37,21 

�#��: ���	����/	����	
	�� × �7$7(�× �7$7(+' →��$/8(�
 

When assigning a value to a variable, the variable name, the value, the current 
state and the state id of the process or procedure must be provided. The function 
���	�� produces a new state, which is then assigned to a controlled function. In some 
cases, assignment may produce an exception instead of a state. To access a variable, 
the variable identifier, the state, and the state id are required. 

Evaluation of expressions normally involves application of an operator. The 
operator can be either predefined or user-defined. If the operator is predefined, the 
function 

�
�����: 252&('85( × �$/8(* → �$/8(05.;&(37,21 

can be used to evaluate the operator application. This function is defined in terms of a 
number of auxiliary functions which provide the operator definitions for the 
predefined types. 

If the operator is user-defined, a procedure definition must be located for the 
operator call. Since SDL supports polymorphism and late binding, the selection of the 
procedure occurs dynamically. This selection is provided with the function 

�	������: 252&('85( × �$/8(* → +����	
	���
 

The actual execution of the procedure being called is controlled by the SVM. 
Using a functional interface for the data semantics is feasible for most aspects, 

with one notable exception: Using object types involves operations that cannot be 
fully described by means of functions alone. In particular, creation of an object 
creates a new identity for the object, which is different from any other object identity. 
This identity is modeled by the domain 0%-(&7+�. ASMs support domains that can be 
extended dynamically. However, extending a domain is an operation with side effects. 
Therefore, the data semantics requires a function �&0�6���+�, which returns a 
different value in each state of system execution. 
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The formal SDL semantics has been conceived in parallel to the language definition 
itself. While developing the formal semantics definition, there have been numerous 
discussions with the SDL experts in order to reach a common understanding of the 
Z.100 document, to resolve ambiguities, and to remove inconsistencies. As it turned 
out, this provided valuable feedback, as problems with formalizing certain language 
aspects often led to discussions that revealed problems with the language definition 
itself. Also, the feasibility to treat certain aspects directly in the formal semantics 
made a number of complex transformations obsolete and thus helped to make the 
documents more concise. Different from the past, it is now official policy that if there 
is an inconsistency between the main body of Z.100 and Annex F, then neither the 
main body of Z.100 nor Annex F take precedence when this is corrected. 

The following aspects of SDL have been directly influenced by the formalization: 

• Formalization of inheritance and object-orientation 

In 1992, object-orientation was introduced into SDL. However, the first attempt 
to describe object-orientation was to give transformations how to map the new 
type-based concepts onto the old concepts. This is of course a lot of 
transformations and therefore the essence of the SDL types is not easily 
understood. For the SDL-2000 formalization, we insisted on giving a direct 
semantics for object-orientation in order to have those concepts readily available 
for description. This was a major change in the language description and also 
revealed several design flaws of the whole object-orientation that could not have 
been discovered in the transformation approach. We even inserted new 
transformations making the non-typebased concepts derived concepts, where an 
implicit type was introduced. 

• Implicit transitions 

In SDL, there is the understanding that signals that are not explicitly handled are 
implicitly discarded. This situation was covered in SDL-92 using a 
transformation, which inserted an implicit transition to discard the signal. 
However, this approach cannot be used in SDL-2000, because of the introduction 
of composite states. This led to a direct formal semantics for signal discarding. 
 

• Identifier resolution 

SDL has a very complex identifier resolution scheme, because sometimes 
identifiers are resolved with regard to the context. It is possible in SDL to have 
the same name for different entities of different kinds, e.g. a signal can have the 
same name as a data type. Moreover, operators can have the same names and 
differ only in their signatures, e.g. different versions of the operator "+". When 
formalizing the Z.100 text about resolution, some problems occurred, finally 
leading to the resolution rules being redrafted and stated more clearly. 
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• Input triggers 

In SDL, it is possible to not only have inputs of signals but also to have 
conditions for the reception of signals, to have prioritized inputs and to have 
conditions to trigger a transition. The semantics of these concepts has been 
defined by transformations in previous versions of SDL: these inputs were 
transformed into the usual signal inputs using several implicitly defined local 
signals. However, it was never clear what it meant to have all of these concepts 
within one specification. So we decided to have a direct semantics for these 
concepts as well. This reduced the informal description and made the formal 
description very concise. 

• Evaluation of decisions 

When evaluating a decision, user-defined operators and methods can be invoked 
to select the matching decision answer. Since such methods may have side-
effects, or may raise an exception, the evaluation order of those operator 
applications may matter for the outcome of the decision. Originally, the informal 
language definition was silent on the issue of evaluation order. When this 
underspecification was detected during definition of the formal semantics, an 
explicit description of the evaluation procedure for decisions was added to the 
informal definition. 

:� (*�	��	��	�����2�
���4��

Regarding the very nature of standardization as an ongoing activity, even the most 
recent version of SDL can only be a snapshot of an evolving language definition. To 
meet the needs of system design experts in a rapidly developing segment of systems 
technology, the language has been improved over the past 25 years, evolving from a 
primitive graphical notation to a sophisticated formal description technique. 
Typically, every 4 years a new version of SDL is released (e.g., SDL-88, SDL-92, 
SDL-96, SDL-2000). Such dynamics in the definition of a rich language like SDL 
clearly demands for robustness of the formalization approach as a prerequisite for 
practicability. Conciseness and flexibility therefore were of primary importance for 
the choice of the formal modeling framework. 

Despite of the richness of SDL, the formal model is intelligible and maintainable. 
This is essentially achieved through three properties, namely: the compiler-based 
approach, the organization of the abstract machine model, and the consequent use of 
parameterized ASM rule macros. 

Comparing the two parts of the SDL semantics (static and dynamic), the static 
semantics is twice as large (in pages) as the dynamic semantics. This is already the 
result of an improved balancing between these two parts, as concepts that previously 
had been defined by means of in-language transformations now are part of the 
dynamic semantics. 

The notations and concepts used in the formal definition of SDL were chosen to 
allow automatic processing by means of computer programs. For a subset of SDL, 
whose definition also uses a subset of the notations, tools have been created that allow 
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the execution of an SDL system in the ASM workbench. Work is still in progress on 
applying these tools to the complete definition of SDL. 

Finally, it should be stressed that the definition of the formal semantics has not 
just been an academic exercise, but took place in a real-life industrial setting. In our 
opinion, it is this kind of work academic efforts should eventually lead to. The 
successful application of mathematical formalisms to real-world problems and their 
approval by industry is a strong selling point for having formalisms at all. In this 
sense, the work reported here is an important step in this direction. 
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