Journal of Universal Computer Science, vol. 7, no. 1 (2001), 71-88
submitted: 1/9/00, accepted: 13/10/00, appeared: 28/1/01 [Springer Pub. Co.

Fred: An Approach to Generating Real, Correct, Reusable
Programs from Proofs

John Crossley
School of Computer Science and Software Engineering
Monash University, Australia
jnc@csse.monash.edu.au

Iman Poernomo’
School of Computer Science and Software Engineering
Monash University, Australia
ihp@csse.monash.edu.au

Abstract: In this paper we describe our system for automatically extracting “correct”
programs from proofs using a development of the Curry-Howard process.

Although program extraction has been developed by many authors (see, for example,
[HN88], [Con97] and [HKPM97]), our system has a number of novel features designed to
make it very easy to use and as close as possible to ordinary mathematical terminology
and practice. These features include 1. the use of Henkin’s technique [Hen50] to reduce
higher-order logic to many-sorted (first-order) logic; 2. the free use of new rules for
induction subject to certain conditions; 3. the extensive use of previously programmed
(total, recursive) functions; 4. the use of templates to make the reasoning much closer to
normal mathematical proofs and 5. a conceptual distinction between the computational
type theory (for representing programs)and the logical type theory (for reasoning about
programs).

As an example of our system we give a constructive proof of the well known theorem
that every graph of even parity, which is non-trivial in the sense that it does not consist
of isolated vertices, has a cycle. Given such a graph as input, the extracted program
produces a cycle as promised.

Key Words: Program synthesis, proofs as programs, reusable software.

Category: F.3.1, D.2.4

1 Introduction and Overview

Our first aim is to produce correct and practical programs from mathematical
proofs.? Qur ultimate aim is to imitate mathematical practice and to produce
not a nice formal mathematical theory but a usable system for program synthesis.

We start with a formal proof of a specification. Then the proof is encoded as
a Curry-Howard or proof term, which is a term in a typed lambda calculus with
dependent sums and products. The proof term can then be processed further
to get a program in the Caml-light variant of ML. (This program is a term of a
simply typed lambda calculus with disjoint unions). This program satisfies the
original specification.

! Research partly supported by Australian Research Council grant A 49230989.
2 The word “correct” in this paper means “meeting its specification” and we shall also
require the user to guarantee that the specification is consistent.

72 Crossley J., Poernomo |.: Fred: An Approach to Generating ...

Finally we give an example: extracting a cycle from a non-trivial, even parity
graph.

We use a mixture of approaches (all to be explained later): the “traditional”
Curry-Howard method, but using a strategy due to Leon Henkin [Hen50], tem-
plates, and using a protocol between two type theories: the logical type theory
(LTT) of proof terms and the computational type theory (CTT) of ML.

1.1 The Curry-Howard Isomorphism

The well known Curry-Howard isomorphism (see e.g. [How80] or [CS93]), pro-
duces a term of a lambda calculus from a (constructive) proof of a formula.
This can be used to give a program which computes the constructive content of
the formula. Thus, in arithmetic a constructive proof of a formula of the form
VzIya(z,y) yields an algorithm for computing a function f such that a(7, f(77))
holds for every natural number n. (7 is the numeral for n.)

In this paper we present an extension of the Curry-Howard isomorphism
to a first order, many-sorted, predicate calculus which also allows the use of
previously programmed functions (and predicates) subject to guarantees of con-
sistency. The extension to a many-sorted calculus allows us to extract programs
over different sorts. This has previously been done successfully in various higher
order systems. Our approach avoids the use of higher order logic. (Inevitably
this theory is not as strong as e.g. Martin-Lo6f’s, but our use of templates gives
it some second order strength.)

Now it is well known that the programs extracted from full proofs in for-
mal logic are immensely long both in size and in running time. We therefore
introduce other features into our system to make it more manageable and the
programs shorter. These features are designed to mirror, as far as possible, nor-
mal mathematical practice.

1.2 Extensions and the LTT/CTT Protocol

The Curry-Howard isomorphism uses a logical type theory with dependent sums
and product types to encode proofs. Besides this logical type theory (the LTT)
we also have a computational type theory (the CTT) for representing programs.
We shall define a protocol between the LTT and CTT through which we can

1. (easily axiomatize and) use pre-programmed functions in our proofs,

2. extract correct, realistic programs (in the CTT') from proofs of specifications
(in the LTT) and then reason about these programs in future proofs, thus
reusing these programs in program synthesis and

3. retain a conceptual distinction between reasoning about programs and run-
ning programs.

Our motivation is that this leads to a practical, useful system requiring min-
imal training and specialist knowledge.

Crossley J., Poernomo |.: Fred: An Approach to Generating ... 73

We have built a software system, written in C++ and currently called Fred,
as an implementation of our system.? It has a BTEX output feature, so that
we can easily include proofs written in Fred in a document such as the present
paper.

We demonstrate the system by taking a constructive proof that every non-
trivial even parity graph contains a cycle and then using our system to extract
a program that computes such a cycle from a given (non-trivial) graph.

2 Related Work

There have been a number of systems exploiting the Curry-Howard notion
of formulae-as-types. In particular we mention: Hayashi’s system PX, [HN8§],
the implementations of Martin-Lof’s type theory [ML84], such as [NPS90] and
[Con97], the Coq prover, see [HKPM97] (based on Coquand and Huet’s Calcu-
lus of Constructions), Schwichtenberg’s Minlog system, see [BS95], and Zhaohui
Luo’s Eztended Calculus of Constructions (ECC') [Zha94].

These systems provide Curry-Howard style program synthesis via a single,
unified framework for programming and doing logic. This distinguishes them
from ours, where we emphasize retaining a strong distinction between the logic
and programming languages (achieved via our distinction between the LTT and
the CTT).

Martin-Lof [ML84] makes the point that his type theory is open, in the sense
that new terms and new types may be added at any point in time (added via
a computational definition). Because logic and computational types occupy the
same status, any axioms concerning a new term or elements of a new type have to
be proved from such a computational definition. In contrast, the introduction of
a new function symbol or sort is accompanied by a set of axioms that are taken
as true (just as in ordinary mathematics). The CTT/LTT protocol demands
that a suitable new function or type has been correspondingly introduced in the
CTT so that our extraction theorem still holds.

In the area of type theory, Zhaohui Luo’s Eztended Calculus of Construc-
tions [Zha94] is similar in motivation to our framework. The ECC provides a
predicative universe Prop to represent logical propositions and a Martin-Lof
style impredicative universe hierarchy to represent programs. So, like our sys-
tem, the ECC has a similar division of labour between proving properties of
programs (in Prop) and creating new programs and types (in the universe hi-
erarchy). However, the ECC was not designed with program synthesis in mind,
rather to provide a unified framework for the two (recognised) separate tasks
of logical reasoning and program development. Consequently, the techniques we
employ in this paper (in particular, an extraction protocol between the CTT
and LTT) have not been used in the ECC'.

We present the CTT/LTT protocol in an informal metalogic. In [And93],
Anderson used the Edinburgh Logical Framework to achieve a similar relation-
ship between proofs in a logical type theory and programs in a computational
type theory. That work was primary concerned with defining the relationship

3 The name comes from “Frege dynamic system” because the proofs have an appear-
ance similar to those in Frege's Begriffschrift [Fre79]. (See [Fig. 6].)

74 Crossley J., Poernomo |.: Fred: An Approach to Generating ...

S0 as to obtain optimized programs. However, representations of optimized pro-
grams are not added to the logical type theory. Our metalogical results might
benefit from a similar formal representation.

The NuPRL system contains an untyped lambda calculus for program defini-
tions. Untyped lambda programs may then be reasoned about at the type level
(one of the main purposes of NuPRL is to do verification proofs of programs
in this manner). In [Cal98], it was shown how to use NuPRL’s set type to view
such verifications as a kind of program extraction. Similarly, Coq is able to di-
rectly define and synthesize ML programs from proofs (see [PMW93]). However,
it seems that little work has been done on the possibility of integrating this
type of verification with program extraction (along the lines we have described):
rather, they are treated as separate applications of the system.

When we import a program with axioms, we assume that the program satis-
fies the axioms and that these axioms are consistent. It is up to the programmer
to guarantee this. (There are many methods: model checking, by using Hoare
logic or Fred). NuPRL and Coq allow for this guarantee to be constructed within
the logic itself.

Both Martin-Lof and Coquand and Huet have directly integrated a program-
ming language within higher order type theory. Hayashi’s system uses a logical
system using partially defined functions developed by Feferman, and Schwicht-
enberg uses minimal logic. Constable’s uses higher-order logic. Although Martin-
Lo&f’s system is much liked by those who have used it for some time, all of these
logical systems seem, for most people, much less familiar, and more complicated,
than ordinary first-order logic.

3 The Logical and Computational Type Theories

We work in Fred in the same way as mathematicians: constantly introducing
new functions and reusing previously proved theorems (that is to say, the logical
aspect), or as computer scientists: constantly reusing (reliable) code (that is to
say, the computational aspect).

3.1 The Logical Type Theory (LTT)

We present a logical type theory (LTT) of many-sorted intuitionistic logic. The
types are many-sorted intuitionistic formulae and the proof terms are essentially
terms in an extended typed lambda calculus which represent proofs. LTT is
modular and extensional with respect to the operational meaning of its function
terms. However the function terms may be programmed in a computational type
theory. In this case we may introduce axioms for them in LTT. These function
terms can be defined in whatever way we wish, as long as they satisfy the axioms
of the LTT. However the user is required to guarantee that these programs are
also “correct” and, in particular, that the axioms added for the functions from
the new programs preserve consistency. Thus we retain a distinction between
extensional meaning (given by the axioms they must satisfy) and intensional
meaning (how they are coded in the computational type theory).

Crossley J., Poernomo |.: Fred: An Approach to Generating ... 75

Each term ¢ has an associated sort* s — we denote this relationship in the
usual fashion, by ¢ : s, read “t is of sort s”. In constructing terms we shall always
assume that the sort of the constructed term is appropriate. For example: If
t1:81 X so and t: (81 X s2 — s3), then ¢(¢1) : s3.

The axioms (denoted by Az) that we permit are the ones one would normally
employ in (constructive) mathematics are Harrop formulae (defined below). The
restriction is a natural one and also has a significant effect on reducing the size
of our extracted programs. Harrop axioms are axioms that are Harrop formulae
and Harrop formulae are defined as follows: 1. An atomic formula or L is a
Harrop formula. 2. If « and 3 are Harrop, then so is (a A). 3. If « is a Harrop
formula and v is any formula, then (v — «) is a Harrop formula. 4. If « is a
Harrop formula, then Vza is a Harrop formula.

Harrop formulae play an important role in the program extraction process.
These formulae contain no computational information and therefore allow the
deletion of large parts of the proof terms (see below).

The rules for ordinary first order natural deduction are readily adapted to
the many-sorted case. We associate with each many-sorted formula a proof term
(essentially a term of our lambda calculus) representing the derivation of the
formula. The terms are formed using A, application, pairing (-, -), the projections
m1 and 72, (as usual we have the reduction rule: m;(z1,z2) = z; for i = 1,2) and
two operations select and case which have reduction rules given in Albrecht
and Crossley [AC96]. [Fig. 1] gives the natural deduction rules and the proof
terms.

Proof normalization corresponds to lambda calculus reductions over the LTT
as usual (see [GLT89] or [CS93]). Thus an implication introduction followed by
an implication elimination can be dramatically reduced to a triviality. This kind
of situation arises when a lemma is used before a new theorem and the lemma
has already been proved previously. One such reduction can lead to others as
introduction and elimination rules are brought into proximity.

In other earlier approaches to Curry-Howard program synthesis the LTT
was treated as a programming language and proof normalization was treated
as program compilation. However, in our implementation Fred we first extract
a program from the proof term and the extracted program uses the optimized
evaluation strategies of ML. (In fact the proof reductions are incorporated in
this process. Details may be found in [CPWO00].)

3.1.1 New Induction Rules

Adding a sort s with constructors often gives rise to a structural induction rule in
the usual manner.’ This may introduce a new proof term operation rec; (where
the subscript S indicates the sorts involved) with the usual fixed point semantics,

* It is convenient to call the entities “sorts” rather than “types” as there are many
other “types” in this paper. In fact for our present purposes we could easily reduce
everything to first order. To do this we should just use a predicate, In(z,y), say, to
represent “z is in the list y” and similarly for lists of lists. The technique is described
in Henkin [Hen50]. However we write our expressions in the conventional way and
they therefore sometimes appear as involving higher order expressions.

® Hayashi [HN88] has a very general rule for inductive definitions but we do not need
such power for our present purposes.

76 Crossley J., Poernomo |.: Fred: An Approach to Generating ...

Initial Rules
iArz A AsD 0 a AxD

wheﬁ A € Ax for some sort s
Introduction Rules

Ed:B (I)l—d:A Fe:B (A
Fac:Ad: (A= B) F(d,e): (AADB)
Fd: A Fe:B
Tndy: ave Y Ty ave (V2D
Fd:A Fd: Alt/«]
I—/\m:s.d:Vx:sA(D F(t,d):3z:sA (30
Elimination Rules
Fd:(A—>B) Fr:A Fd: (AL A A)
F(dr): B (= E) Fmi(d) : A; (" B)
Fd:Vx:sA Fd:L
A WE
l—dt:A[t/x]() l—dA:A(J_E)

provided A is Harrop

Fd:C Fe:C F+f:(AVB)
Fcase(r: Ad:C,y:Be:C,f: (AVB)):C

(V E)

d:3zx:sA Fe:C
Fselect(z: s.y: Alz/x].e: C,d:3x : sA): C

(FE)

Conventions: 1. The usual eigenvariable restrictions apply in (VI) etc.
2. We assume that all undischarged hypotheses or assumptions are collected and
listed to the left of the F sign although we shall usually not display them.

Figure 1: Logical Rules and Proof Terms.

and an obvious set of reduction rules. For example in [Fig. 2] we give the axioms,
induction rule and definition of recy for the sort of natural numbers N.

An important sort for representing graphs is the parametrized list, List (c),
the list of objects of sort a. The constructors of List (a) are: €, the empty
list in List (o) and con, : a X List (o) — List (o). We abbreviate the term
con(a)(t,l) by (t) :: I and use (to,t1,-..,t,) as an abbreviation for the term
cong (to, cong (t1, cong(...cong(tn,€q)))).

Lists have the following induction rule for each sort a. Let [be a variable of
sort List () and a a variable of sort a.

Fa:A(l/en) NYa VIl (A — A(l/((a) ::1)))
Frecy., (o)1 A(l)

(List (o) induction)

This gives rise to a recursion operator recr;s; o with the obvious operational

Crossley J., Poernomo |.: Fred: An Approach to Generating ... 77

Axioms for the sort N include

Ve:N(z=z) Ve:NVy:N(z=y—oy==zx)
Ve :NVYy:NVz:Nz=yAy=2z—x=2)
Ve:NYy:N(z+y=y+uz)

Ve :NVYy:NVz: N+ (y+2)=(x+y)+2)
Vz:N(z+0=z)

Vo : NVy: N(z + s(y) = s(z +y))

Structural induction rule Associated reduction rules:
generatedbyN :
Fa:P(0:N)AVz: N(P(z) - P(s(x))) recy(A)0: N > w1 (A)
Frecn(A) : Vo : NP(z) recy(A)s(z) : N > mo(A)recn(A)z

Figure 2: The sort, N, of natural numbers with some of its axioms, the associated
induction rule and the operational meaning of the recy operator.

meaning:
T€CList(a) €a AB = A
TeCList(a) (M 31 1)AB = Bh(recpsi(a) tAB)

3.1.2 New Predicates and Functions

An important constructive proof idiom is that of predicate definition. In ordinary
mathematics, we often abbreviate a formula by a predicate. This is a useful way
of encapsulating information, aids readability and helps us to identify and to
use common “proof patterns”. In Fred, we introduce a metalogical abbreviation
P(z)for a formula F(z) (with zero or more occurrences of the variable z) by:

set P(z) = F(x)

Note that we do not allow predicates over predicates.

We introduce a new function letter f of type F' and the following structural
meta-rule (“Template”) for any proof term ¢(z) where z is a proof term of type
P:

The Metarule “Template”: If set P(x) = F(x) then we add the rule:

Ff:F z:Pkgq(z:P):Q(P)
Fq(f:F/z:P):Q(F/P)

That is, if we have formula () which contains occurrences of the formula P as
sub-formulae, then we may substitute the formula F' for P in @) at some or all
occurrences. The converse is also a rule. Of course in doing this we must avoid
clashes of variable.

78 Crossley J., Poernomo |.: Fred: An Approach to Generating ...

Thus Template is a means of abstracting a proof over a “formula variable”.
Defining it as a structural rule is a means of avoiding higher order quantifica-
tion of formula variables (as in Huet, Kahn and Paulin-Mohring [HKPM97]) —
although this could be achieved by creating a new sort (logical formulae) with
a universe hierarchy (as in Martin-Lof [ML84]).

3.2 The Computational Type Theory (CTT)

Our computational type theory is the programming language ML, although it
might just as easily be LISP or C++. Any language £ for which there is a
mapping from terms of simply typed lambda calculus with products, disjoint
unions and parametrized types into £ will work.

We define an extraction mapping extract from proof terms in the LTT to
terms of ML. Each sort is mapped to a corresponding ML type. For any sort®
s, we assume that all the f € Fy (where the subscript S indicates the sorts
involved) are mapped to programs for functions which satisfy the appropriate
axioms Azx.

For instance, consider the sort of natural numbers. We assume that the ML
program corresponding to + satisfies axioms including those given in [Fig. 2] for
the addition function. The predefined ML function for addition will suffice, with
the sort N being mapped to the ML type Int.

Theorem 1. Given a proof term p : Vz :s13y : soA(z,y) in the logical type
theory, there is a program f in the computational type theory ML such that
Az : s1,f(z) : s2) is a theorem and the extracted program, f = extract(p),
has ML type s;1— > sy * s3 where s3 is the type of the computational content of

Az, y).

The proof (see [AC96], [Poe99], or [CPWO00]) involves the map, extract, from
proof terms to terms of the simply typed lambda calculus by first “deleting”
computationally irrelevant proof terms: that is, by removing [true] Harrop for-
mulae from deductions, and then extracting the value from the first part of the
proof term.

3.3 Protocol between the CTT and the LTT

The protocol works as follows:

From LTT to CTT : We use the function extract.

Suppose d is the C-H term for a proof of a formula Vz : 513y : s2A(z,y)
for some sorts s; and s». Our process extract yields a program (in our CTT).
extract(d) is the program for the function f4 in the CTT, such that A(z :
s1, fa(z) : s2). This amounts to Skolemization.

From CTT to LTT : We have symmetrically: to use an ML program in
the logical calculus, an axiom guaranteeing that the program does what it is
supposed to do, i.e. is correct, must be added consistently to the axiom system.

5 Note that each parametrized sort s : (Sort; — Sorts) corresponds to a parametrized
type.

Crossley J., Poernomo |.: Fred: An Approach to Generating ... 79

Obviously, checking for consistency may be an onerous task. Here are two ex-
amples: 1. Model checking techniques could be used in some cases. 2. In earlier
work we have used the protocol from the LTT to CTT, extracted a program
from a proof term in the LTT and then added this program back into the LTT
with an axiom which is a Skolemzied version of the theorem from whose proof
it was originally extracted.

In any case if we are given a program f_A for a function f4 : s; — s, that
satisfies a specification A(z, fa(z)), then we add the axiom Vz : s; Az, fa(x))
and, of course, interpret f4 by the action of f_A.

This protocol makes programs much shorter. For example, we do not have
to prove the Peano axioms for addition and then generate a program from that
proof. We can simply use our old (user-guaranteed reliable) ML program. Fur-
ther, we can hide large parts of programs in other (smallish) programs that are
just called when needed.

Here is an example. Suppose we have a proof that for all there is a y greater
than x such that y is prime:

t:Vo:Ndy: N(Prime(y) Ny > x)
By Skolemization, we have the Harrop formula
() : Vo : N(Prime(f(z)) A f(z) > x)

and we know that f is a unique function representing extract(t) in the CTT.
f and its associated Harrop formula can be used in future proofs in exactly the
same way as any other function constant and its Harrop axioms (for example, just
like + and the axioms for addition). Later we shall give much more complicated
examples.

A related proof idiom is Function definition. This involves both the LTT
and the CTT. For instance, the function length, : List (o) — N is given by the
following axioms

lengthe(eq) =0
lengtha({a) :: 1) = 1+ lengtha(l)

These axioms define a total function length, in the LTT.
We are required to specify a corresponding program in the CTT. We associate
the irreflexive CTT operation of computing with the reflexive LTT equality =.
The corresponding program in the C'TT is obtained by taking this axioma-
tization which gives a (total) recursive definition and then: 1. UnSkolemizing to
a form” Vz : List(a)3y : NA(x,y), next 2. proving this by induction, and finally
3. extracting our ML program obtaining:

let rec length = function
[1-—>0
| a::1 -> 1+length(l)
"V : List(a)3y : NVf : List(a) = N
(x=¢€x = flx)=0AVa:avl: List(a)(x=(a) =1 > 1+ (1)) — f(z) =v)

80 Crossley J., Poernomo |.: Fred: An Approach to Generating ...

A?, o 4 4

Figure 3: Two sample graphs

Note that, in larger proofs when we are anxious to reduce the size of the term
(program), we may choose to implement the associated program in a manner
different from that suggested by the axiomatization. This is an important feature
of our approach — intensionally distinct programs in the CTT correspond to
extensionally interchangeable functions in the LTT. Of course, the programs
extracted from our system are only as correct with respect to the axiomatization
as these defined programs are.

As noted above, axiomatizations of functions in the LTT and their associated
computational definitions in the CTT are separate. In many constructive proofs,
functions are not proved and extracted: instead, a total function is defined by
an axiomatization.

4 Representing Graphs in the Formal System

We consider a standard axiomatization of the theory of graphs, G, in terms of
vertices and edges. In this paper we take a concrete representation of graphs but
it is generally desirable to use a more abstract representation. This can be done
by using a parametrized specification but this is beyond the scope of this paper
(see [PIMOO]).

Here the vertices will be represented by positive integers. Consider the first
graph in [Fig.3] with four vertices represented by the four element list of lists of
neighbours ((1,2, 3), (2, 1,3), (3,1, 2), (4)) where each element is of sort List(N).
Not all lists of elements of sort List(N) correspond to graphs: in a graph the
edge relation is irreflexive and symmetric. The list above has the properties

1. The n'" member of the list is a list of numbers beginning with n.

2. (Symmetry) If the n'® member of the list is a list containing m and m # n,
then the mt* member of the list is a list containing n.

3. Each member of the list is a repetition-free list of numbers.®

These properties are expressible in our formal system for G with the aid of
certain extra function symbols, which we now define. Note that each function is
provably total in the formal system.

Here is the list of some of the functions required in Fy;.; and the associ-
ated axioms. All formulae are considered to be universally closed. We note that

8 This ensures that the edge relation is irreflexive and that no pair of vertices are
joined by more than one edge (i.e. the graph is a simple graph).

Crossley J., Poernomo |.: Fred: An Approach to Generating ... 81

appropriate ML definitions can be generated automatically as in the previous
section.

1. A binary function membery of two arguments: a natural number, n, and a
list.? The function computes the nth member of the list. Since all functions
are total we will need to use a “default value”!? for cases where n is larger
than the length of the list or where n = 0.

2. Position function, listpos. The function listpos(n,l) gives a list of all the
positions the number n takes in the list [. If the list [does not contain n
then the empty list is returned. We take the head position as 0, so position
k corresponds to the k 4+ 1°¢ member of the list.

3. Initial segment of size k of a list I: initlist(k,1).

4. Tail segment of size k of a list I: tail(l,n).

4.1 Cycles in Even Parity Graphs

We set a predicate graph(l) to mean that a list of lists of natural numbers, [
(therefore of sort List(List(N))), represents a graph.!! The formula graph(l) is
defined in Fred by the conjunction of four Harrop formulae:

set graph(l) = length(l) <1 — L A
Vi: N(1 < i <length(l) = membery (1, member ;s vy (i,1)) = i) A
Vi: N (1 <i <length(l) — repfree(member ;g (ny(i,1)) A
Vi: NVYj: N((1<i<length(l) N(1 < j<length(l)Nj#1i)) —
listpos(j, member(i,l)) # ¢ — listpos(i, member(4,1)) # ¢€))

where repfree(l) is a predicate defined by
set repfree(l) = Vn : N(length((listpos(n,l)) > 1) — 1)

A graph has even parity if the number of vertices adjacent to each vertex is
even.'? So each list in / must have an odd number length. We therefore define a
predicate evenpar(l).

For the proof we begin tracing a path with the first vertex, 1, say, till we
find a different vertex and then scan the (tail of) its list of neighbours for the
first vertex not equal to 1. Continuing in this manner we can construct a list of
adjacent vertices (1,2,3,1,...) of arbitrary length. Such a list defines a walk in
the graph. The first occurrence of a repeated vertex yields a cycle represented by
the sublist of the vertices between the repeated vertices. Note that the desired
sublist does not necessarily begin at the vertex we start from.

9 For lists of elements of sort o we use member, as the function letter.

10 Note that the default value for the first case below is 0. Because all our graphs
contain only positive integers, it is always the case that when we apply our functions
to lists of vertices we shall be able to decide whether we are getting a vertex or the
default value.

1 We shall exclude trivial graphs consisting of one or zero vertices.

12°A referee has pointed out that the the actual predicate used could be weakened.

82 Crossley J., Poernomo |.: Fred: An Approach to Generating ...

4.2 The Proof of the Main Theorem

In Fred, just as in mathematics practised by mathematicians, we can examine a
proof at various levels of “granularity”. In this section we examine the topmost
level, where the required theorem is proved using several lemmas. We omit most
of the details.

If ¢ is a list of numbers then we define a predicate cycle in the obvious way.

To start the construction we also need a function, which we call start, that
takes as its argument a list, [, of lists of numbers and returns the head of the
first list in [that has length greater than 1. If there is no list in [with length
> 1 then the default 0 is returned.

We need a function genlist that generates a list of adjacent vertices from
the list [(that specifies the graph). First we define gen(l,m) which is either
identically zero (in the case that [has no edges) or the function is never zero and
gen(l,m) and gen(l,m+ 1) are adjacent vertices for every m. Next we use gen to
give genlist(l,n) which gives the vertex for the nt" stage of construction (starting
from 0). If [is a list corresponding to an even-parity graph, then genlist(l,n)
corresponds to (gen(l,n), ...gen(l,0)).

The Main Theorem we want to prove is

Vi : List(List(N)) (evenpar(l) A start(l) # 0 — Jc : List(N)(cycle(c,1)))

This says that if [represents a graph which does not consist entirely of isolated
vertices, then | contains a (non-trivial) cycle. The predicate genlistGives Walk(l)
stands for the statement that the function genlist generates walks in the graph
[; from these walks we wish to extract a cycle:

set genlistGives Walk(l) =
evenpar(l) A start(l) #0 —Vm : N (m > 0 — walk(l, genlist(l,m)))

Note that genlistGivesWalk(l) is represented by a Harrop formula and there-
fore it does not contribute to the computation and nor does its proof. It there-
fore does not matter whether we establish this constructively or even classically
(cf. the footnote on p. 101 in Kreisel [Kre59]). We can just take it as a new
(computational-content-free) axiom.

The proof of the Main Theorem relies on the following lemma which states
that it is provable that any list of numbers is either repetition free or the list
contains an element (say a) such that for some tail segment of the list the element
a occurs exactly twice in the segment and no other element occurs more than
once in this tail segment.

Vi : List(N)(repfree(l) V ListHas UniqueElt Occurs TwiceInTail (1))

where ListHasUniqueEltOccurs TwiceInTail (1) is a new predicate that we define.
The ML program extracted for the lemma is called Cgr21, see [Fig. 5], and
it calls two other programs KSC158 and Cgr20 corresponding to other lemmas
used in the proof of the lemma.
We can prove

F repfree(genlist(l,length(l) + 1)) — L

Crossley J., Poernomo |.: Fred: An Approach to Generating ... 83

let main = let fun96 1 X =
begin match ((Cgr2l (genlist 1 (s (length 1))))) with
inl(g) > [1]
| inr(g) -> ((let fun97 X40 =
(select (X40) (let fun98 b =
let fun99 X43 =
(select (X43) (let fun100 c =
let funl101 X44 =
(app ((pil X44)) (let funl02 y =
(initlist (y+1) (tail (gemlist 1 ((length 1)+1)) c))
in
fun102)) in fun101 in fun100)) in fun99 in fun98))
in
fun97)g)
end in fun96

b

Figure 4: The ML program for the final program

but we observe that this (true) formula is Harrop and therefore has no compu-
tational content, so we can take this formula as an additional axiom.

This Harrop axiom together with the formula obtained from the lemma above
by V-elimination give us

evenpar(l) - ListHas UniqueEltOccurs TwiceIn Tail (genlist(l, length(l) + 1)) A
repfree(tail(genlist(l, length(l) + 1),k + 1))

We can also obtain the two theorems

F start(l) # 0 A evenpar(l), and
ListHasUniqueEltOccurs TwiceIn Tail (genlist(l, length(l) + 1))
F 3c: List(N) (cycle(e,l))

These two proofs give our theorem.

The use of the Harrop formulae allows us to make significant reductions in
the size of the program we extract. Adding an automated theorem prover could
reduce the work involved in obtaining the proof and tactics could be employed to
reduce the size of the proof (see [Section 7]). The final program calls the program
Cgr21 (see [Fig. 5]) for the Main Lemma and is as in [Fig. 4].

Note that this function takes an input [for the graph we want to use and
also an input X which should stand for a term mapped by extract() from a
proof that evenpar(t) A start(t) # 0. However, that statement is Harrop, so X
can be anything (because it is not used in the computation).

This program is relatively easy to read because the code mirrors the structure
of the proof. In particular, the calls to other functions correspond directly to
references to lemmas in the main proof. However, the program for Crg21 is
more complicated but could be made more readable if comments were generated
automatically from the proof. This however is work for the future.

84 Crossley J., Poernomo |.: Fred: An Approach to Generating ...

let Cgr2l =
let rec fun80 1 =
begin match 1 with
[1 -> inl(let fun100 x = (s 0) in fun100)
| h::t -> let fun81 z =
let fun82 1 =
let fun83 X217 =
begin match (X217) with
inl(g) -> ((let fun92 X218 =
begin match ((((Cgr20 1) X218) z)) with
inl(g) -> (inl(let fun98 x =
begin match (((KSC158 x) z)) with
inl(g) -> (0)
| inr(g) -> (X218 x)
end
in fun98))
| inr(g) -> ((let fun93 X221 =
inr ((z, (0, ((X221),
let fun94 x =
(app X221 (let fun95 y =
(X218 x) in fun95))
in fun94))))
in fun93) g)
end
in
fun92) g)
| inr(g) -> ((let fun84 X219 = (select X219 (let fun85 b =
let fun86 X241 = inr((b, (select X241 (let fun87 c =
let fun88 X242 = ((s c¢), ((pil X242), let fun89 x =
((pi2 X242) x)
in fun89)) in fun88 in fun87))))
in fun86 in fun85))
in fun84) g)
end
in fun83 in fun82 in
fun81 h t (fun80 t)
end
in fun80

b

Figure 5: ML program (for Cgr21) extracted from proof of the Main Lemma:
Vi : List(N)(repfree(l) V ListHasUniqueEltOccurs TwicelnTail (1))

5 The Fred Environment

Fred provides an advanced GUI for modular proof development,'? see the screen-
shot in [Fig. 6].

The environment draws inspiration from visual programming techniques
[BGLI5]. Over the past 10 years, visual programming environments (for exam-
ple, the Microsoft Visual Suite or Borland C++ Builder) have become ubiquitous

!3 Please note that Fred currently runs under Windows.

Crossley J., Poernomo |.: Fred: An Approach to Generating ... 85

H G Cecls Ty
H Prsiuenl
o L=
i P Pk
[EEITTE Ee T AT Ty |

Frorend
02] Do T Do 0 it s

Figure 6: Screenshot of the Fred prover.

for rapid application development. This success may be attributed to the fact
that such environments provide a visual representation of appropriate program-
ming practices (for example, building a GUI by selection and placement of visual
components). From our experience with Fred, the same advantages can be ap-
plied in the domain of logical proofs. This is essentially because, as Frege [Fre79)
realized, logical processes are often better presented in two-dimensional visual
representations.
We outline these processes and their visual representations in Fred:

— Fred uses a Multiple Document Interface allowing for many proofs to be
edited at the same time in separate child windows. This is analogous to
developing modules or object-oriented classes in an IDE (Integrated Devel-
opment Environment), or editing several documents using a Word Processor.

— Proofs are presented in tree form, using a navigation directory tree visual
component (commonly used for file explorer programs under Windows or
MacOS operating systems). Proofs are made using backward reasoning —
applying a valid rule to a node will generate several child nodes, each corre-
sponding to a subgoal.

— Application of a rule is made by selection of a (sub)goal node, together
with selection of a rule button from a menu. The menu has buttons for the

86 Crossley J., Poernomo |.: Fred: An Approach to Generating ...

standard natural deduction rules of [Fig. 1] and new, domain-specific tactics.

— Formulae are validated as axioms, theorems or assumptions by a drag-and-
drop action. For example, if a goal formula has been proved in another
window, the user may validate the goal by selecting the proved formula, and
then dragging and dropping it onto the goal formula. This is analogous to
the drag-and-drop action used to construct a GUI in programming IDEs.

— Each proof node has associated information, including current status within
a proof, specifications (see below), extracted program, and lambda calculus
proof term, which can be displayed in table format. This information may
be kept on-screen to aid the proof process.

Users construct collections of proofs via a proof project: this is analogous to
the programming projects used in many IDEs, and provides a hierarchical means
for the collection and maintenance of the structures associated with a proof. A
proof project includes the following features:

— Known or new proofs may be imported or added into a proof project, and
referenced in other proofs. So, a proof may use other proofs in the project
(subject to circularity constraints). This graphically reflects the manner in
which mathematicians solve a theorem by breaking it into separate related
lemmas.

— A project in which everything is proved may be exported into a library of
theorems. Such theorems can be imported for use into a proof project, but are
read-only and cannot be edited further. In this sense, theorems are analogous
to byte-coded components in an IDE.

— Sorts, function symbols, relation symbols and axioms can be imported into
a project as specifications. Any number of user-designed specifications may
be used in proofs. We attempt to make this appear, visually, as analogous
to importing classes or modules in an IDE. The axioms and theorems are
located on the screen according to their associated specifications.

— Given a goal formula Vz : s P(z), proved by induction, the structural in-
duction rule required is generated automatically according to the definition
of the sort s in its specification. Other inductions are generated according
to user-designed induction schemata which may be imported into a proof
project.

A proof project is represented visually via a project explorer tree in which
all available structures are presented using a tree structure. This component
serves as a enables the user to navigate effectively through the active proofs
and theorems of the project. It is also used for the drag-and-drop instantiation
of subgoals of a proof using the proofs and theorems already displayed in the
explorer tree.

6 Demonstration Results

Finally we present some practical results. Here is the result for the left hand
(even parity) graph in [Fig. 3], [Section 4].

Crossley J., Poernomo |.: Fred: An Approach to Generating ... 87

#main [[1;2;3];[2;1;3];[3;1;2];[411;;
- : int list = [1; 3; 2; 1]

Next we consider the right hand (even parity) graph in [Fig. 3] and extract
a cycle in it.

#main [[1;2;6];[2;1;3]1;[3;2;4;5;61;[4;3;51;[5;4;31;[6;1;311;;
- : int list = [3; 5; 4; 3]

In the cases where the graph does not have any cycle we get a default result.

Here are two examples.
#main [[11;[2];[3];[41;[51;[61]1;; #main [[1;01;011;;
- : int list = [0; 0] - : int list = [0; 0]

7 Conclusions and Future Work

So far we can automatically produce programs of manageable size that follow
the structure of the proof.

In the future we plan to classify mathematical techniques into standard forms,
to add a tactic language and an automatic theorem prover front end to Fred,
to automatically generate comments in the extracted code and also to include
algebraic specifications in Fred (see [CPWO00] for a description of the theory).

Acknowledgements

Thanks to Martin Wirsing for comments in preparation for the presentation at
Schloss Reisensburg and later, and special thanks to John Jeavons and Bolis
Basit for the proof of the theorem from both authors. Finally, thanks to three
anonymous referees who provided incisive comments and helpful suggestions.

References

[AC96] D. Albrecht and J.N. Crossley. Program extraction, simplified proof-terms
and realizability. Technical report 96/275, Monash University Department
of Computer Science, 1996.

[And93] P. Anderson. Program Derivation by Proof Transformation. Phd thesis,
Carnegie Mellon University, 1993.

[BGL95] M. Burnett, A. Goldberg, and T. Lewis. Visual Object-Oriented Program-
ming: Concepts and Environments. Prentice-Hall, 1995.

[BS95] U. Berger and H. Schwichtenberg. Program extraction from classical
proofs. In D. Leivant, editor, Logic and Computational Complezity, Inter-
national Workshop LCC 9/, Indianapolis, IN, USA, October 1994, volume
960 of Lecture Notes in Computer Science, 1995.

[Cal9g] J. L. Caldwell. Moving Proofs-As-Programs into Practice. In Automated
Software Engineering, Proceedings 12th IEEE International Conference,
pages 10-17. IEEE Computer Society, 1998.

[Con97] R. L. Constable. The structure of nuprl’s type theory. In Logic of Compu-
tation (Marktoberdorf, 1995), volume 157 of NATO Adv. Sci. Inst. Ser. F
Comput. Systems Sci., pages 123-155. Springer, Berlin, 1997.

88

[CPW00]

[CS93]

[Fre79]

[GLT89]

[Henb0]

Crossley J., Poernomo |.: Fred: An Approach to Generating ...

J. N. Crossley, I. Poernomo, and M. Wirsing. Extraction of structured pro-
grams from specification proofs. In D.Bert, C.Choppy, and P.Mosses, edi-
tors, Recent Trends in Algebraic Development Techniques (WADT’99), vol-
ume 1827 of Lecture Notes in Computer Science, pages 419-437. Springer,
Berlin, 2000.

J. N. Crossley and J.C. Shepherdson. Extracting programs from proofs by
an extension of the Curry-Howard process. In J. N. Crossley, J. B. Remmel,
R. Shore, and M. Sweedler, editors, Logical Methods: Essays in honor of A.
Nerode, pages 222-288. Birkh&user, Boston, Mass., 1993.

G. Frege. Begriffschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Halle, Berlin, 1879.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and types. Cambridge Uni-
versity Press, 1989.

L. Henkin. Completeness in the Theory of Types. Journal of Symbolic
Logic, 15:81-91, 1950.

[HKPM97] G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq Proof assistant Ref-

[FIN8S]

[How80]

[Kreb9]
[ML84]
[NPS90]
[PIMO0]
[PMWO93]

[Poe99]

[Zha94]

erence Manual: Version 6.1. Coq project research report rt-0203, Inria,
1997.

S. Hayashi and H. Nakano. PX, a computational logic. MIT Press, Cam-
bridge, Mass., 1988.

W. A. Howard. The formulae-as-types notion of construction. In J.R.Seldin
and R.J.Hindley, editors, To H.B. Curry : Essays on combinatory logic,
lambda calculus, and formalism, pages 479-490. Academic Press, London,
New York, 1980.

G. Kreisel. Interpretation of analysis by means of constructive functionals
of finite types. In A. Heyting, editor, Constructivity in mathematics, pages
101-128. North Holland Publishing Co., 1959.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Lof’s
Type Theory. Oxford University Press, 1990.

I. Poernomo, J.N.Crossley, and M.Wirsing. Programs, proofs and
parametrized specifications. Submitted to WADT 2001, 2000.

C. Paulin-Mohring and B. Werner. Synthesis of ml programs in the system
coq. Journal of Symbolic Computation, 15:607-640, 1993.

I. Poernomo. Extracting ML programs from Intuitionistic proofs. Techni-
cal report, Monash University School of Computer Science and Software
Engineering, 1999.

Luo Zhaohui. Computation and Reasoning: A Type Theory for Computer
Science. Oxford University Press, 1994.

