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Abstract: Abstract State Machines (ASMs) have been widely used to specify soft-
ware and hardware systems. Only a few of these specifications are executable, although
there are several interpreters and some compilers. This paper introduces a compilation
scheme to transform an ASM specification in the syntax of the ASM-Workbench into
C++. In particular, we transform algebraic types, pattern matching, functional expres-
sions, dynamic functions, and simultaneous updates to C++ code. The main aim of
this compilation scheme is to preserve the specification structure in the generated code
without generating inefficient code. The implemented compiler was used successfully
in the industrial FALKO application at Siemens Corporate Technology.
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1 Introduction

At Siemens Corporate Technology a part of the software produced in the FALKO
project (a tool for railway simulation) [Börger et al. 2000] was developed with
ASMs [Gurevich 1995]. The specification for this part was written in ASM-SL
(a specification language for ASMs) [Del Castillo 1998] which can be interpreted
by the ASM-Workbench (a tool to execute ASM-SL) [Del Castillo 2000]. The
Workbench was useful to debug the specification, but too slow for full test cases
of FALKO. The question arose whether the code for the final product release
had to be coded by hand or if it was possible to generate the C++ code from
the specification automatically. For automatic code generation in FALKO the
following constraints had to be fulfilled by a compiler:

1. The specification had been written in ASM-SL and the compiler should use
the same input for code generation. Otherwise the specification would have to
be rewritten in a different syntax maybe with a slightly different semantics.

2. The part designed with ASMs is one component in the FALKO project and
not a standalone application. Thus, the generated code had to interact with
other components of FALKO. The other components had been written in
C++ and therefore the compiler had to generate C++ code for seamless
integration.
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3. The generated code had to be fast enough for the product release. It should
also be possible to debug the generated code, because otherwise it would be
nearly impossible to locate errors in large runs.

At that time there was no compiler fulfilling these constraints and we decided
to build a new compiler. This compiler was used to translate the given ASM
specification into C++. The generated code is used successfully in the FALKO
project [Börger et al. 2000] and the compilation scheme itself is implemented in
the functional programming language Haskell [Thompson 1999].
In this paper we describe informally the basic concepts of the compilation

scheme fulfilling the above listed constraints. The compilation scheme is appli-
cable for all ASMs formalizable in ASM-SL. The aim is to present an overall
solution for human readable compiled code and not a proposal for new compila-
tion techniques. In fact some of the used techniques are almost well-known but
not in this combination and not with the introduced optimizations.
In [Section 2] we briefly describe the specification language ASM-SL in order

to give the necessary background for the succeeding sections. [Section 3] and
[Section 4] introduce the compilation scheme for features related to the dynamic
semantics and static semantics of ASMs. [Section 5] describes the FALKO ap-
plication and the Production Cell case study [FZI 1998] where the compiler was
applied. Finally, [Section 6] concludes this paper and discusses related work.

2 The Source Language

The source language for our compiler is ASM-SL [Del Castillo 1998]; a typed
specification language for Abstract State Machines inspired by the functional
programming language ML [Paulson 1996]. This specification language was de-
signed for the ASM-Workbench [Del Castillo 2000] which is an interpreter and a
debugger for the language. In ASM-SL the static and the dynamic semantics of
an ASM can be defined using function definitions and transition rules. A func-
tion definition in ASM-SL is similar to a function definition in ML except that
there are no higher-order functions, no lambda expressions, and no side-effects.
A transition rule in ASM-SL corresponds to an ASM update rule.
Our compiler takes a specification in ASM-SL as input. More precisely we use

the ASM-Workbench to generate a textual representation of a typed abstract
syntax tree for a given specification. This typed abstract syntax tree and an
additional configuration file containing compilation options is the input for the
compiler.
We do not introduce the ASM-SL syntax in this paper; the syntax is de-

fined completely in [Del Castillo 2000]. Moreover we describe some features of
ASM-SL by an example which is used especially in [Section 4] to illustrate our
compilation scheme for functional types and expressions.
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freetype Nat == { zero, succ : Nat }
static function one == succ(zero)

dynamic function fib : Nat -> Nat

initially MAP_TO_FUN { zero -> zero, one -> one }
dynamic function n : Nat

initially zero

static function add : Nat * Nat -> Nat ==

fn(a,b) -> case b of

zero : a;

succ(n) : succ(add(a,n))

endcase

transition main ==

block

fib(succ(succ(n))) := add(fib(n),fib(succ(n)))

n := succ(n)

endblock

Figure 1: Computation of Fibonacci numbers in ASM-SL

We show the idea how the transformation works but we do not define for-
mally the compilation scheme. In particular we consider simultaneous updates,
dynamic functions, algebraic types, garbage collection, and pattern matching.
The first two are related to the dynamic semantics of ASMs and the last three
are well-known from functional programming (used for the static semantics).
The specification in [Fig. 1] shows an example for an incremental compu-

tation of Fibonacci numbers in ASM-SL. In the example we first define a new
algebraic type Nat containing the type constructors zero and succ. We use this
type to represent natural numbers (0 is represented by zero and if n is a natural
number, then n + 1 is represented by succ(n) ). Although there is an integer
type in ASM-SL we use this inductive definition to illustrate pattern matching.
The definition below the freetype declaration introduces a static nullary func-

tion one which is an abbreviation for the natural number 1. The next two items
declare two dynamic functions namely fib and n (dynamic functions are up-
datable functions). The dynamic function fib from type Nat to type Nat is
initialized using a finite mapping (fib(zero) = zero, fib(one) = one) and the
dynamic function n of type Nat is initialized to zero.
For two natural numbers the function add computes the sum of the function

arguments a and b using a case expression with pattern matching; the function
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is defined recursively. The symbols zero and succ in the two cases are the type
constructors of type Nat and the argument n of succ in the second case is a
pattern variable and not the global dynamic function n.
The last definition defines a transition rule, i.e., the dynamic behavior in our

example. This rule computes in each step the next Fibonacci number based on
the previous two and increments the dynamic function n.
In the following two sections we will translate some ASM features and some

functional features of ASM-SL into C++ such that the specification structure
(functions, variable names, updates, etc.) is preserved in the compiled code.

3 Dynamic Semantics

In this section we describe the compilation scheme for features in ASM-SL which
are related to the dynamic semantics of ASMs. This includes simultaneous up-
dates in contrast to sequential execution in C++ and the treatment of dynamic
functions.

3.1 Simultaneous Updates

One of the main advantages of ASMs is the parallel execution of rules. This
means that all rules are executed with respect to the same global state. The
execution of rules in a given state yields an update set. An update set consists
of updates and an update is a location (dynamic function symbol with function
arguments) together with a value (See [Del Castillo 2000] for a formal definition
of update sets for ASM-SL.). In case the update set is consistent (there are no
contradicting updates for a location) we apply the update set to the current
state and obtain the next state. This is defined formally in [Gurevich 1995].
Consider the following two updates whose parallel execution swaps the val-

ues of a and b where we assume that a and b are defined as nullary dynamic
functions:

a := b
b := a

In C++ the same example does not swap the values, because the statements
are executed sequentially and therefore the variables a and b would contain the
value of b after executing both assignments. Thus, the semantics in C++ would
be different from the one in ASMs.
One solution to this problem is to implement the above described algorithm

namely to collect the updates, check if they are consistent, and then apply them
to the current state. For our example, the update set is {(a, b), (b, a)} where
a and b denote the evaluated values of a and b respectively. If we apply this
update set, then the values of a and b are swapped as expected.
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This algorithmworks fine and for instance the ASM-Workbench computes the
next state in this way. On the other hand the algorithm is inefficient especially
when there are many execution steps. The problem is that we first have to collect
all updates in a corresponding data structure and after all rules are executed we
must loop through these collected updates to apply them to the current state.
Another problem with this algorithm is how to check consistency of the update
set? Hence, this algorithm has several disadvantages and we propose another
solution where we can execute the rules sequentially without collecting updates
and where sequential execution is equivalent to parallel execution. We are now
going to describe this algorithm based on double buffering—a technique well-
known from applications where images have to be displayed.
In graphical applications an image is drawn on an invisible buffer and this

buffer is made visible when the drawing process is finished. We adapt this tech-
nique and use for each location two buffers—one for reading and one for writing.
However, we do not explicitly swap the two buffers when switching to the next
state, because this would also lead to performance problems, because each dy-
namic function might consist of many locations and usually only some locations
are updated in a step. Moreover, when reading a value we decide which buffer
to take. We are now going to explain this in detail.

Double buffering. We uniquely tag each state with a natural number and
assume that there are not too many execution steps. For the current state tag
we use a global variable cstate. Below (paragraph rebasing) we describe what
we are doing if there are too many execution steps, i.e. cstate overflows. For the
time being let us assume that this is not the case.
For each location in the ASM specification we introduce in C++ two variables

to store the value of the location. We call these variables newVal and savedVal .
Additionally, for each location we use an integer variable called stateno. In this
variable we store the state tag of the last assignment to the location; this tag
will be used to determine which of both variables has to be used for reading.
We store the initial value of a location in the variable newVal and set stateno

of the location to 0. Furthermore, the global state counter cstate is initialized
with 1. We now distinguish between write access and read access of a location
[see Fig. 2].
When writing a location we first check whether the location was already

updated in the same state. This is the case if cstate is equal to stateno and
then we have to check whether the value stored in newVal and the value which
we want to write are equal. If they are not equal then we have an inconsistent
update. Otherwise nothing has to be done, because the location (newVal) already
contains the right value.
If cstate is different from stateno then the location was updated in a previous
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write(cstate, val) {

if (cstate == stateno)

consistent(val, newVal);

else {

savedVal = newVal;

newVal = val;

stateno = cstate;

}

}

read(cstate) {

if (cstate == stateno)

return savedVal;

else

return newVal;

}

Figure 2: Writing and reading of values

state. The value of that update is currently stored in newVal and we first copy
it to savedVal . Then we copy the value of the current update to newVal and set
stateno to cstate. Since we execute the rules sequentially there might be a rule
which is executed after the current update and wants to read the location. Such
a read access must not get the value of the current update and this is the reason
why we first copied the value from newVal to savedVal .
The read access in [Fig. 2] is similar. We first check whether cstate is equal to

stateno. If they are equal we know that newVal contains a value written in the
same state and therefore we take the old value in savedVal . If cstate is different
from stateno, then the location was written in a previous state and we have to
take the value in newVal .
If we implement the write access and read access in this way, then we can

execute all rules sequentially and afterwards it is sufficient to increment the
global state counter cstate. Additionally the consistency of the updates is checked
on the fly during the assignments.

Rebasing. The problem is how we can ensure that cstate does not overflow.
Obviously we can not limit the number of execution steps otherwise we could
not apply this compilation scheme for long running applications. However, in the
definition of read and write we use only the equality function to compare cstate
and stateno. And in fact it is sufficient to know whether cstate and stateno are
equal and therefore, we can rebase the whole system where we reset the stateno
variable for each location and the global state counter cstate. Rebasing works as
follows:

1. We loop through all locations. If stateno of the location is equal to cstate,
then we set stateno to 1 otherwise to 0.

2. We set the global state counter back to its initial value 1.
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write(cstate,val) {

if (cstate == stateno) {

if (newValIsA)

consistent(valA, val);

else

consistent(valB, val);

}

else {

if (newValIsA)

valB = val;

else

valA = val;

newValIsA = not newValIsA;

stateno = cstate;

}

}

read(cstate) {

if (cstate == stateno) {

if (newValIsA)

return valB;

else

return valA;

}

else {

if (newValIsA)

return valA;

else

return valB;

}

}

Figure 3: Optimized writing and reading of values

This rebasing implies that if stateno and cstate are equal before rebasing then
they are equal after rebasing; analogously for unequal. Note that rebasing is
necessary only when cstate reaches its maximal value.
The definition of write in [Fig. 2] has a disadvantage with respect to efficiency

when copying a value from newVal to savedVal is an expensive operation. In
our compilation scheme copying a value is done by copying a pointer which is
described in [Section 4.1]. However we can improve the definition of write such
that copying is not necessary and we are now going to explain this in detail.

Improving write access. The definitions for write and read ensure that always
the newest value is stored in newVal . This is the reason why we have to copy a
value from newVal to savedVal . To prevent copying we use for each location an
additional boolean variable newValIsA to denote which of both variables contain
the newest value. Since the newest value is no longer always stored in newVal
we use the neutral names valA and valB instead of newVal and savedVal .
If the boolean variable newValIsA is true then the newest value is stored in

valA and otherwise in valB . [Fig. 3] shows the modified write and read meth-
ods. The locations are initialized similar to the old solution in [Fig. 2], i.e. valA
contains the initial value for the location and newValIsA is set to true. For the
improved definitions in [Fig. 3] we can use the same rebasing algorithm. Writ-
ing is more efficient in this version. However, we have to pay a price in making
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reading a bit less efficient. So it depends on the context which of both solutions
should be preferred.
We encapsulate the write and read access in a template class AsmValue

where we also include rebasing of a location. We denote AsmValue<T> as the
instantiation of AsmValue for a location of type T . Hence, to obtain parallel
update semantics in C++ it is sufficient to use AsmValue<T> instead of T .

3.2 Dynamic Functions

Dynamic functions in ASMs are functions which can be updated at run-time.
Nullary dynamic functions are like variables in C++ except that the assignments
are executed in parallel. Here are some examples for function updates:

a := b

f(g(a),a) := g(a)

g(a) := f(g(a),b)

Nullary functions.We first consider nullary functions. Since they are similar to
variables in C++ we implement them as global variables with the simultaneous
update technique of [Section 3.1]. Therefore, for each nullary dynamic function
f of type T we define a global variable f of type AsmValue<T>. The translation
of types will be discussed in [Section 4.1].

Unary functions. Unary functions can be implemented similarly. The Standard
Template Library [Robson 2000] supports several container classes. For example,
the map class is implemented as an AVL tree. There are methods for inserting,
modifying, and deleting elements. Hence a unary function f : A → B can be
implemented by using the template instance map<A,AsmValue<B> >, i.e., a
mapping from type A to type AsmValue<B>. This implies that all updates to
the function are executed according to the ASM semantics. This map instance
can also be defined as a global variable. Note that we can use the lexicographical
order on (evaluated) terms as a total order for the AVL tree.

N-ary functions. Dynamic functions with arity n > 1 can be implemented
like unary functions, because we can put the n arguments together to one by
tupling. We can define tuples in C++ similarly to other functional types as will
be introduced in [Section 4.1].
The suggested implementation for dynamic functions with arity greater than

zero is suboptimal. Each time we need O(n ·logn) steps to add, delete, or modify
an element if the map is implemented as an AVL tree containing n elements. The
idea here is to reduce the function arity by one and to put the dynamic function
into the argument type which is eliminated instead of using a global variable.
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For example, if f is a dynamic function of type A → B , then instead of defining a
globalmap from A to AsmValue<B> we put a variable f of type AsmValue<B>

into the type definition of class A. When accessing f (a) we translate it to a.f .
Similarly, if f is a dynamic function of type A1× . . .×An → B , then we define a
map from (A2, . . . ,An) to AsmValue<B> in class A1 and translate f (a1, . . . , an)
into a1.f (a2, . . . , an). For the implementation it does not matter whether A1 or
another Ai is taken; this is the freedom of the compiler.

Expression identity. In ASM-SL (and in functional programming in general)
two expressions are equal if they represent the same semantical value. This is not
true for object instances (the correspondence for functional terms) in C++ and
leads to problems for dynamic functions defined as instance variables in type
definitions as suggested above.
For instance, when we put the dynamic function fib into the class definition

of type Nat, then o1.fib and o2.fib (corresponds to fib(o1) and fib(o2) in ASM-
SL) might be different even if the instances o1 and o2 of type Nat represent the
same natural number.
There are at least two possibilities to deal with this problem. In both cases

for type Nat e.g., we need a variable repr of type set of Nat as a class variable
(static variable in C++) in the class definition of Nat. In this set we store the
representants for instances which have the same content.
For the first solution when creating a new instance of type Nat we look

into the set repr to find the representant. In case there is no one we insert the
current instance; otherwise we take the representant in the set and throw away
the currently created instance. Therefore we always work with the representant
and we use always the same instance for dynamic functions.
In the second version we look into the set repr only before we access a

dynamic function in the instance.
It depends on the context which solution should be preferred. The first is

better for many function accesses while the second is better when creating many
instances.

4 Static Semantics

In this section we describe the compilation scheme for the features of ASM-SL
which are related to functional programming. This includes the definition of C++
classes according to type definitions in the ASM specification, the problem that
C++ supports no garbage collection, the transformation from pattern matching
to imperative statements, and lifting of let -expressions since in C++ no variables
can be declared inside expressions. By using these transformations static function
definitions in ASM-SL can be translated to methods in C++.
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All these problems have already been solved (see [Jones 1987, Wilson 1992,
Boehm 1993, Barnard 1994, Maranget 1994, Papaspyrou 1996], e.g.) since there
has been extensive research in this area of compiling functional languages. Prob-
ably the most work has been done for the Glasgow Haskell Compiler [GHC 2001]
which compiles Haskell-code to C -code. The functional part of ASM-SL can be
viewed as a subset of Haskell, because there are no higher-order functions, no
type classes, no constructor classes, no lambda expressions, and no lazy eval-
uation. However, in ASM-SL there is a special element undef which will be
discussed later.
Although there has been quite a lot of work in this area we present in this sec-

tion the mentioned transformations to illustrate that those techniques together
with the techniques from the previous section are sufficient to generate reliable,
human readable, efficient, and integratable code for a specification in ASM-SL.

4.1 Types

The specification language ASM-SL has several predefined types like boolean,
integer , float , string, lists, sets, and tuples. Additionally, one can define new
algebraic types with a freetype declaration. Consider the following declaration:

freetype Nat == { zero, succ : Nat }
As already explained the declaration defines a new type Nat where elements

of Nat can be created using the constructors zero and succ. Both can be viewed
as abstract functions generating elements of Nat:

zero : Nat
succ : Nat → Nat

Instead of a fixed type as the argument for a constructor we can also use type
variables. For instance, the declaration below defines a binary tree of any type
’a where the type constructor Node takes two binary trees as arguments (see
[Del Castillo 2000] for a detailed discussion about such polymorphic type defi-
nitions).

freetype BTree(’a) == { Leaf : ’a,

Node : BTree(’a) * BTree(’a) }
Our task here is to compile such functional types into C++. Care has to be

taken, because there is a distinguishable element undef polymorph in all types
in ASM-SL. This value may be used like other ordinary values in computations
and here ASM-SL differs from other functional languages. Despite of a uniform
interface common to all types this is the main reason why we do not use the
basic types of C++ (bool , int , . . .) to implement the basic ASM-SL types; for
instance, the C++ type int has no undefined element.
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Nat

(a) (b)

NatZero NatSucc

Nat

Nat n

Nat n

Nat_constructor c

Figure 4: C++ classes for type Nat

For the algebraic types there are at least two possibilities to define them in
C++. An obvious solution is to define for each construction a separate class; each
of them as a sub-class of the same base class for the corresponding type. Consider
the above example for Nat. We can define the classes Nat , NatZero, and NatSucc
as illustrated in [Fig. 4(a)] where Nat is the superclass of NatZero and NatSucc.
If an expression is equal to zero, then it is an instance of NatZero otherwise
an instance of NatSucc. The field n of type Nat in the definition of NatSucc
contains the argument for the constructor succ. In the signature declaration
for methods and functions we use Nat , but at run-time an object is either an
instance of NatZero or NatSucc.
The other possibility is to include all type information in one class as shown in

[Fig. 4(b)]. For the type Nat this implies that we define the class Nat containing
two fields namely the constructor information and the possible argument for
succ. The field c is the constructor information of type Nat constructor and its
value may be zero or succ. The field n is of type Nat and contains a value only
if c is equal to succ.
Both solutions have advantages and disadvantages. For example, in (a) one

has to define many classes and to deal with virtual methods. In (b) not all fields
in an instance are always used. We prefer using alternative (b), because it is
more efficient than (a) since there are no virtual methods and it is more suitable
for the pattern matching we will introduce in [Section 4.3]. However, (a) is the
cleaner solution.
For alternative (b) the class definition in C++ for Nat looks like the defini-

tion in [Fig. 5] where we first define the enumeration type Nat constructor , two
constructor functions (the first for zero and the second for succ), and finally
the two fields c and n as described above. The parameter Nat constructor in
the constructor signature is used, because there might be type constructors with
the same argument signatures.
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class Nat {

typedef enum { zero, succ } Nat_constructor;

Nat(Nat_constructor _c) : c(_c) { }

Nat(Nat_constructor _c, Nat &_n) : c(_c), n(_n) { }

...

Nat_constructor c;

Nat n;

}

Figure 5: Class definition for Nat

Remark. The template concept in C++ can be used to implement polymorphic
types of ASM-SL like the above BTree type.

4.2 Garbage Collection

In functional languages and also in ASM-SL heap cells are allocated on the fly
while evaluating expressions; heap cells are used to store functional structures. A
garbage collector analyzes all heap cells and frees those memory cells which are
not used. In C++ memory has usually to be allocated and deallocated by hand.
To automate memory allocation and deallocation there is a well-known technique
of reference counting [Wilson 1992] and smart-pointers. Reference counting is
used to keep track of the number of elements referring to an instance. The
smart-pointer technique automatically increments and decrements this number
when copying and assigning object instances.
The definitions in [Fig. 6] shows a smart-pointer class where we first define

a copy constructor and then an assignment operator. A pointer to the element
is stored in the variable elem and this pointer value is usually shared by several
smart-pointer instances.
Note that this class definition is not complete. The copy constructor is used

in C++ when creating a new instance as a copy of an existing one. A pointer to
the element is stored in the variable elem and this pointer is usually shared by
several smart-pointer instances.
Since we are using smart-pointers instead of elements directly we use the

name NatImp for the class definition of Nat in the last section and define Nat
as a subclass of the type SmartPointer for NatImp. We define it as a subclass
instead of simply a type alias for SmartPointer<NatImp>, because we want
to use the notation Nat(zero) and Nat(succ,n) for creating elements as in the
previous section. Hence, in the class definition for Nat we include the definitions
for the corresponding constructors. Additionally, we define NatImp as a subclass
of Reference which supports reference counting. The classes Reference, NatImp,
and Nat are also shown in [Fig. 6].
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template <class T>

class SmartPointer {

SmartPointer(const SmartPointer &x) {

elem = x.elem;

reference();

}

SmartPointer &operator=(const SmartPointer &x) {

x.reference(); dereference();

elem = x.elem;

return *this;

}

void reference() { if (elem) elem->reference(); }

void dereference() { if (elem) elem->dereference(); }

...

T *elem;

}

class Reference {

void reference() { counter++; }

void dereference() {

counter--;

if (counter==0) delete this;

}

int counter = 0;

}

class NatImp : public Reference {

typedef enum { zero, succ } Nat_constructor;

NatImp(Nat_constructor _c) : c(_c) { }

NatImp(Nat_constructor _c, Nat &_n) : c(_c), n(_n) { }

...

Nat_constructor c;

Nat n;

}

class Nat : public SmartPointer<NatImp> {

Nat(Nat_constructor _c) : Nat(new NatImp(_c)) { }

Nat(Nat_constructor _c, Nat &_n) ...

Nat(NatImp *n) ...

...

}

Figure 6: Type definition for Nat with smart-pointer
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4.3 Pattern Matching

Pattern matching [Jones 1987] is one of the famous features of functional pro-
gramming. A pattern is either a variable or a constructor with patterns as ar-
guments. Pattern variables must not appear multiply in a pattern (the pattern
must be linear). Consider the following example in ASM-SL which is similar to
set-comprehensions in functional programming:

var succ(x) in xs

f(x) := ...

...

endvar

We assume that xs is a set of elements of type Nat and f is a unary dynamic
function. The above for-all rule takes all elements in xs which match the pat-
tern succ(x) where x is a pattern variable matching anything. The rule inside
var . . . endvar is executed in parallel for each y in xs where x is bound such
that y = succ(x).
Patterns can be replaced by predicates and selector functions. For the Nat

type we could define isZero, isSucc, and getSucc and we could translate the
above rule to something like the following C++ pseudo code:

set<Nat> xs;

Nat y;

for (y in xs) {

if isSucc(y) {

Nat x = getSucc(y);

f(x) = ...;

...

}

}

We can imagine that this would work, but it makes compilation difficult and
the compiled code would be hard to understand (especially for more complicated
patterns). Hence, we try to compile patterns more intuitively.
Remember our smart-pointer instance which contains a pointer to its element.

We use the null pointer to denote that this instance is not bound and can be
matched to anything. We define a match operator as a modified assignment which
returns true if the righthand-side (the term) can be assigned to the lefthand-side
(the pattern) and where all variables in the lefthand-side are bound according
to the righthand-side. If the matching is not possible, then the match operator
returns false.
The matching algorithm works as follows. We have two expressions lhs and

rhs of the same type. Both are smart-pointer instances (for the same element
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type). If a smart-pointer instance contains a null pointer, then we say it the in-
stance is unbound. Otherwise it points to an element. Since the lefthand-side lhs
corresponds to a pattern in ASM-SL it may contain an unbound instance. On
the other hand the righthand-side rhs is a term and can not contain an unbound
instance. If lhs is unbound, then the matching succeeds and we set the pointer
in lhs to the pointer in rhs . Otherwise lhs and rhs point to elements. If the con-
structors in both elements are different, then the matching fails. Otherwise they
have the same constructor and we match among the arguments. The matching
succeeds if the matching of all arguments succeeds.
We now come back to our example and analyze what happens. We use the

function =m for the matching operator:

set<Nat> xs;

Nat y;

for (y in xs) {

Nat x;

if (Nat(succ,x) =m y) {

f(x) = ...;

...

}

}

This has a nice appearance; in particular the syntactical structure of the
pattern construct is preserved. Unfortunately, it does not work and the question
is why? The problem is located in the constructor invocation NatImp(succ, x )
which we use for the constructor definition of Nat(succ, x ). The constructor is
defined as follows (see the class definition in [Fig. 6]).

NatImp(Nat_constructor _c, Nat &_n) : c(_c), n(_n) { }

The variable x and the formal parameter n are of type Nat which is a smart-
pointer class. When invoking the constructor, succ is copied to c which is copied
to c and the notation n( n) implies that the field n (declared in class NatImp)
is initialized using the copy constructor in [Fig. 6] to create a copy of n which is
an alias for x , because the parameter n is passed by reference. Hence n becomes
an unbound instance since n (alias for x ) is one. In the matching algorithm the
pointer in n is modified, but not the pointer in x and therefore x is still unbound
after the matching.
By analyzing this problem we can see how to fix it. We have to memorize that

n is a copy of x and when n should be matched we delegate the matching to x .
Therefore we use an additional field in class Nat which denotes the origin where
the instance got its content. If the instance is not a copy of another instance,
then we set this pointer to null . Additionally we adapt the matching algorithm.
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If we match rhs against lhs and the origin pointer in lhs is different from null ,
then we match rhs against the instance denoted by the origin pointer in lhs .
Now our implementation works fine.

Remark. The patterns for let and case expressions can be treated similarly.
Additionally, our solution would also work for non-linear patterns.

4.4 Let Expressions

Up to now, we defined the compilation scheme for functional types and pattern
matching. Functions and rules in ASM-SL can be compiled as methods in C++.
However, there is a problem with local variables. In ASM-SL local variables can
be introduced in expressions. This is not possible in C++, because a variable dec-
laration is a statement and not allowed inside expressions. For example, consider
the following function call for a function f with arity 2:

f(let x = 1 in x + 2 endlet, y)

This is a valid term in ASM-SL (assuming that y and f are defined properly),
but can not be compiled as is into C++. Moreover, unfolding of let -expressions
does not work since the expression on the lefthand-side may be a pattern:

f(let (x,y) = g(7) in x+y endlet,5)

On the other hand consider the following term where the let -expression is lifted
outside the function call.

let (x,y) = g(7) in f(x+y,5) endlet

This term can be translated into C++, because we can first declare the
variables x and y, use pattern matching to match g(7) against (x , y), make the
function call, and return the value:

X x;

Y y;

Tuple2(x,y) =m g(7);

return f(x+y,5);

In our compilation scheme we use this technique of lifting let -expressions.
Instead of defining the lift -algorithm for complete ASM-SL we define it for a
small lambda-language [Barendregt 1981]. The extension to ASM-SL is straight-
forward. We use the following lambda language (only with first-order terms,
because ASM-SL does not support higher-order functions):

term ::= let pattern = term in term
| funid(term)
| variable
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The lifting for a term t is the expression lift(t , id) where id is the term λx → x
denoting the identity function and lift is defined as follows (we assume that there
are no name clashes while lifting variables):

lift(variable, f ) = f (variable)
lift(let pattern = t1 in t2, f ) = lift(t1, λt → let pattern = t in lift(t2, f ))
lift(funid(t), f ) = f (lift(t , λt ′ → funid(t ′)))

This algorithm preserves the semantics of an expression and transforms it to
an expression of the form let p1 = t1 in let p2 = t2 in . . . let pn = tn in t
such that t1, . . . , tn , t contain no let -expressions.
Before we translate an ASM-SL expression to C++ we transform it using

the lift-algorithm to obtain the above special form. The let -expressions are then
compiled as variable declaration statements together with pattern matching and
the resulting term t is compiled to the statement return t;.

5 Applications

In this section we briefly describe the FALKO application and the production
cell case study. The production cell is an academic case study which we used to
test the compiler and FALKO is the reason why we developed this compiler.

5.1 FALKO

FALKO [Börger et al. 2000] is a software system for railway simulation. The
software consists of three components namely the train supervision, interlock-
ing system, and the process simulator. The first two components are manually
encoded in C++ and the process simulator is designed using ASM-SL.
The formal specification in ASM-SL is part of an HTML documentation and

we implemented a tool to extract these formal parts from the documentation.
Additionally, the tool can modify the HTML files in order to pretty print the
formals parts (keywords in bold-face, generating index files, automatically in-
serting suitable hyperlinks, ...). Since this is an industrial project the HTML
documentation (including the specification) is not public.
The specification is detailed enough such that it can be executed using the

ASM-Workbench with an additional oracle for the external functions in the
specification.
The ASM-Workbench was used to debug the specification for small test sce-

narios. We compiled this specification into C++ using the introduced compila-
tion scheme and the generated code is used successfully since January 1999 in
the final product release. Until now (March 2001) no bugs in the compilation
scheme have been discovered and only two specification bugs occurred. When
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the specification bugs were discovered the team which implemented the other
components fixed the bugs directly in the generated code, because they were not
familiar with the ASM specification and the provided tool environment. They
also introduced a new feature in the compiled code.
This illustrates that the generated code is readable enough so that people

not familiar with the compilation scheme can fix and extend the produced code.
Meanwhile, the bugs have been fixed in the specification, the new feature was
introduced, and the specification was recompiled into C++ to prevent inconsis-
tencies between the specification and the code.
For more information about the FALKO specification and the generated code

like size and effort we refer the reader to [Börger et al. 2000].

5.2 Production Cell

In early stages, we tried our compiler on the well-known production cell case
study [FZI 1998]. We took the ASM-specification in [Börger and Mearelli 1997],
extracted the function and rule definitions, and translated them into ASM-SL.
An HTML version of this specification (the input for our compiler) is available
[Schmid 1999b]. However, this version does not contain the describing text from
the ASM specification in [Börger and Mearelli 1997].
The FZI in Karlsruhe provides a graphical visualization for the case study. We

compiled the specification—using our compiler—into C++ and implemented the
interface between the compiled code and the graphic visualization. The resulting
code [Schmid 1999b] successfully controls the simulator.

6 Conclusion and Related Work

We presented a transformation scheme for the compilation of Abstract State
Machines written in ASM-SL into efficient C++ code which was applied in an
industrial middle sized project. We showed how to compile functional language
features as well as ASM features. Except for let -expressions our compilation
scheme preserves the structure of the specification in the compiled code. The
most important part is the translation of simultaneous updates into sequential
statements. The introduced technique ensures that the sequential execution of
rules is semantically equivalent to their parallel execution. However, correctness
of the compiled code is a quite complicated issue. For instance, there must be
a formal specification of C++. It must be proven that our compiler is correct
implying that the Haskell compiler must compile correctly our compiler, etc.
We refer the reader to [Goerigk and Langmaack 2001] for a discussion about
such topics. See also [Stärk et al. 2001] for a proven to be correct compilation
scheme of Java programs into Java Virtual Machine bytecode, which we have
implemented in AsmGofer [Schmid 1999a].
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The XASM tool [Anlauff 2000] compiles ASMs in the XASM syntax into
C-code. More precisely, the compiler generates an abstract machine and that
code is executed by an interpreter. The XASM language is untyped and static
functions have to be defined in C.
In [Mearelli 1997] Mearelli manually translated the ASM specification of the

production cell case study [Börger and Mearelli 1997] to C++ code. His transla-
tion is not related to our compilation and works only for special examples where
parallel execution of rules is not necessary.
Extensive research has been done on garbage collection in C++ [Wilson 1992,

Boehm 1993, Smith and Morrisett 1997]. Reference counting is the simplest so-
lution. For our FALKO project we compared the compiled specification with
reference counting with an implementation for automatic garbage collection
[Boehm 2001]. The performance was nearly the same. However, the generated
code using automatic garbage collection needs a lot more memory than the code
using reference counting.
There are more efficient pattern matching algorithms than our implemen-

tation ([Augustsson 1985, Jones 1987, Maranget 1994], e.g.). However, we pre-
ferred readability of the compiled code; performance for pattern matching was
not an important issue for our examples.

The main advantage when using ASMs and compiling them into C++ instead
of using directly C++ is the possibility to specify on a very high level of abstrac-
tion enabling the customer to understand the specification. Furthermore, it is
possible the generate more efficient code by improving the compilation scheme
without changing the specification; support for other target languages (Java,
e.g.) is straightforward.

Acknowledgments. We thank Egon Börger and Peter Päppinghaus for many
comments on this paper.
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