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Abstract: This paper presents an environment to support the use of specification for
mixed systems, 7.e. systems with both dynamic (behaviour, communication, concur-
rency) and static (data type) aspects. We provide an open and extensible environment
based on the KORRIGAN specification model. This model uses a hierarchy of view con-
cepts to specify data types, behaviours and compositions in a uniform way. The key
notion behind a view is the symbolic transition system. A good environment support-
ing such a model needs to interface with existing languages and tools. At the core of
our environment is the CLIS library which is devoted to the representation of our view
concepts and existing specification languages. Our environment is implemented using
the object-oriented language PYTHON. It provides an integration process for new tools,
a specification library, a parser library, LOTOS generation and object-oriented code
generation for KORRIGAN specifications.
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1 Introduction

In this paper, we present an environment to support the use of specification for
mixed systems, i.e. systems with both a dynamic aspect (behaviour, commu-
nication, concurrency) and a static aspect (data type). While the importance
of mixed formal specifications is widely accepted both in academic (LOTOS,
uSZ) and industrial worlds (SDL, UML), there is still a need for open and
extensible tools and environments to support them. “Open” meaning here that
it should be possible to link these tools and environments with other existing
ones. Another need is to integrate the formal specification into a software process
(e.g. an object-oriented one). Therefore, in our environment, we need editing and
formating tools, verification means, as well as prototyping and code generation
tools. Moreover, object-orientation is often advocated for programming, and we
would like to extend this to specifications and specification developments.

To specify real-life size and complex systems, one needs to use several lan-
guages dedicated to the different system parts. In several language (for instance
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the UML [Con99]), we have to describe functional aspects, dynamic behaviours
and static parts. The main problem is to glue all of these descriptions and get
a consistent and global semantics. The KORRIGAN model is an attempt to over-
come this problem. Our model of mixed systems is based on our notion of views
[CPRO0a]. This model aims at keeping advantage of the languages dedicated
to both aspects (algebraic specifications for data types, and state-transitions
diagrams for dynamic behaviour) while providing a unifying model with an op-
erational semantics.

We want to provide a specification language with a global semantics and
also with guidelines for the specifiers. Such a language should be supported by
various tools: parsing, editing, and pretty printing. We also want to integrate
our approach into a software development process and to provide prototyping,
code generation and verification tools. This is of course an ambitious and long
term task.

In this paper we start with a presentation of the KORRIGAN specification
model and its notion of view. Section 3 is devoted to the description of our en-
vironment: goals, principles, and architecture. Section 4 describes the libraries:
a set of components for the KORRIGAN specifications but also for other specifi-
cation languages. Section 5 presents different tools which have been developed
and integrated in our environment. Section 6 deals with related work, models
and environments. Section 7 describes future work.

2 The Korrigan Specification Model

Our model focuses on the specification of systems with both static and dynamic
aspects and a certain level of complexity that requires the definition of struc-
turing mechanisms. We use two ways to ensure structuring and modularity: a
simple form of inheritance and the composition of specification components.
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STSPart
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. . . ’ 2.n
’ Internal Structuring View ‘ ’ External Structuring View }7
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Figure 1: the view model class diagram

Our model is based on the notion of view, an interface to describe compo-
nents. A view [Fig. 1] has a static part (DataPart) and a state-transition or
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behavioural part (STSPart). The key concept behind this notion is the Sym-
bolic Transition System (STS) concept. STSs [HLI5] are a general form of finite
state-transition diagrams which provide an appropriate level of abstraction and
avoid state explosion by the use of guards and open (i.e. not ground) terms in
states and transitions. STSs are more powerful and more readable than classic
state-transition diagrams. However the difficult counterpart is about verifica-
tions. The dynamic aspects of components are described in dynamic views. The
static aspects are described using static views. The integration of all aspects
of a given component is done using integration views. Finally the (concurrent)
compositional aspects of components are described by composition views. Both
integration and composition views use a mixed “glue” (algebraic first-order ax-
ioms and temporal formulas) to express the interface of composition as a whole.
A great part of the semantics of the model is devoted to explain how to compute
a global view structure for the different compositions [CPR00a].

| STATIC VIEW StaticPasswordManager (SPM)

SPECIFICATION

imports Boolean, Userld, Password
ops
empty : - SPM
add : SPM, Userld, Password — SPM
modify : SPM, Userld, Password — SPM
declared : SPM, Userld — Boolean
correct : SPM, Userld, Password — Boolean
axioms
modify (empty,u,p) == add(empty,u,p);
(u = u2) = modify(add(spm,u2,p2),u,p) == add(spm,u,p);
not(u = u2) = modify(add(spm,u2,p2),u,p) == add(modify(spm,u,p),u2,p2);

STS

add(u,p) modify(u,p)

correct(u,p) declared(u)

Figure 2: the PasswordManager static view

We illustrate the different views using a simple Unix-like password manager
case study. As an example of a static view, see [Fig. 2], we have the data type
which memorizes information about the users (it abstracts the /etc/passwd file).
Basically, a static view describes a data type. It is an algebraic specification with
a STS point of view. The graphical description of the STS appears in the bottom
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of the [Fig. 2].
An example of the STS part of a KORRIGAN dynamic view is depicted in
[Fig. 3].

[p1=p2] im [p1=p2] ic
[not(p1=p2)] errorCorresp
to sender
a

[not(correct(u,p0))] errorPwd
to sender
modify create ?u:PldUser
from u:PldUser from root:PIdRootUser
M
[not(MValid(u))] [not(CValid(u))] BeC
errorUser errorUser
[MValid(u)] to sender to sender [CValid(u)]
getPwd ?p0:Pwd getPwd ?p1:Pwd
from sender from sender

[correct(u,p0)]
getPwd ?p1:Pwd
from sender

getPwd ?p2:Pwd
from sender

getPwd ?p2:Pwd
from sender

Figure 3: the STS of the PasswordManager dynamic view

It describes the activities and the communications of the password manager.
There are some syntactic features to denote emissions and receptions of (may
be) complex typed data. It has states and transitions which represent equivalent
classes rather than simple and finite entities. This is due to guards and variables
which may appear on transitions and inside states.

For example, the transition from the BeC state to the cGp2 state means: if
some validity condition on the received user identifier is satisfied, then we may
trigger this transition and get a password from the last process the component
received a message from (the root process). The CValid guard is an abstract
guard, checking that the user is declared. Such an abstract guard has to be
mapped out of a particular data type. Therefore we must link it with an operation
of the static view. This is done by the concept of integration view.

To describe views we use KORRIGAN textual descriptions. The textual de-
scription for the integration view of our password manager example is depicted
in [Fig. 4] where the static view (STATIC) and the dynamic (DYNAMIC) views
are glued with four sets of formulas. The first set (axioms) expresses the cor-
respondence of predicates between the static and dynamic views. For example
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INTEGRATION VIEW Password Manager |
COMPOSITION ALONE

is

STATIC s: SPM with true,

DYNAMIC d: DPM (d.([true] ic), s.(add(d.u,d.p1))),
d.MValid(s,u) == s.declared(s,u) (d.([true] im), s.(modify(d.u,d.p1)))
d.CValid(s,u) == not(s.declared(s,u))

initially true

d.correct(s,u,p) == s.correct(s,u,p)

Figure 4: the PasswordManager integration view

the Cvalid guard corresponds to the negation of the declared operation of the
static view. The second and the third sets (the with clause has two arguments)
are used to synchronize respectively states and transitions of the two STSs. Here,
we synchronize the ic transition of the dynamic part with the add transition of
the static part. The ALONE keyword means that any non explicitly synchronized
transition has to happen alone. This is the LOTOS policy but we also provide
two other concurrency modes: KEEP and LOOSE. The last set is a single formula
which defines the initial state of the component as a restriction of the free com-
position of the two subcomponents initial states (here, initially true, means
no restriction). The operational semantics [CPR00a] is based on the extraction
of a global STS and a global data part specification from a composed view. From
the [Fig. 4] textual description, we may build the [Fig. 5] global STS view.
This global STS, was obtained by computing a general form of the syn-
chronous product of the two STS components. It represents the global activity
of the two password manager subcomponents (its static and dynamic parts).
Within this global STS, the transition from the cVal state to the Wa state
means: if the state of the static part satisfies true and if the two passwords
(in the dynamic part) are equal, then the static part triggers its add transition
and the dynamic part triggers its ic transition. The [Fig. 5] illustrates that in
our model we have complex state transition diagrams with compound transitions
and states. This complexity comes from the use of state and transition formulas
in the “glue”, and also from the product of STSs. This also illustrates the need
for equivalent graphical and textual presentations of the same component. This
fact is now widely accepted, for example in the SDL [BHS91] or UML [Con99]
languages. Concurrent composition is achieved in a similar way, by gluing several
views in the same way as in an integration view. Due to a lack of space, we do
not describe here an example of a composition view (see [Poi00] for examples).

3 The Korrigan Environment

The current environment architecture is organized as in [Fig. 6], some parts are
implemented and some other parts are currently still under development. CLIS
(Class Llbrary for Specification) is a class library to support our concepts like
views and STSs but it also provides interface formats, for example to target the
Larch Prover tool [GG89], LOTOS [BB88] or Xfig. We developed our proper
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[<s.true/d.(p1=p2)>] [<s.true/d.(p1=p2)>]
<s.modify(d.u,d.p1)/d.im> <s.add(d.u,d.pl)/d.ic>
L -

[<s.true/d.not(correct(u,p0))>] [<s.true/d.not(pl=p2)>]
<s.-/d.errorPwd to sender> <s.-/d.errorCorresp to sender>

<s.-/d.create ?u:PldUser
from root:PIdRootUser>

<s.-/d.modify
from u:PldUser>
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dnotMvalidu)>]  d.not(Cvalid(u))>]
[<s.true/d.MValid(u)>] <s.-/d.errorUser <s.-/d.errorUser | < true/d.cvalid(u)>]
<s.-/d.getPwd ?p0:Pwd to sender> to sender> <s.-/d.getPwd ?p1:Pwd

from sender> from sender>
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[<s.true/d.correct(u,p0)]
<s.-/getPwd ?p1:Pwd

p d <s.-/d.getPwd ?p2:Pwd
rom sender>

from sender>

<s.-/d.getPwd ?p2:Pwd
from sender>

Figure 5: the global STS corresponding to the integration view

simple package for conditional rewriting. In the future, more efficient rewriting
can be obtained by interfacing the KORRIGAN environment with an external
rewriting system (ELAN [BKK 98] for example). We defined our proper classes
to describe algebraic terms, offers, guards, axioms... The parsing package is a
set, of parsers to read descriptions from files and to generate the corresponding
class instances. We may produce various formats for documentation and editing
tools. For example we defined the generation of Xfig files as a part of the CLAP
Library (Class Library for Automata in Python). We also target verification tools
(the Larch Prover [GG89], PVS [ORR96]) and some object-oriented languages
(Java [GJS96], C++ [Str87]). Starting from the problem description a method
guides the KORRIGAN specification development [Poi00].

3.1 Design Principles

The design of our environment follows several principles. The first principle is to
interface, in an open way, with some existing tools and environments, for example
model checking tools (e.g. XTL in CADP [GIJM197]), theorem provers (e.g. the
Larch Prover, KIV [Rei95], ELAN [BKK*98], PVS, HOL-CasL [MKB97]), and
programming languages (e.g. JAVA, C++). Since such tools are numerous and
evolve, our framework has to be extensible. A second principle is to provide gen-
eral tools which can be useful to other environments or formalisms. For example
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documentation CLIS validation & verification
xfig, sketch, dia CADP ( XTL)
CLAP
display and - state / trans. »| model
printing description checking
b=
animating
parsing rewriting r
| package Larch Prover, PVS, Ki
package
_ | theorem
" | proving
problem Met hod Korrigan
> gan - OO code
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Java, Python, C++
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Figure 6: the KORRIGAN architecture

the CLAP library (detailed below) can be used to compute (a)synchronous com-
positions of any state-transition diagrams (automata, Petri Nets, symbolic tran-
sition systems). To achieve these two principles we reuse some object-oriented
features both in the design and in the implementation of our environment. We
have chosen object-oriented programming because of its reusability and extensi-
bility, and also because we had already a good experience of this programming
model in a formal context [Roy01].

3.2 The Python Language

The implementation is done in PYTHON [Lut96]. The PYTHON language is an
interpreted object-oriented language, hence it is really useful to produce both
quick scripts and prototypes of complex environments. One important feature is
that PYTHON is free, open source and portable across several platforms (Unix,
Linux, Windows). It is closely related to Lisp, Perl, and Smalltalk, but it is much
more legible. It is dynamically type-checked, functional and object-oriented. It
has a simple meta-object protocol and provides exceptions, powerful built-in
data structures and module libraries (parser generation, CORBA programming,
and XML parsing).

3.3 Integration Process

Based on this object-oriented framework, we have defined a general process to
integrate new languages and new tools in our environment [Fig. 7]. From the
abstract syntax description of a given specification we get an Abstract Syntax
Tree (AST) instance using the parsing mechanism (see [Section 5.1]). From that,
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parsing
scanning
AST interpreting ACLIS Class
Input - > Instance
Specification Instance | (AST traversal)
transformation
A OO method
print
Output - Another CLIS
Specification CLASS Instance

Figure 7: the integration process

an interpreter builds an instance of a class in the CLIS hierarchy. Some trans-
formations may therefore be done on this instance to get another instance of a
CLIS Library class. For example, one may want to transform the data part of
a KKORRIGAN static view into a CASL [CASL99] or a Larch Prover specification.
This is done by defining a method from the source class to the target class.
Finally there is a print method in each specification class which is able to print
out the required specification format. Once parsing and printing for a language
are implemented, the main task of the designer is to define methods to convert
one CLIS class to another CLIS class. This process was used for example with
the generation of Xfig documentation for CLAP instances. It also has been used
to generate LOTOS specifications (see [Section 5.3]) from KORRIGAN specifi-
cations. Let us note that while our concern here is to provide the tools, such
transformations are semantically valid only for parts of the languages. Note also
that this process can be implemented in other languages (C for example) and
interface PYTHON with it.

4 The CLIS Library (Class LIbrary for Specification)

CLIS [Fig. 8] is an extensible hierarchy mapping the specification classification.
It contains classes for the KORRIGAN model, but also for other formalisms. We
provide a general hierarchy for specifications, with subclasses corresponding to
data types or dynamic specifications. We try to classify the different approaches,
but this is a difficult task and this hierarchy is only for design support. As an
example of data type specification we have the Larch Prover tool language and
as an example of dynamic specification we have members of the CLAP library
(see [Section 4.1]). Our KORRIGAN model is a subclass of mixed specification
languages, LOTOS is another example of mixed specification language.

4.1 The CLAP Hierarchy (Class Library for Automata in Python)

State transitions diagrams are important in KORRICAN, and more generally
to represent models of the dynamic and concurrent systems [SNW93]. Thus, a
special part of CLIS is devoted to them. CLAP enables one to define different
kinds of state-transition diagrams by providing an extensible hierarchy of classes.
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Specification
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Static Specification Dynamic Specification
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(cf. Figure 1)

Figure 8: the CLIS hierarchy (part of)

For example, there are classes for automata with state or transition parameters
(initial states, labels, emissions, receptions, colours), and Petri Nets. It is easy
to add a new class corresponding to some new kind of state-transition diagram
by subclassing. This has been done for KORRIGAN STSs. The state-transition
diagrams are stored in files following a generic internal format. A parser for
this format is provided, see [Section 5.1]. The diagrams may be automatically
transformed into displaying and documentation formats following the [Fig. 7]
schema.

The original part of CLAP concerns symbolic transition systems, since we
take them into account which is not the case in other existing state and transition
packages such as BCG in [GIM197]. We do not have a very efficient implemen-
tation for STSs yet. STSs are abstract, hence they have generally a small size.
Therefore, classical graph algorithms or model-checking usual tools are efficient
enough.

5 Korrigan Environment Tools

On top of these class libraries, we have implemented tools in our environment.
The focus is rather put on generality and rapid prototyping, efficiency is not our
main goal at the moment. Note that all these mechanisms are implemented by
classes and they can easily be extended.
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5.1 Parsing
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’ Code Generation ‘% Code

Figure 9: SPARK parsing principles

We choose to reuse a simple and general approach based on SPARK [Ayc98]. It
defines a package with four levels devoted to scanning, parsing, semantic analy-
sis and code generation. Each of these levels provides a general class and some
methods. To define a proper system (i.e. devoted to a given language), one may
subclass the general classes and redefine some methods. For example to produce
a scanning for a new language we subclass the GenericScanning class or some
other existing scanner. We may also redefine some of the methods which declare
regular expressions and the associated actions. The main advantage of SPARK
is to use object-oriented programming which provides extensibility and reusabil-
ity of components. There are three parallel hierarchies in this package, one for
parsing, another one for scanning, and a last one for interpreters. Interpreters
are used to transform an AST instance into an instance of a CLIS class. These
CLIS class instances may then serve as internal formats.

5.2 Automata Related Operations

Since our semantics (see [CPR00a]) uses the synchronous product of diagrams
we need to implement it. We may note that the product of two simple STSs
is no longer a simple STS, as for the STS of the integration view of the pass-
word manager [Fig. 5]. This is the reason why the notion of structured STS is
required in our hierarchies. This also requires to define structured identifiers,
states or transitions. CLAP allows one to use temporal formulas in order to
compute initial states, states and transitions reachable from the initial states,
and parameterized synchronous products. The most interesting is the generic
synchronous product of state and transition systems. It allows one to build the
synchronous product of any number of state transition diagrams, choosing the
list of synchronizations, the synchronization mode (and the resulting type). For
example we can simulate either LOTOS or CCS synchronization rules with the
same operation (but with different parameters of course).
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5.3 LOTOS Generation

We have defined translation mechanisms to generate LOTOS from a KORRI-
GAN specification [PCR99]. Note that our KORRIGAN model may be viewed as
a strict superset of LOTOS. There are two main differences: the use of partial
functions (while LOTOS uses total functions) and the glue for communications
and concurrency which is more general than LOTOS synchronization. Restrict-
ing our model to total functions, ALONE concurrency and LOTOS compatible
offers, a KORRIGAN specification has a direct LOTOS interpretation. If we do
not consider such restrictions a more complex translation is possible but requires
controllers as in [CPR99].

scanner | parser | interpreter

input
view

‘ Internal Structuring View (ISV) ‘ ‘ External Structuring View (ESV) ﬁ
T

—

1
I
. Korrigan
DataPart STSPart ' Glue
! T
T T | \
l l ! !
! | ,
ACTO Sequential !
ne Basic LOTOS ! LOTOS
‘ ‘ %7 , Synchronization
Sequential Basic LOTOS Concurrent ‘
Full LOTOS asie Full LOTOS
* v
’ Full LOTOS
2.n
print

transformation

i

Figure 10: the view-to-LOTOS translation principle

Here, we restrict our translation to the case where KORRIGAN matches LO-
TOS. The principle is depicted in [Fig. 10] and follows the general schema we
presented in [Fig. 7]. We start from a file containing a KORRIGAN view descrip-
tion. The parsing mechanism produces an instance of the view class. Depending
on the class of this view instance (either ISV or ESV) a different transforma-
tion is done. An internal structuring view (static view or dynamic view) may
be considered as a view with both a data part and a STS part. The transla-
tion of the static part proceeds as described in [PCR99] and gives a data type
(an ACT ONE specification). We encapsulate this data type into the LOTOS
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process associated with the STS. The retrieval of the LOTOS behaviour from
the STS can be done using different patterns and builds a sequential basic LO-
TOS instance. The way used here is to associate a process to each STS and
for each state a conditional branch is created. Some simplifications are achieved
(grouping branches for the same operation and simplifying guards) to get a more
readable behaviour expression. Each component of an external structuring view
is translated (recursively) into a full LOTOS instance and the glue part gives
a synchronization expression. The LOTOS class has a print method which is
then used to write LOTOS code.

5.4 Object-Oriented Code Generation

Korrigan Specification

- - ]
<

I

[ Glue Part STS Part J [

Data Type J

\7 Specification Refinement

[ Executable Specifications ]

[ Controller structures ]

\.7 Choice of aHierarchy

: a

\7 [S| ngle Generator Specificati ons]

T R .
[Sequential components] \7 Object Translation

[ Formal Class Design ]

T
\7 Automatic Translation

i i
[ Active Classes (Active Java) ] [ Static Classes (pure Java) ]

V I

Active Classes V |

encapsulated Static Parts I

Java Code

Figure 11: the view-to-JAVA code generation principle

The object-oriented code generation, see [Fig. 11], is achieved with the following
steps (see [CPR99] for more details). Following an approach similar to LOTOS
generation in [Section 5.3], two main transformations are performed on the Ko-
RRIGAN specification, one for internal structuring views and one for external
structuring views. These transformations are based on more elementary trans-
formations: one for data parts, one for STS parts and a last one for glue and
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behaviour structure. The glue and the behaviour structure, are implemented
by controller structures. These structures are then translated into a concurrent
object-oriented language (Active JAVA [MHSA99]). The STS part is implemented
into an Active JAVA class. A class implements a set of methods which represent
the transitions of the STS. The STS states and the guards define the operation
preconditions which are implemented as “activation conditions” in Active JAVA.
Condition variables may be set (postconditions) in the “post actions” methods
of Active JAVA. In the class constructor, initial values for the conditions are set
according to the automaton initial state. To be implemented the data part needs
to be executable. Whenever the algebraic part is not executable, it is refined into
an executable one (through interactions with the user). Algebraic specifications
are translated into an intermediate object-oriented code based on Formal Classes
[Roy01], and implemented into pure JAVA. This intermediate level is a formal
and object-oriented model which allows us to simplify and to abstract the object-
oriented generation of the static part. Finally the JAvA class implementing the
static part is encapsulated into an Active JAVA class implementing the dynamic
part.

6 Related Work

Our work is related to different specification languages but also to several soft-
ware environments, see [Poi00] for a more exhaustive survey.

6.1 Model Comparisons

Our view model has some connections with the UML, see [CPR0OOb] for more
details. Our model is supported by a UML-inspired graphical notation. One
important and first difference is that we consider formal specifications which is
not the case of the UML. Contrary to the UML, we consider that graphical
notations are useful but not sufficient, therefore our method is applied to de-
velop both textual and graphical specifications. We suggest, when possible, to
reuse the UML notation, but also to present some proper extensions. Since our
model is component-based, we have an approach which is rather different from
the UML on communications and concurrent aspects. Thus we have specific
notations to define dynamic interfaces of components, communication patterns
and concurrency.

Clearly our model may also be related to LOTOS and SDL. LOTOS has
a stricter policy for compatible offers (gate names must be equal). KORRIGAN
expresses separately the glue between the data type and the dynamic behaviour.
With LOTOS, the links to the data types are embedded in the description
process. LOTOS allows pure interleaving, in addition KORRIGAN provides two
other concurrency modes. Finally KORRIGAN does not restrict data types to total
ones. There is the same limitation with data types in SDL as with LOTOS. A
great difference between SDL and KORRIGAN is the communication mode which
is asynchronous for SDL and synchronous for KORRIGAN. An implementation of
asynchronous communications is possible in KORRIGAN wia buffers. We can also
note that the links to the data type are embedded in the dynamic behaviour.
KORRIGAN and SDL have a good advantage over LOTOS, they provide an
associated graphical notation.
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Our model is also related to CASL-Chart [RR00], which is an extension of
CASL to reactive systems. One great advantage of CASL-Chart is the possible
use of existing tools like Statemate [HLNT90]. The main drawback is that the
Statecharts [Har88] are a complex formalism which carry difficulties to modelize,
to prove and to animate. Our STSs may be related to Statecharts ([Har88§],
or the UML ones) but for some differences. Our STSs are simpler (but less
expressive) than Statecharts. They model sequential components, concurrency
is done through external structuring and the computation of a structured STS
from subcomponents STSs [CPR00a]. These STSs are built using conditions
which enable one to semi-automatically derive them from requirements. Last our
STSs may be seen as a graphical representation of an abstract interpretation for
an algebraic data type [AR99].

uSZ [BGGKI7] is also a formalism that uses Statecharts but with a com-
bination of Z [Lig91] for data types and a temporal logic for safety properties.
This is a modular formalism with features for communications, concurrency and
time. It also allows one to animate specification using Statemate. A method has
been defined in [GHD98].

6.2 Related Software Environments

The qualities of the graphic user interfaces and the number of tools of our envi-
ronment are not competitive with industrial products like Objecteering!, Ratio-
nal Rose? or Telelogic Tau®. However, these environments focus on a specification
language (except Telelogic Tau which supports both the UML and SDL). Our
environment is rather devoted to interface with different environments and to
combine several kinds of formal specification.

UML modellers, such as Rose or Objecteering, focus on graphical editing
for the UML, object-oriented code generation and metrics. We are interested in
verifications and also in object-oriented code generation. We also want to define
tools reusable in other environments. UML Modellers are rather closed and do
not interface easily with other formal tools.

Telelogic Tau (the SDL suite was previously named SDT) is a set of tools for
the formal specification with SDL. Moreover these tools integrate: requirement
analysis, system specification with the UML, message sequence charts and a for-
mal design and verification with SDL. It may use SDL as the implementation
language (to achieve tests) but also a SDL-to-C code generator. This environ-
ment includes converters (UML to SDL, SDL to Statecharts) and integrates
the UML and SDL within a single tool. It provides a complete software devel-
opment solution with up-to-date and industrial standards. Our environment is
free and more open, and we have links with the UML but we consider that the
current informal UML semantics does not allow a safe translation into a formal
language.

CADP [GIJM™'97] is a set of tools devoted to the specification and the ver-
ification of protocols and distributed systems. It comprises specific tools for
equivalence and bisimulation testing, model checking, test and animation (via
code generation). It also enables one to apply different reductions on graphs. It

! Softeam, http://www.softeam.fr.
? Rational, http://www.rational.com.
% Telelogic, http://www.telelogic.com.
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defines three different formats to integrate or link new tools: LOTOS specifi-
cations, nets of finite state machines and LTS (BCG format). These LTS may
use complex data but they have to be reduced to finite sets of values/terms,
they are not symbolic. The BCG format may be translated into a dozen of other
state and transition formats, it can be edited and drawn. This environment also
focuses on mixed systems but in a less expressive, less abstract and less readable
manner. It provides nice graphic user interfaces integrating a complete set of
tools. There is no real support for non finite state and transition diagrams and
for complex data types. It is not defined to be used on other specifications (e.g.
LP, OO languages, or documentation languages like Xfig).

7 Future Developments

Parts of the environment are still under development. Students are currently
designing the graphic interfaces with the help of the Glade generator [Lut96].
Some tools like the two ones described below have been experimented in different
contexts and will be integrated soon within our PYTHON software. In the future,
we expect to integrate in the CLIS hierarchy some other specification languages
(SDL [BHS91], CASL [Mos97] and CasL-LrL [RAC99]). The object-oriented
code generation was experimented without using the [Fig. 7] principles. To be
able to follow them, we need to reify the target object-oriented languages by
classes in the CLIS hierarchy. The LOTOS code generation mechanism was
extended to generate SDL in [CPR99] with the support of a specification method
and it makes sense to enrich the current environment with these features.

7.1 G-Derivation

The G-derivation tool is a tool associated with the CLAP Library. Usually one
writes algebraic axioms in a constructive way over the constructors of the data
type. G-derivation adapts this idea with a constructor term generation based
on a STS [AR99]. This is useful with views because the method may extract an
algebraic specification compatible with the STS. The first point of the method
is to automatically extract the signature from the STS. A graph traversal then
helps the user to choose the constructors of the data type, and an algorithm,
based on the STS graph traversal, builds a great part of the axioms, and finally
the specifier has only to give the right-hand side conclusion terms. This tool was
implemented in Smalltalk.

7.2 Verification

It is possible to generate inputs to verification tools using the [Fig. 7] transla-
tion mechanism. For example we can use the CADP [GIM97] environment to
verify LOTOS specifications resulting from the [Section 5.3] translation. Mixed
specifications require specific symbolic verification means [RH97, KT97]. Cur-
rent symbolic model-checkers does not seem well-suited to our KORRIGAN STSs.
We plan to define and implement specific verification tools. An idea is to trans-
late the KORRIGAN specification into a specific formalism where both static
and dynamic parts are expressed using the algebraic framework (e.g. CASL-LTL
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[RAC99]), and then verify this resulting specification using a theorem prover.
Thus, in the future we will propose some proof mechanisms more adequate to our
STSs. An idea is developed in our research team, it is devoted to specifications
involving both logical time and physical time with the use of PVS [All00].

8 Conclusion

The proposed environment supports our specific model, KORRIGAN, to specify
mixed systems. This environment follows two principles: openness and exten-
sibility. According to these principles, it provides translation tools to interface
with other formalisms, e.g. LOTOS, LP, Xfig, ... We also have a generic tool to
describe state-transition diagrams, to build their (a)synchronous composition,
and to compute their graphical representation. Object-oriented source code may
be generated from KORRIGAN specifications.

The KORRIGAN environment is based on a classification of specifications with
a general parsing mechanism. New formalisms may be integrated, and transla-
tion mechanisms for them may be defined. It was not too difficult to prototype
such an application with PYTHON. We have already a general hierarchy for LP,
LOTOS, KORRIGAN views and symbolic transition systems. We have also a gen-
eral process to extend our environment. The following tools were implemented:
parsers, Xfig documentation and the synchronous product of STSs. Other tools
have been experimented in Smalltalk or in CLOS, they are being integrated in
the current environment.

We are now designing the graphical user interface, it will integrate a method
for mixed system we have developed [CPR99] and the different tools we have
experimented. Another issue is model-checking and verification. One idea is to
interface our environment with existing formalisms and verification tools (as
done with LOTOS). Another idea is to implement specific proof mechanisms
that are more specifically relevant for our model [A1l00].
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