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Abstract: In this paper we present the real-time verification and analysis toolRAVEN. RAVEN
is developed for verifying timed systems on various levels of abstraction. It integrates a real-time
model checker for real-time specifications, it offers algorithms for analyzing critical delay times,
for inspecting data values and event occurrences and for detecting dead-locks and live-locks.
The counter example generator provides helpful information for error recovering by printing
system execution paths (failing a given specification) to the integrated wave-form browser. All
included algorithms are based on a common data structure enabling a compact representation
and possibilities for acceleration. By some examples we show that our approach outperforms
some state-of-the-art verification tools.
Key Words: formal verification, model checking, analysis, real-time systems
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1 Introduction
Formal verification has become an important task in the design of systems. Techniques
like equivalence checking and symbolic model checking have reached industrial appli-
cability. These techniques are well suited for fully synchronous systems modeled with
a qualitative notion of time. If systems are embedded in real-time environments and
upper or lower bounds for reaction times are important to guarantee a proper and save
functionality, the verification of real-time properties becomes very important. We tar-
get at this application area with our toolRAVEN.

Various efforts have been undertaken to extend temporal logics and proof algo-
rithms to timed systems (i.e. systems containing quantized timing information). Two
main approaches have to be distinguished here: those based on timed automata
[ACD90] and extensions of symbolic CTL model checking using ROBDDs (reduced
ordered binary decision diagrams) [BCM+90]. For both finding efficient algorithms
and implementations is still an active area of research as real-time model checking
bears additional challenges compared to standard model checking:
• the model checking algorithms have to cope with time, i.e. with natural or real

numbers which makes the application of propositional logics based on ROBDD
techniques hard

• adding timing to state transition systems worsens the state space explosion prob-
lem, especially if a composition of timed transition systems is necessary and if time
intervals, i.e. non-deterministically varying transition times are allowed.
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To cope with these challenges our tool (RAVEN) uses MTBDDs for a symbolic repre-
sentation of the systems [RK97]. This data structure results in compact date structures
and efficient verification algorithms. On some examples we will show that this
approach outperforms some state of the art tools for the verification of timed systems.

RAVEN is a real-time model checker extended by analysis algorithms. The system
description is specified as a network of communicating parallel working real-time pro-
cesses. Each process is a time extended finite state machine. The properties are speci-
fied in the quantitative temporal logic CCTL. The queries for the timing analysis cover
minimal and maximal delay time computation as well as minimal and maximal stabi-
lity computation. Also data values and event occurrences may be analyzed.RAVEN is
able to generate counter examples and witnesses for CCTL formulas. Analysis results
can be visualized by traces. All traces are graphically presented in an integrated wave-
form browser. Moreover,RAVEN offers additional checks. For instance, it can detect
dead- and live locks and computes traces to the locking system states. It is also possi-
ble to generate random simulations of the composed system.

The next section gives a short overview to the state-of-the-art in real-time verifica-
tion. Afterwards we present the necessary theoretical background in Section 3. Section
4 describes the architectural set-up of theRAVEN system and the major processing
steps for the verification. In Section 5 we present the input language ofRAVEN: RIL.
This language is used to describe parallel working processes and to specify formal
properties to prove and timing queries for analysis. The description of two case studies
and their modeling inRIL is presented in Section 6. Afterwards we present some expe-
rimental results in Section 7. Section 8 will conclude this paper.

2 State-of-the-Art

2.1 Timed Automata

A formalism which has been created to model real time systems aretimed automata
presented in [ACD90]. In timed automata time is represented by clocks carrying real
numbers and time passes in the states. A transition is chosen based on clock predicates
on the edges and input events. Specifications are given in TCTL, an extension of CTL.
As an arbitrary number of clocks is possible, this is a very powerful approach. Differ-
ent tools based on this theory have been presented like KRONOS [DOTY96] or
UPPALL [BLL+95]. Composition of timed automata is easily possible leading to a
new automaton carrying the sum of all the clocks of the original automata.

However, although deriving the composed structure is simple, the state explosion
problem is only delayed to the point of model checking. Then in each state the product
of the values of all clocks have to be considered. To solve this state explosion problem
on-the-fly model checking techniques can be used. However, if specifications are to be
proven correct which require the traversal of the complete reachable state space (e.g.
mutual reachability of states) the efficiency gain is low. Moreover the underlying proof
algorithms are different from standard CTL fixed point computations and hence it is
more difficult to find efficient representations. Thus only recently first efforts have
been presented on how to use BDD like techniques for a symbolic state set representa-
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tion. Therefore in practice the resulting runtimes especially for model checking com-
posed structures may be high even when using these symbolic techniques [BMPY97].

2.2 Extensions to CTL Model Checking

A different approach is taken by people who try to extend the well-known CTL model
checking techniques to real-time. It is based on the observation that in very many
applications the expressive power of timed automata is not necessary. This comprises
e.g. all those systems which may be described using global time, i.e. only one clock is
necessary. Usually these approaches attribute edges of the transition system with delay
times (mostly natural numbers) and enables quantized timing parameters in the tempo-
ral operators, leading to CTL extensions like RTCTL (real-time CTL, [EMSS92]) or
QCTL (quantized CTL, [FGK96]). To retain the efficient BDD representation, delay
times are represented by a binary encoding, added to the transition relation or by repre-
senting all transitions with a certain delay by a separate transition relation. This can be
seen as a special case of timed automata where only one clock carrying natural num-
bers is allowed which is reset after each state transition. A tool based on this approach
is VERUS [CCM97]. A timed model checking algorithm based on multi-terminal
BDDs (MTBDDs) has been proposed [KR97]. The main advantage is that the efficient
implementation techniques of standard CTL model checking can be used.

3 Theoretical Background
Temporal logic model checking takes a structure (representing the system behavior)
and a formula and automatically checks if the structure meets the specification. Struc-
tures are state-transition systems modeling hardware or software systems. The funda-
mental structures are Kripke structures (unit-delay structures, temporal structures)
which may be derived from finite state machines. Our basic model for real-time sys-
tems is the interval structure, i.e., a state transition system with labelled transitions. We
assume that each interval structure has exactly one clock for measuring time. The
clock is reset to zero if a state is entered. A state may be left if the actual clock value
corresponds to a delay time labelled at an outgoing transition. The state must be left if
the maximal delay time of all outgoing transitions is reached. One clock tick is the
lowest granularity for the time modeling. To expand interval structures by a possibility
for communication, we have extended them to I/O-interval structures. These structures
carry additional input labels on each transition. Such an input label is a Boolean for-
mula over the inputs. We interpret this formulas as input conditions which have to hold
during the corresponding transition times. For instance, input-insensitive edges carry
the formula . [Figure 1] shows an I/O-interval structure with two states and one
transition. The transition is enabled indeterministically between 1 to 3 time steps after
the structure has entered the top state. Since this transition is labeled with the input
condition it may only be activated if this condition is true up to the activation time.
The new value of the signal  is assigned at the time of the transition activation.

The semantics of interval structures is defined over runs. A run is a sequence of
configurations. A configuration is an association of an interval structure state with a
clock value: . For the configurations of a run holds
either:

true

i¬
a

g S IN0×∈ r g0 g1 …, ,( )=
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• that the system remains in its state: and and

• or the system changes its state according to the transition relation and the corre-
sponding delay times: and and the transition

 is labeled with the delay time .

This definition guarantees, that exactly one time step passes between two adjacent con-
figurations. The semantics of I/O-interval structures is more complex and may be
found in [RK99].

Properties to check are specified by temporal logic formulas. CCTL is a temporal
logic extending CTL [CES83] with quantitative bounded temporal operators. Two new
temporal operators are introduced to ease the specification of timed properties. It is
used to describe real-time specifications. The syntax of CCTL is shown in the follow-
ing definition, where is an atomic proposition, and are
time bounds.

 (1)

All temporal operators are preceded by a run quantor (A universal,E existential), i.e.
each temporal operator refers to one run and the quantor determines if the temporal
operator is true for every run (universal quatification) or for one run (existential quanti-
fication) starting in the actual configuration. [Table 1] gives an informal description of
the temporal operators

All interval operators can also be accompanied by a single time-bound only. In this
case the lower bound is set to zero by default. If no interval is specified, the lower
bound is implicitly set to zero and the upper bound is set to infinity. If theX-operator
has no time bound, it is implicitly set to one. The complete semantics of CCTL is given
in [RK99]. For instance, the semantics of theEF-operator is formally defined through:

Figure 1: Example I/O-interval structure

[1,3]

a

a

time

i¬

0 1 2 3

gi si vi,( )= gi 1+ si vi 1+,( )=
vi maximal delay time<

gi si vi,( )= gi 1+ si 1+ 0,( )=
si si 1+,( ) vi 1+

p P∈ a IN∈ b IN ∞{ }∪∈

ϕ

p | ϕ¬ | ϕ ϕ∧ | ϕ ϕ∨ | ϕ ϕ→ | ϕ ϕ↔
| EX a[ ]ϕ | EF a b,[ ]ϕ | EG a b,[ ]ϕ | E ϕ U a b,[ ]ψ( ) | E ϕ wU a b,[ ]ψ( )

| E ϕ B a b,[ ]ψ( ) | E ϕ wB a b,[ ]ψ( ) | E ϕ C a[ ]ψ( ) | E ϕ S a[ ]ψ( )

| AX a[ ]ϕ | AF a b,[ ]ϕ | AG a b,[ ]ϕ | A ϕ U a b,[ ]ψ( ) | A ϕ wU a b,[ ]ψ( )

| A ϕ B a b,[ ]ψ( ) | A ϕ wB a b,[ ]ψ( ) | A ϕ C a[ ]ψ( ) | A ϕ S a[ ]ψ( )









:=
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 (2)

is an interval structure, is a configuration of and is the model relation.
RAVEN can automatically investigate if holds for all initial configurations

, i.e. if the given structure satisfies the given specification.

4 Architecture
The main tasks ofRAVEN after parsing the input file is the construction of the MTB-
DDs for each process and the composition and synthesis of the MTBDD for the com-
plete system transition relation. The resulting MTBDD is then used for checking
specifications and for answering timing queries. After the composition,RAVEN can be
switched to an interactive mode allowing the user to manipulate his specifications and
queries and to add new ones. The architecture ofRAVEN is shown in figure [Figure 2].

After callingxraven , the graphical user interface appears. In this window the user
specifies the input file and chooses some global options. Afterwards, theRIL-compiler
(RAVEN input language, see Section 3) and the composition engine are launched. If
the composition is completed,RAVEN activates the window of the interactive proof
manager. A screen shot showing the proof manager window, the wave-form browser
and the wave-form order window is printed below. The proof manager window shows
all specifications and their proof states. Also the analysis queries and their computed

The formula  has to hold after exactly  time steps.

The formula has to hold at least once within the interval .

The formula  has to hold at all time steps of the interval .

The formula  has to become true within the interval  and
all time steps before, the formula  has to be valid.

If becomes true within the interval then has to be true
for all preceding time steps. Otherwise has to hold up to time .

If  becomes true within the interval  then  has to be
valid at one time instance before this event. Otherwise has to be
valid at least once up to the time .

If  becomes true within the interval  then  has to be
valid before this event. Otherwise there is to condition to .

If the formula  is true on the current run up to the time
then the formula  has to hold at time .

From time zero up to time the formula has to hold and at
time  the formula  has to become valid.

Table 1.Informal description of the temporal operators

ℑ g0|= EF n[ ]ϕ : there ex. a run⇔ r, g0 …,( ) and ani n≤ such thatℑ gi |= ϕ,=

ℑ g0 ℑ |=
ℑ g0|= ϕ,

g0

X a[ ]ϕ ϕ a

F a b,[ ]ϕ ϕ a b,[ ]

G a b,[ ]ϕ ϕ a b,[ ]

ϕ U a b,[ ]ψ ψ a b,[ ]
ϕ

ϕ wU a b,[ ]ψ ψ a b,[ ] ϕ
ϕ b

ϕ B a b,[ ]ψ ψ a b,[ ] ϕ
ϕ

b

ϕ wB a b,[ ]ψ ψ a b,[ ] ϕ
ϕ

ϕ C a[ ]ψ ϕ a 1–
ψ a

ϕ S a[ ]ψ a 1– ϕ
a ψ
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values are shown. New specifications or queries may be typed in this window or read
in from an external file A screenshot is shown in [Figure 3].

5 The Input Format RIL
RIL (RAVEN input language) is a language for specifying networks of communicating
time extended finite state machines. EachRIL module contains one I/O-interval struc-
ture. The I/O-interval structure description in [Program 1] shows exemplarily the syn-

Figure 2: RAVEN’s architecture

Figure 3: Screenshot of the graphical user interface ofRAVEN

userRIL-file

graphical user interface

interactive

RIL-compiler composition proof

MTBDD package

engineengine

proof manager
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tax of RIL. After specifying a name for the module, the local signals are declared.RIL
supports the following data types: Boolean, enumeration, ranges of natural numbers
and bitvectors. The keywordINPUT is followed by the input signals and their connec-
tions with other parallel running modules. TheDEFINE section introduces definitions
of formulas which can be used in the remaining system description and as outputs con-
nected to inputs of other modules. The keywordINIT is followed by a boolean for-
mula describing the possible initial values of the signals. The remaining part of the
module is for the definition of the state transitions. A transition consists of four parts:
the start values, the input restrictions, the delay times and the target values specified by
signal assignments. The first transition in the example defines a transition from the
states=wait to the states=fire . The transition is activated 10 time steps after the
wait state is entered and only if during the 10 time steps the inputenable is true.
The next line shows a short cut for the case that the input restriction fails. In this situa-
tion the system falls back to the states=wait and the local clock is reset to zero, i.e.
the system can switch tos=fire  at the earliest after 10 time steps.

RAVEN allows the user to mix timed modules with fully synchronous modules. The
transition relations of these modules are preceded by the keywordNEXT. Then the tran-
sition relation is defined by a (conjunctive connected) sequence of boolean formulas. A
transition function is usually defined for each signal. The description in [Program 2]
shows an example of a synchronous module. All state changes consume one unit time
step.

Specifications are globally defined for all modules at the end of theRIL-file. Each
specification gets an unique name and the corresponding formula. The syntax of the
formula is equivalent to equation (1) expressed in ASCII format. The followingRIL-
code shows exemplarily the definition of specifications:

SPEC
save := AG !( a & b )
life := AG( req -> AF[10,20] ack )

RAVEN also allows the computation of critical time delays of the given system, e.g.,
minimal reaction times of an embedded system or the maximal wait time of a work
piece in a production automation system. For these tasks the current version of

Program 1.RIL description of a timed process

MODULE trigger
SIGNAL s : { wait fire }
INPUT enable := controler.enable_trigger
DEFINE action := (s=fire) & enable
INIT (s=wait)
TRANS

|- s=wait -- enable: 10 -->s := fire
!->s := wait

|- s=fire -- : 1 -->s := wait
END
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RAVEN supports three different algorithms invoked by the three different timing que-
ries:
• MIN TIME FROM startset TO targetset

This query requires two sets of configurations: thestart and thetarget configura-
tions. Then the corresponding algorithm computes the minimal delay time which is
necessary to reach a configuration of thetarget starting in a configuration of the
start set.

• MAX TIME FROM startset TO targetset
This query analogously computes the maximal delay time which is necessary to
reach a configuration of thetarget starting in a configuration of thestart set.

• MIN STABLE TIME OF set
This query requires onesetof configurations. This algorithm computes the length
of the shortest path crossing the givenset. This computation can also be described
as: finding the minimal time the given CCTL formula stays stable true directly after
it changed from false to true.

• MAX STABLE TIME OF set
This algorithm computes the length of the longest path inside the givenset. This
computation can also be described as: finding the maximal time, the given CCTL
formula stays stable true.

The set of configurations are specified by CCTL formulas, e.g. if we are interested in
the maximal delay time from the moment the input signal rises until the output
becomes high, we may write this query as follows:

 (3)

Other analysis queries are:
• MIN-/MAX VALUE OF variable IN set

This query investigates the minimal (resp. maximal) value of avariable within a
givenset of configurations (this set is specified as a CCTL formula)

• MIN-/MAX VALUE OF variable FROM startset WITHIN timebound
This query investigates the minimal (resp. maximal) value of avariablewithin the
specifiedtime interval starting in the given set of configurations (startset).

Program 2.RIL description of a synchronous unit-delay process

MODULE counter
SIGNAL c : RANGE[0,10]
INPUT i := trigger.action
DEFINE carry := (c=10)
INIT  (c = 0)
NEXT

c’ = CASE i & c<10 :c+1
i & c=10 :0
!i :c

ENDCASE
END

MAXTIME FROM input EX input∧¬ TO output
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• MIN/-MAX COUNT OF event FROM start TO target
This query counts the minimal (maximal) number of occurrences of theevent
betweenstart andtarget.

6 Case studies
We have implemented the model checking and analysis algorithms based on extended
characteristic functions [RK97]. For an efficient and compact symbolic representation
we have implemented the extended characteristic functions by MTBDDs [RK98a].
The algorithms are based on standard CTL model checking algorithms [BCM+90], but
we have introduced new techniques (time prediction, time jump) which take advantage
of the MTBDD representation for accelerating the state space traversal [RK97]. Also
the analysis algorithms use this representation and the new optimization techniques
[RK00]. The composition of I/O-interval structures is symbolically performed by
using MTBDDs [RK98b]. We have developed two MTBDD based heuristics for mini-
mizing the representation of the transition relation. Many details about the implemen-
tation may also be found in [RRSV01] published in this journal.

The first examined case study is the single pulser circuit [JMC94]. The used gates
are modelled with specific timing behavior. Impulses on the inputs which are shorter
than the delay time of a gate are suppressed. Only if an impulse stays constant at least
for the delay time, the gate may change its outputs. For modeling flip-flops, we assume
a setup and a hold time. If the input signals violate these timing constraints, the flip-
flop remains in its actual state. The circuit is shown in [Figure 4].

[Figure 5] shows the basic gates (initial states are bold). The dotted lines represent
transitions which are activated (at any time) if the condition at the "main" transition
(solid lines) fails before the delay time is reached. The input signals are and
and the clock input of the flip-flop is . The delay times are of the NOT- and the
AND-gate. The setup time of the flip-flop is  and the hold time is .

For modeling the AND gate, input sensitive edges have been used: If the system
starts in the statehigh, and the inputs fulfil for time units then it changes
to the statelow. If the inputs fulfill before time units are passed, the struc-
ture remains in the statehigh. Here, I/O-interval structures allow a user a very clear
and compact modeling of timing constraints and communication behavior. TheRIL
program code for the AND-gate is shown in [Program 3].

The clock generator is modeled by an I/O-interval structure with two states (high
and low) which toggles between both states every cycle-time. The environment is
either a human pressing the button (which should be single pulsed) or it’s a bouncing
pulse.

Figure 4: The circuit of the single-pulser

D D
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1
&

a a1, a2
c δn δa,

δs δh

a1¬ a2¬∨ δ
a1 a2∧ δ
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The specification checks that an output signal appears if the input stays high long
enough:

 (4)

The following specification verifies that the output stays high for one cycle period and
then changes to low for a further cycle. Afterwards it remains low at least until the
input becomes high:

 (5)

The next example is the arbitration mechanism of a bus protocol. We modeled the
J1850 protocol arbitration [SAE95] which is used in on- and off-road vehicles. The
protocol is a CSMA/CR protocol. Every node listens to the bus before sending (carrier
sense, CS). If the bus is free for a certain amount of time, the node starts sending. It
may happen that two or more nodes simultaneously start sending (multiple access,

Figure 5: Basic gates

Program 3.RIL description of a timed process
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MODULE AndGate
SIGNAL s : { low high }
INPUT a1 := DFF1.out

a2 := NotGate.out
DEFINE out = (s=high)
INIT (s=low)
TRANS

|- s=low -- a1 & a2 : delta -->s := high
!->s := low

|- s=high-- !(a1 & a2) : delta -->s := low
!->s := high

END

spec1 AG Env.out¬ EX A Env.out C 2δc δh+[ ]AF δa δh–[ ]And.out( )( )→( ):=

spec2 AG And.out¬ EX And.out A And.out C 2δc δn+[ ]tmp1( )→( )→( ):=

tmp1 AG 2δc 1–[ ] And.out¬ A And.out¬( )wUEnv.out( )∧:=
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MA). Therefore, every node listens to the bus and compares the received signals to the
send signals. If they differ, it starts arbitration (collision resolution, CR) and waits until
the bus is free again. A sender distinguishes between two sending modes, a passive and
an active mode. Active signals override passive signals on the bus. Succeeding bits are
alternately send actively and passively. The bits are encoded by a variable pulse width:
a passive zero has a pulse width of , a passive one bit takes , an active
zero bit takes and an active one bit takes . The bus is simply the
union of all actively send signals. The arbitration is a bit-by-bit arbitration, since a
(passive/active) zero shadows a one bit. Before sending the first bit, the nodes send an
SOF (start of frame) signal, which is active and takes . In [Figure 6] some
examples of arbitration are shown. We assume an exact frame length of 8 bits. After
sending the last bit, the sender sends a passive signal of , the end of frame
(EOF) signal.

One bus node is modeled by two sub-modules: a sender/receiver and a counter (see
[Figure 7]). Initially, all modules are in their initial states. If a node decides to send
(nondeterministically) the sender/receiver listens to the bus. If the bus stays low for

( ) time units, the module changes to the SOF state. The counter is trig-
gered by the continue high/low states of the sender. After sending the SOF signal, the
sender sends alternately passive and active one and zero bits. If the bus becomes active
while sending a passive bit, the sender/receiver changes to the CS state and tries send-
ing again later. In the initial state, the counter module sets the signal to high to
indicate that the package is completely send.

A further case study is the Karlsruher production cell [LL94]. This is a more com-
plex system consisting of two robot arms, a robot rotary table, an elevating rotary
table, a feed belt, a deposit belt, a press, and the central controlling unit. All physical
components are modelled with delay times representing the motion of the physical ele-
ments (e.g. the expansion of a robot arm). The controlling unit is modelled by an syn-
chronous process. Details of the examined systems and their modeling with I/O-
interval structures are given in [RK99]. Experimental results to these case studies are
presented in [Table 2] of Section 7.

Figure 6: Some examples of arbitration
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In another case study we have examined a holonic material transport system. This sys-
tem consists of an input and an output station for workpieces and three processing
machines with input and output buffers. The machines are supplied by three autono-
mous transport vehicles. This case study and the experimental results obtained by
usingRAVEN are presented in [FMPR01].

7 Experimental results
In this section we will investigate our tool in comparison to other free available model
checking tools. We compare our approach to SMV (a CTL model checker for finite
state machines [McM93]) and KRONOS (a TCTL model checker for timed automata
[DOTY96]). The translation of interval structures to timed automata is shown in
[Figure 8]. The clock has to be reset explicitly at each transition. The maximal state
time has been formalized using a state invariant.

The example we examine is a system consisting of several communicating struc-
tures. A simple reader/writer system, where the modules access a shared memory.
After writing, the writer module signals the reader processes, that they can start their
work on the memory. All reader run in parallel. The runtimes shown in [Figure 9] con-
tain the composition and the checking time. The left part of the [Figure 9] shows

Figure 7: Two submodules modeling one bus node
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another simple example composed by several toggling structures. A toggling structure
consists of two states and two transitions connecting these states. The delay times on
the transitions are in the range from 300 to 6000. All delay times are different.

Timed automata are a very detailed formalism for describing timed systems. Due to the
complex model checking algorithms for dense time models implemented in KRONOS,
the run-times are worse than the runtimes ofRAVEN. But often it is sufficient to model
systems with discrete time, e.g. fully synchronous systems, systems with a central con-
trolling unit and timed environment or systems with a shared bus. Furthermore, the
discrete time model can be seen as an abstraction technique decreasing the accuracy of
the model but accelerating the model checking algorithms.

Our translation of I/O-interval structures to finite state machines for SMV preserve
the model behavior. Since SMV is developed for unit-delay systemsRAVEN outper-
forms SMV for models with long delay times.

The last table compares the analysis algorithms ofRAVEN with the analysis
algorithms of VERUS [CCMM96].We have compared the runtimes for one
MINTIME and oneMAXTIME computation. In the single pulser example we com-
puted the minimal and the maximal length of the output impulse. In the J1850 example
we checked the minimal and the maximal delay time until a node will leave the send-
ing mode. In the production cell we were interested in the minimal and the maximal

Figure 8: Timed Automaton modeling an interval structure

Figure 9: Runtime and memory comparison of SMV, KRONOS andRAVEN
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time elapsing until the first work piece leaves the cell. For the VERUS runtimes we
tried various options and choose the best results. The corresponding runtimes are
printed in [Table 2].

The runtimes ofRAVEN in the table with (RAVEN opt) and without optimizations
seems to show, that the developed optimization techniques cause only a tiny speedup.
But the runtimes shown in the table contain besides the analysis times also the compo-
sition times of the structures. In all three examples the composition consumes the
major part of the times (11.73 sec. for the single pulser, 2000 seconds for the produc-
tion cell and 25 sec. for the J1850). If there will be more than two analysis queries (as
computed in the examples), then the fraction of composition time to analysis time will
shrink and the optimizations will cause a larger speedup.

8 Conclusion
In this paper we have presented a tool for the analysis and formal verification of real-
time systems:RAVEN. The systems are described by networks of communicating I/O-
interval structures. These structures provide timed transitions for modeling real-time
systems and the labeling of the transitions with input restrictions for modeling interac-
tion between parallel working components. After the composition of the structures
RAVEN performs the model checking and the analysis on the resulting interval struc-
ture automatically.

Due to the symbolic representation of the structures and sets of configurations with
extended characteristic functions (implemented by MTBDDs), this approach works
very compact in the memory consumption. Especially if long delay times are specified
the advantages of this technique are obvious. By exploiting the locally stored timing
information in the extended characteristic functions) techniques like time prediction
and time jumps accelerate the model checking and analysis algorithms. We have
shown the applicability of our tool by a variety of real-world examples described on
various levels of abstraction.
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runtimes in
seconds

 single
pulser

J1850
production

cell

VERUS 119.23 -a

a. VERUS was terminated due to a memory consumption over 600MB

-b

b. VERUS terminated with an error: „string table overflow“

RAVEN 13.15 790.38 1766.65

RAVEN opt 12.90 177.63 1584.34
Table 2.Comparison ofRAVEN and VERUSc
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